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Abstract: The impact of neurodegenerative disorders is twofold; they affect both quality of life and
healthcare expenditure. In the case of Parkinson’s disease, several strategies have been attempted
to support the pharmacological treatment with rehabilitation protocols aimed at restoring motor
function. In this scenario, the study of upper limb control mechanisms is particularly relevant due to
the complexity of the joints involved in the movement of the arm. For these reasons, it is difficult to
define proper indicators of the rehabilitation outcome. In this work, we propose a methodology to
analyze and extract an ensemble of kinematic parameters from signals acquired during a complex
upper limb reaching task. The methodology is tested in both healthy subjects and Parkinson’s disease
patients (N = 12), and a statistical analysis is carried out to establish the value of the extracted
kinematic features in distinguishing between the two groups under study. The parameters with the
greatest number of significances across the submovements are duration, mean velocity, maximum
velocity, maximum acceleration, and smoothness. Results allowed the identification of a subset of
significant kinematic parameters that could serve as a proof-of-concept for a future definition of
potential indicators of the rehabilitation outcome in Parkinson’s disease.

Keywords: motion analysis; reaching movements; biomedical signal processing; kinematic features;
Parkinson’s disease

1. Introduction

Neurological disorders are known to have an extremely negative impact on a person’s
quality of life and to be among the leading cause of disability and death globally [1–3].
In particular, those labelled as neurodegenerative diseases, i.e., characterized by progres-
sive neuro losses, are seeing an increase in their prevalence and incidence in the global
population [1,4]. Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, as well as
other cognitive impairments, have a considerable impact on public health expenditure and,
despite the efforts to establish new and effective pharmacological therapies, the current
drug-based treatments still present limited advantages [2–5]. Therefore, physical exercise
approaches have been proposed as promising strategies to support the treatment of such
neurodegenerative disorders [2–5].

The benefit of motor rehabilitation tasks proved to be particularly helpful in Parkin-
son’s disease, since the physical training was demonstrated to be effective in improving
both motor and non-motor Parkinson’s symptoms [6]. Some studies specifically focused on
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discovering novel rehabilitation tasks to improve the upper limb function in Parkinson’s
disease patients [6–11]. However, in the case of upper limbs, it is worth highlighting that
they are composed of many joints, which are the most flexible in the human body, thus
bringing a high degree of freedom of movement. The intrinsic complexity of the joints’
control mechanisms makes the assessment of the therapeutic impact of the physical exercise
a very challenging task. Some studies use grasping tasks to understand the kinematic and
dynamic aspects of the spontaneous movement of the human arm. Some of these studies
have identified common kinematic features and patterns that characterize spontaneous
human movements [12–14]. In particular, it has been observed that when people move
their arms from one point in space to another, they tend to create a straight, regular path
without interrupting acceleration. The model, first proposed by Hogan in 1984 [15,16],
describes the movements of a healthy person from a theoretical point of view and is often
used by physicians to describe spontaneous arm movements.

Several biomechanical parameters have been proposed in the scientific literature
to date for assessing the quality of movement in healthy and diseased subjects in dif-
ferent rehabilitation settings and tasks [16–31]. Moreover, several studies have aimed
to exploit motion analysis data and compare different instrumentations for diagnostic
purposes [32,33]. However, there is still the lack of objective and effective quantitative kine-
matic and dynamic indicators of rehabilitation outcome as well as the lack of standardized
rehabilitation protocols to restore motor function in Parkinson’s disease.

The objective of this study is to propose a methodology to estimate kinematic features
from upper limb reaching tasks that, taken as a whole, could serve as a basis to estimate a
quantitative rehabilitation outcome. The methodology is tested in both healthy subjects
and Parkinson’s disease affected patients to provide a proof-of-concept of the adopted
strategy, and the most significant kinematic parameters distinguishing the two groups of
subjects are identified and discussed.

