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Abstract: A positive surge is associated with a sudden change in flow that increases the water depth
and modifies flow structure in a channel. Positive surges are frequently observed in artificial channels,
rivers, and estuaries. This paper presents the application of Kolmogorov complexity and its spectrum
to the velocity data collected during the laboratory investigation of a positive surge. Two types of
surges were considered: a undular surge and a breaking surge. For both surges, the Kolmogorov
complexity (KC) and Kolmogorov complexity spectrum (KCS) were calculated during the unsteady
flow (US) associated with the passage of the surge as well as in the preceding steady-state (SS) flow
condition. The results show that, while in SS, the vertical distribution of KC for Vx is dominated by
the distance from the bed, with KC being the largest at the bed and the lowest at the free surface; in
US only the passage of the undular surge was able to drastically modify such vertical distribution
of KC resulting in a lower and constant randomness throughout the water depth. The analysis of
KCS revealed that Vy values were peaking at about zero, while the distribution of Vx values was
related both to the elevation from the bed and to the surge type. A comparative analysis of KC and
normal Reynold stresses revealed that these metrics provided different information about the changes
observed in the flow as it moves from a steady-state to an unsteady-state due to the surge passage.
Ultimately, this preliminary application of Kolmogorov complexity measures to a positive surge
provides some novel findings about such intricate hydrodynamics processes.

Keywords: environmental hydraulics; positive surge; undular surge; breaking surge; information
measures; Kolmogorov complexity; Kolmogorov complexity spectrum

1. Introduction

Positive surges are frequently observed in both artificial and natural channels. In
channels used for irrigation and water energy production, a positive surge may be created
by a partial or complete closure of a gate, causing a sudden increase in flow depth [1,2]. In
natural channels, tidal bores are characteristic of the rivers and estuaries of Europe, China,
Australia, and South America, such as the Seine, Garonne, Severn, Elbe, Qiantang, and
Amazon, while Tsunami-induced bores were also observed [3]. The waves associated with
a tidal bore propagate upstream, rapidly increasing the free-surface profile as the tidal flow
turns to rising. Bores are formed when the tidal range exceeds 4.5 to 6 m, and the tidal
wave is amplified by the funnel shape of the river mouth and the lower estuarine zone [3].
Despite the fact that they are sometimes seen as a tourist attraction, tidal bores can be
very dangerous as they can adversely impact the local natural ecosystems (large sediment
resuspension, impairment of aquatic organisms and fish reproduction and development),
severely damage local infrastructures (bridges, roads, levees, etc.), and more generally
hinder the development of local resources [3].
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In laboratory flumes, positive surges are studied upon the Froude similitude, because
field and laboratory data demonstrated that the characteristics of a surge are related to its
inflow Froude number Fr1. If the Froude number ranges from 1 to approximately 1.5, the
surge is followed by a train of quasi-periodic secondary waves and is called undular [3]. On
the other hand, a maximum in wave amplitude and steepness was found for Fr1 = 1.4 to
1.5, which was associated with some breaking and air entrainment at the first wave crest. If
the Froude number is larger, the surge has a breaking front with a roller, and hence it is
termed a breaking or weak surge [3].

After the first pioneering studies [4–6], several researchers investigated the positive
surges and tidal bores [7–11]. While older studies were limited to visual observations and
sometimes free-surface measurements [12–14], in the last two decades unsteady turbulence,
air entrainment, and sediment transport characteristics were measured using particle image
velocimetry (PIV) and acoustic Doppler velocimetry (ADV) in the laboratory [15–17] and in
the field [18,19]. Finally, numerical studies on tidal bores, both with Large Eddy Simulation
(LES) and Smoothed Particles Hydrodynamics (SPH) approaches, focused on the prediction
of unsteady flow free-surface dynamics and velocity distribution, where the requirement for
high-quality datasets for the validation of the numerical results remains imperative [20–22].

Turbulent flows are defined and characterized by irregularity, diffusivity, large Reynolds
numbers, 3D vorticity fluctuations, and dissipation [23]. Irregularity or randomness cannot
be measured using a deterministic approach, but it can only be reliably measured using
statistical methods [23]. Complexity measures were previously used for the extraction of
information, such as environmental time series (cosmic rays, solar and UV radiation) [24],
biomedical signals [25,26], testing of random number generators, etc., from data. In the
last decade, such measures, namely the Kolmogorov complexity, were applied to study the
randomness of turbulent environmental fluid mechanic (EFM) flows [27], such