2. Materials and Methods

Retrospective data and signals on 12 subjects, of which six were healthy subjects (from
a population of healthy individuals with: age = 40.0 ± 5.7 years old; BMI = 26.0 ± 4.0),
and six were Parkinson patients (from a population of pathological individuals with:
age = 51.7 ± 13 years old; BMI = 27.6 ± 4.6), collected at the Institute of Care and Scientific
Research of Telese Terme of ICS Maugeri SPA SB (Telese Terme, Italy), have been processed
and analyzed in order to estimate and compare a set of kinematic parameters between the
two groups. Each subject performed the task twice for a total of 24 signals.

Figure 1 displays the methodological workflow in brief, while each phase of the
workflow is described in detail in the following paragraphs.

2.1. Kinematic Task and Acquisition

Angular displacement signals, acquired through goniometer sensors were acquired
by implementing a kinematic task protocol consisting of four movements performed by
the upper limb, as described earlier [34,35]. With respect to movement and for its correct
interpretation, the human body can be divided into three anatomical levels: (I) Sagittal
plane, the symmetric plane of the body; (II) frontal plane, perpendicular to the sagittal plane
passing through the center of gravity (mass) of the body; (III) a horizontal plane, orthogonal
to the other two and passing through the center of gravity of the body. In the proposed
protocol, the movements are carried out along two axes, defining a horizontal reaching task
and a vertical reaching task, in a two-dimensional plane starting from a reference position
(from now on called “middle position” for the sake of simplicity). During the acquisition,
the subject is in an upright position, with a straight trunk and neck and the gaze fixed on
the central point of the plane on which the reaching movements are implemented. The
kinematic protocol consists in the exploration of 4 positions: top, bottom, right, and left but
can also be broken down into 8 distinct kinematic phases, four of elevation and lowering
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in the sagittal plane and four of extension and flexion in the horizontal plane, as listed
in Table 1.
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Figure 1. Methodological workflow.

Table 1. Phases of the implemented kinematic task protocol.

ID Task Sub-Movement Description

1 horizontal
reaching task middle to outer right

Extension of the right (left) shoulder from
the middle position to the outer right (left)

position on the horizontal plane

2 horizontal
reaching task outer right to middle

Flexion of the right (left) shoulder from
outer right (left) position to middle position

on the horizontal plane

3 vertical reaching
task middle to top Elevation from the middle position

upwards on the sagittal plane

4 vertical reaching
task top to middle Lowering from the top to the middle

position on the sagittal plane

5 horizontal
reaching task middle to outer left

Flexion of the right (left) shoulder from the
middle position to the outer left (right)

position on the horizontal plane

6 horizontal
reaching task outer left to middle

Extension of the right (left) shoulder from
outer left (right) position to middle position

on the horizontal plane

7 vertical reaching
task middle to bottom Lowering from the middle position

downwards on the sagittal plane

8 vertical reaching
task bottom to middle Elevation from the bottom to the middle

position on the sagittal plane

The goniometric sensors allowed the acquisition of spatial coordinates at a sampling
rate of 20 Hz. The signals were then preprocessed as described in the following paragraph.

2.2. Preprocessing

Signals were preprocessed and processed by means of a custom-made program devel-
oped in Matlab (MathWorks, R2021a, Natick, MA, USA). The acquired signal was loaded
and resampled, interpolated, filtered, and derived in order to obtain a clean manipulable
signal, with all the kinematic descriptions: position, velocity (time derivative of the posi-
tion, as from Equation (1)), acceleration (second time derivative of the position, as from
Equation (2)), and jerk (third time derivative of the position, as from Equation (3)).
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The latter was defined as the rate of the change of acceleration with respect to time, as
described in our previous work [24]:

v(t) =
∫ d

0

∣∣∣∣dx
dt

∣∣∣∣ (1)

a(t) =
∫ d

0

∣∣∣∣d2x
dt2

∣∣∣∣ (2)

J(t) =
∫ d

0

∣∣∣∣d3x
dt3

∣∣∣∣ (3)

where x(t) is the position signal, d is the angular distance (expressed in degrees as measured
through goniometric sensors) travelled by the arm during the exercise, and v(t), a(t), and
J(t) are the velocity, acceleration, and jerk, respectively.

Before calculating v(t), a(t), and J(t), a resampling of the position signal x(t) occurs at
1 kHz, by means of spline interpolation. This step was implemented in view of the future
developments of this study, which will aim at coregistering electromyography signals
sampled at 1 kHz together with the signals acquired by means of motion sensors, as also
further explained in the discussion section of this manuscript. Kinematic signals were
smoothed with a zero-phase, fifth-order, low-pass Butterworth filter with an experimentally
selected cutoff frequency of 1.5 Hz (Equation (5) shows the general frequency response of a
fifth order Butterworth filter).

|H(jω)| = 1√
1 + ω2n

(4)

where n is the order of the filter, and ω is the ratio between the signal frequency and
the cutoff frequency. The proposed smoothing filter was chosen, since it has been largely
applied for the preprocessing of kinematic signals, as also outlined in other works [36–38].
The derivations are carried out through the forward Euler method [39].

Figure 2 shows the output signals from the preprocessing phase.
The signals are used for the successive segmentation phase, as detailed in the following

paragraph.

2.3. Segmentation

Velocity profiles were used to perform the segmentation for the extraction of sub-
movements and the following kinematic analysis for each submovement for each patient.

After a filtering operation (for the removal of spurious peaks within the signal), the
segmentation returned the time instants and the corresponding start and end positions of
the movement. To discriminate the eight phases mentioned above, a movement detection
algorithm was developed that performed a real control on the two velocity curves (obtained
by deriving both the position signals) recognizing a movement where there are significant
variations of the curve. In particular, the algorithm used a detection threshold, equal to
30% of the peak value of the absolute velocity curve. The value of the threshold was
experimentally set at 30% of the maximum value of the absolute velocity (Equation (5)):

Threshold = 0.3 ∗max(|v|) (5)

where v is the velocity signal (◦/s).
The algorithm iteratively recorded the submovement onset and offset by calculating

local maxima for those signal portions overcoming the threshold and local minima for
those signal portions below the threshold, also inspired by the kinematic segmentation
proposed in a previous work [36]. Briefly, the instant corresponding to the local minima
preceding the threshold were labelled as sub-movement onsets. Similarly, the algorithm
recognized the submovement offsets as the ones corresponding to the local maxima of the
velocity profile following the threshold point. The process was iterated on both velocity
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curves (for both horizontal and vertical reaching tasks), so that the algorithm returned the
starting and ending points of each single kinematic phase, allowing the system to obtain
eight distinct velocity curves corresponding to the eight submovements.

The segmentation steps are illustrated in Figure 3.
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ity; (e) acceleration; and (g) jerk. Preprocessing of motion signals from the vertical reaching task:
(b) position; (d) velocity; (f) acceleration; and (h) jerk.

As shown in Figure 3, starting from the velocity and absolute velocity profiles, all the
points above a previously defined threshold (indicated by the red dotted line in Figure 3e,f),
where the absolute velocity reached its maximum values were identified and marked (blue
triangles in Figure 3e,f). Then, the time instants when the velocity profile reached its local
minima and maxima, respectively, right before and right after the defined threshold (equal
to 30% of the maximum velocity peaks) were identified and marked as the onsets and
offsets of each submovement (red circles in Figure 3g,h).



Sensors 2022, 22, 1708 6 of 16

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

preceding the threshold were labelled as sub-movement onsets. Similarly, the algorithm 
recognized the submovement offsets as the ones corresponding to the local maxima of the 
velocity profile following the threshold point. The process was iterated on both velocity 
curves (for both horizontal and vertical reaching tasks), so that the algorithm returned the 
starting and ending points of each single kinematic phase, allowing the system to obtain 
eight distinct velocity curves corresponding to the eight submovements. 

The segmentation steps are illustrated in Figure 3. 

  
(a) (b) 

 
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 3. Segmentation of motion signals from the horizontal reaching task: (a) position; (c) velocity; 
(e) absolute velocity with maximum peaks (indicated with blue arrows) and threshold for peak 
detection (red dotted line); and (g) segmented position with indication of the onset and offset points 
of each submovement (red circles represent onsets and offsets of the submovements). Segmentation 
of motion signals from the vertical reaching task: (b) position; (d) velocity; (f) absolute velocity with 
maximum peaks (indicated with blue arrows) and threshold for peak detection (red dotted line); 
and (h) segmented position with indication of the onset and offset points of each submovement (red 
circles represent onsets and offsets of the submovements). 
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Figure 3. Segmentation of motion signals from the horizontal reaching task: (a) position; (c) velocity;
(e) absolute velocity with maximum peaks (indicated with blue arrows) and threshold for peak
detection (red dotted line); and (g) segmented position with indication of the onset and offset points
of each submovement (red circles represent onsets and offsets of the submovements). Segmentation
of motion signals from the vertical reaching task: (b) position; (d) velocity; (f) absolute velocity with
maximum peaks (indicated with blue arrows) and threshold for peak detection (red dotted line);
and (h) segmented position with indication of the onset and offset points of each submovement (red
circles represent onsets and offsets of the submovements).

2.4. Kinematic Parameters Estimation

The following kinematic parameters were extracted for each of the eight submovements:

• amplitude: representing the rotation amplitude of the executed submovement, i.e.,
the angular distance (expressed in degrees as measured through goniometric sensors)
travelled by the arm during the execution of a submovement;

• duration: obtained from the difference between the end and start point of the sub-
movement (expressed in seconds);
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• mean velocity (v_mean): obtained as the ratio between the amplitude and the duration
of the submovement (expressed in degrees per second);

• maximum velocity (v_max): maximum value of the velocity within the submovement
(expressed in degrees per second);

• maximum acceleration (a_max): maximum value of the acceleration within the sub-
movement (expressed in degrees per squared second);

• maximum jerk (jerk_max): maximum value of the jerk within the submovement
(expressed in degrees per cubic second);

• coefficient of symmetry (symmetry): obtained as the ratio between the duration of the
deceleration phase and the duration of the acceleration phase within the sub-movement
(expressed in dimensionless units), as described in our previous studies [18,25,40,41];

• mean value of the position (p_mean): calculated as the mean of the Gaussian-like
morphology of the velocity profile of the sub-movement, as described in our previous
studies [18,25,40,41];

• mean square root value of the position (p_root_mean): calculated as the mean square
root value of the Gaussian-like morphology of the velocity profile of the submovement,
as described in our previous studies [18,25,40,41];

• variance: calculated as the variance of the Gaussian-like morphology of the velocity
profile of the submovement, as described in our previous studies [18,25,40,41];

• skewness of the velocity profile (skewness): calculated as the skewness of the Gaussian-
like morphology of the velocity profile of the submovement, as described in our
previous studies [18,25,40,41];

• kurtosis of the velocity profile (kurtosis): calculated as the kurtosis of the Gaussian-like
morphology of the velocity profile of the submovement, as described in our previous
studies [18,25,40,41];

• smoothness: calculated as the integral of the third time derivative of the position over
the submovement, as described in our previous studies [18,25,40,41];

The obtained kinematic parameters were used to carry out a statistical analysis to compare
the two groups of subjects considered in this study, as described in the following paragraph.

2.5. Statistical Analysis

Data management and statistical analyses were performed by means of Excel (MS
Office) and IBM SPSS Statistics (v27). The Shapiro-Wilk test was carried out for the nor-
mality check of the distribution of data. It was used as a reference since it proved to be
more appropriate method for small sample size dataset rather than Kolmogorov-Smirnov
test [42]. The Student’s t-test and the U-Mann Whitney test (Confidence Interval: 95%, i.e.,
α = 0.05, two sided tests for unpaired data) were adopted, for normally and non-normally
distributed data, respectively, to compare the central tendency of the data between the
two groups of subjects (healthy subjects and Parkinson’s disease affected patients) for each
estimated kinematic parameter. The Levene’s test was used to assess the homoscedasticity
of the data before applying the t test.

The purpose of the statistical analysis was to identify those factors that were statisti-
cally significant in discriminating between the two groups of subjects and that could serve
as helpful indicators of the rehabilitation outcome in Parkinson patients.

3. Results
3.1. Signal Processing

Figure 4 displays segmented signals from both a healthy and a pathological subject.
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and (b) Parkinson patient. Segmentation of motion signals from the vertical reaching task in a
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The segmentation procedure allows the recognition of the submovements even in the
case of visible motion artifacts and tremor due to Parkinson’s disease (Figure 4b,d). This
also allowed the proper estimation of the kinematic parameters for each submovement in
both groups of patients, as described in the following paragraph.

3.2. Statistical Analysis and Classification

Table 2 shows the results from the statistical analysis for sub-movement 1 (additional
analyses carried out for the other submovements are reported in Tables S1–S8 of the
Supplementary Material).

Table 2. Submovement 1 kinematic parameters’ statistics and statistical tests for comparing groups,
Mann-Whitney or t test according to the distribution of data (please see Supplementary Table S1 for
more details).

Submovement 1
Kinematic
Parameters

Class
Descriptive Statistics Mann-Whitney (*)

or t (**) Test

Mean Standard Deviation Median Interquartile Range p-Value §

amplitude Healthy 29.25 1.815 29.00 2.750
0.007 *Parkinson 27.08 2.644 27.00 3.000

duration
Healthy 1.519 0.151 1.486 0.220

0.002 **Parkinson 3.296 1.510 2.745 2.740

v_mean Healthy 19.50 2.276 20.00 3.750
0.000 **Parkinson 10.00 3.814 10.00 7.250

v_max Healthy 35.72 5.066 36.85 7.040
0.000 **Parkinson 22.65 7.609 21.43 14.340

a_max Healthy 99.34 20.90 107.0 36.310
0.010 *Parkinson 67.65 27.07 61.24 45.630

jerk_max Healthy 454.70 126.7 488.6 233.120
0.089 **Parkinson 349.20 162.0 317.3 204.390

symmetry Healthy −1.276 0.061 −1.290 0.100
0.020 **Parkinson −1.374 0.120 −1.382 0.150

p_mean Healthy 106.80 1.922 106.7 3.060
0.582 **Parkinson 107.20 1.847 107.3 1.970

p_root_mean Healthy 11,411.2 411.8 11,379.4 652.210
0.583 **Parkinson 11,502.9 394.6 11,520.2 422.530

variance
Healthy 112.4 13.66 114.2 17.440

0.000 *Parkinson 78.64 15.97 82.97 18.780

skewness
Healthy −0.167 0.255 −0.207 0.430

0.000 **Parkinson 0.457 0.397 0.436 0.560

kurtosis
Healthy 1.695 0.161 1.700 0.240

0.002 **Parkinson 2.337 0.545 2.251 0.460

smoothness
Healthy 34.23 0.543 33.95 1.020

0.000 *Parkinson 37.31 1.741 36.69 3.010

§ p-values below the significance level (α = 0.05) are reported in bold.
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Most of the parameters were statistically significant in discriminating between healthy
and Parkinson subjects, except for jerk_max, p_mean, and p_root_mean, which were not
statistically significant.

A heatmap was also designed to show the distribution of the p-value per each parame-
ter and per each submovement (Figure 5).
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0.582 ** Parkinson 107.20 1.847 107.3 1.970 

p_root_mean Healthy 11,411.2 411.8 11,379.4 652.210 0.583 ** 
Parkinson 11,502.9 394.6 11,520.2 422.530 

variance Healthy 112.4 13.66 114.2 17.440 0.000 * 
Parkinson 78.64 15.97 82.97 18.780 

skewness 
Healthy −0.167 0.255 −0.207 0.430 

0.000 ** Parkinson 0.457 0.397 0.436 0.560 

kurtosis 
Healthy 1.695 0.161 1.700 0.240 

0.002 ** Parkinson 2.337 0.545 2.251 0.460 

smoothness 
Healthy 34.23 0.543 33.95 1.020 

0.000 * 
Parkinson 37.31 1.741 36.69 3.010 

§ p-values below the significance level (α = 0.05) are reported in bold. 
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Figure 5. Heatmap showing the distribution of the p-values for each parameter and per each
submovement. Each column represents a submovement while each row indicates the extracted
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and strongly weak p-values are reported in yellow and red, respectively.

A statistical analysis was carried out to compare the average values of the kinematic
parameters calculated for all the submovements, according to the following equation:

average kp =
1
8

8

∑
i=1

kpi (6)

where average kp is the average value of a generic kinematic parameter, and kpi is the value
of the kinematic parameter calculated on the i-th submovement (related results are reported
in in Table S9 of the Supplementary Material).

The statistical analysis on the average values of the kinematic parameters showed
that the most significant indicators for distinguishing the two groups were the amplitude,
the maximum velocity, the skewness, the kurtosis, and the smoothness. The maximum
accelerations and the root mean square proved to be significant as well.

3.3. Kinematic Parameter Selection

The results regarding the averaged parameters can be seen in the boxplot displayed in
Figure 6, which could support the selection of the most valuable kinematic parameters able
to distinguish between the healthy and the diseased subjects.

When averaged on the submovements, the number of estimated kinematic parameters
that were statistically significant was reduced with respect to the case when only a single
submovement was taken into consideration (as shown in Table 2), thus suggesting that,
while each submovement brings its own contribution (as detailed in Tables S1–S8 of the
Supplementary Material), the average values of the kinematic parameters should be used as a
more reliable indicator of the overall rehabilitation task outcome. In particular, those average
kinematic parameters that were identified as most significant (i.e., amplitude, maximum
velocity, skewness, kurtosis, and smoothness) in distinguishing the two groups of subjects
could be taken into account to calculate a composite indicator of the rehabilitation outcome.
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Figure 6. Boxplots for comparing the median values calculated on each averaged kinematic pa-
rameter for both the groups: (a) amplitude; (b) duration; (c) mean velocity; (d) maximum velocity;
(e) maximum acceleration; (f) maximum jerk; (g) symmetry; (h) mean position; (i) mean square root
of the position; (j) variance; (k) skewness; (l) kurtosis; and (m) smoothness. Circles (◦) and stars (*)
represent outliers and extreme outliers (more than three times the interquartile range below the first
quartile or above the third quartile) respectively.
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4. Discussion

This study has proposed a novel alternative methodology to estimate a quantitative
rehabilitation outcome for upper limb reaching tasks. Specifically, after a signal processing
routine based on custom-made software, thirteen kinematic parameters, related to upper
limb tasks, were estimated and, subsequently, statistically analyzed. From these analyses,
it has been found that a subset of features (namely, maximum velocity, skewness, kurtosis,
and smoothness) effectively allowed, in the first instance as proof-of-concept, distinguishing
the reaching movements performed by healthy and Parkinson’s Disease subjects, further
confirming the preliminary evidence highlighted in a previous work [18].

The composition of purpose, experimental setup (signal acquisition and processing
workflows), and the promising findings obtained represent, to the best of the authors’
knowledge, a yet unexplored strategy in this field, which set this study apart from others.
Although we cannot present both current and past studies, which can directly support (or
conflict with) our findings, we can briefly discuss in greater detail several aspects of other
scientific contributions on these topics.

To the best of our knowledge, Hasman et al. [43] reported on a methodology aimed at
distinguishing Parkinson subjects from healthy subjects, which could be compared to the
approach proposed in the present study. In particular, the authors’ aim was to investigate
subjects’ posture/stability by means of a functional reach test during which an accelerome-
ter (previously positioned at the patients’ lower back) was used to acquire raw signals. The
outcomes of regression analyses demonstrated kinematic parameters such as functional
reach distance, anterior–posterior acceleration, and mediolateral acceleration were statisti-
cally significant between the two groups. Nevertheless, since, perhaps, the protocol used by
Hasman et al. did not allow consideration of submovement, a possible potential inference
we can draw in the first instance is that our and Hassman et al. study agree that (overall)
the acceleration of the reaching task may effectively represent a parameter to distinguish
Parkinson’s Disease patients from healthy controls.

Another method presented in the literature to potentially find a quantitative reha-
bilitation outcome is the use of drawing tests. Toward this aim, Bai recently presented a
pilot study showing the possibility of acquiring, using a custom-made inertial sensor, the
process time-frequency spectra of a healthy subject [11]. Albeit the author did not assess the
method performing a pilot comparison with unhealthy subjects, the conclusions in his work,
namely, the strategy “could potentially work as a useful method and provide additional
insights in clinical rehabilitation” [11], are in line with the outcomes of Nadeau et al. [6]
who, in the context of a 12-week aerobic exercise training, conducted a similar analysis.
In particular, the authors used a kinematic model to extract several kinematic parameters
(related to antagonist response and activation during the upper limb movement) even from
a target-directed fast simple reaction time task carried out on both healthy and Parkinson’s
disease patients; the outcomes indicated the 12-week training helped improve the upper
limb motor function of Parkinson’s disease patients [6].

In the same period, Ferraris et al. [10] developed a novel system, based mainly on
a low cost RGB-Depth camera and on gloves with imprinted color markers, for the au-
tomated Assessment of Unified Parkinson’s Disease Rating Scale (UPDRS) upper limb
tasks in Parkinson’s Disease. The authors effectively demonstrated that features (such
as the maximum speed of supination/pronation step task) were significantly correlated
to the UPDRS severity and the machine learning strategies investigated were effectively
able to distinguish between healthy and pathological subjects with a very high accuracy,
which decreased consistently when classifying healthy and the respective UPDRS scores. A
similar strategy was later designed by Nodehi et al. [9], which found a moderate correlation
between reach kinematic measures (i.e., normalized movement time and peak velocity)
and manual dexterity. However, in this particular case, the authors did not report extensive
details about the software and postprocessing operations. A less recent paper focused on a
similar aim (namely, evaluating the kinematics of the reach-to-grasp movements) using,
differently, a flex sensor glove to evaluate potential differences between subjects affected
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by vascular parkinsonism, idiopathic subjects with Parkinson’s disease, and healthy con-
trols [44]. The authors assessed how the “movement time” kinematic feature demonstrated
a statistically significant difference between Parkinson’s disease patients and healthy con-
trols, a particular case that could be found also in our findings, which show higher scores
for “duration” in subjects with Parkinson’s disease.

Regarding reaching movements and the Hogan model, we recommend the work of
Hu et al. [45]. Albeit with a different aim, the authors investigated fast front reaching
movements of an upper extremity of both healthy and subjects with Parkinson’s disease
using an arm support apparatus (equipped with four magnetic sensors) aiming at collecting
kinematic data, used also to compute the indexes of the minimum jerk trajectory model [46],
of subjects, after signal processing and filtering (the authors did not provide details in
this regard). The obtained findings showed method indexes could evidence differences
between pathological subjects and healthy controls both in the absence or in the presence
of the surface stimulation of the superficial radial nerve; nevertheless, this strategy did not
show a quantitative outcome assessment before and after the experiments [45].

Finally, to the best of the authors’ knowledge, this seems the first study, which pro-
posed the approach (described previously in the paper) to achieve a quantitative rehabilita-
tion outcome for patients with Parkinson’s disease considering mainly features extracted
by reaching task submovements. In the literature, indeed, very few publications addressing
a similar issue can be found: in particular, regarding reaching tasks submovements, we
highlight the contributions of Simo et al. [47] for post-stroke patients and Carpinella et al.
for multiple sclerosis subjects [37].

Albeit the promising findings and the successful proof-of-concept, the results are not
conclusive. For instance, further experiments are needed due to the relatively small sample
size considered, which implies the presented results should be considered as preliminary
ones. However, it should be noted that, as also highlighted elsewhere [1], given the
nature of the rehabilitation, which should be individualized and vertically focused on the
single case, the use of too many large samples could prevent the design of personalized
patients’ treatment based on specific clinical information of the subjects involved in the
rehabilitation protocol. The authors are also aware that there could be a potential influence
of confounding factors related to the population characteristics affecting the capability of
the proposed approach to be used in the classification of Parkinson’s disease. However,
since this analysis would require a far larger number of subjects, it is out of the scope of this
study, which instead aims at presenting the methodological approach to the processing and
analysis of kinematic signals and its applicability to distinguish different motion patterns.

Future Perspectives of the Study

This work introduced a methodological approach to analyze motion signals during
a complex reaching task in healthy and Parkinson’s disease individuals and extracted an
ensemble of kinematic parameters to study the upper limb control mechanism. Thirteen
kinematic features were estimated and compared for each of the eight submovements, and
a subset of significant parameters was selected as the most promising for the definition of a
potentially reliable indicator of the rehabilitation outcome in Parkinson disease. Given the
strong relationships between physical exercises and the management of neurodegenerative
symptoms [48–51], from the clinical point of view, this study could help in the design of novel
training tasks and exercises for the rehabilitation of upper limb function aimed at improving
the value of those kinematic parameters identified as the most significant ones in this prelimi-
nary research. In addition, from the research perspective, the extracted parameters could be
used as a basis for a further in-depth investigation of the upper limb control mechanisms in
Parkinson’s disease, e.g., for the design of physiological control systems taking into account
the kinematic parameters here estimated and selected as well as their correlation with the
state of the patients, the stage of the pathology, and other patient-related clinical information.
Future studies will aim at expanding the dataset and compute a synthetic index that could
serve as a quantitative indicator of the rehabilitation output after upper limb reaching tasks.
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With the aim of assessing the potential of the proposed methodological approach in the
classification of different neurodegenerative disorders and diseases, further works involving a
significantly higher number of subjects will be carried out and the presented software will
undergo a deeper validation phase. Moreover, an interesting development could be the
use of machine learning algorithms to perform classification tasks on the features extracted
through our software and/or on signals themselves. Furthermore, co-registration of motion
patterns through goniometric and accelerometric sensors together with electromyography
and electroencephalography signals is envisaged. Indeed, we plan to conduct further studies
aimed at conducting simultaneous kinematic and electromyography analysis in order to
investigate relationships between muscles’ electrical activity and motion patterns in healthy
and diseased subjects and identify possible correlations between the proposed kinematic
features and additional electromyographic parameters.

5. Conclusions

In this work, we presented a method for assessing the motor planning and control in both
healthy and diseases subjects by means of an upper limb reaching task and estimation of an
ensemble of kinematic parameters. The obtained results indicated that the extracted features
to discriminate between healthy and Parkinson subjects proved to be statistically significant
for each submovement. As expected, pathological subjects displayed a more fragmentary and
discontinuous motion, which can be summarized in the averaged values of the estimated
kinematic parameters. The parameters with the greatest number of significances across the
submovements were duration, mean velocity, maximum velocity, maximum acceleration, and
smoothness. These features could be useful also for performing harder clinical tasks such as a
differential diagnosis, which is commonly required for studying Parkinson’s.
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//www.mdpi.com/article/10.3390/s22051708/s1, Table S1: Sub-movement 1 kinematic parameters’
statistics; Table S2: Sub-movement 2 kinematic parameters’ statistics; Table S3: Sub-movement 3
kinematic parameters’ statistics; Table S4: Sub-movement 4 kinematic parameters’ statistics; Table S5:
Sub-movement 5 kinematic parameters’ statistics; Table S6: Sub-movement 6 kinematic parameters’
statistics; Table S7: Sub-movement 7 kinematic parameters’ statistics; Table S8: Sub-movement 8
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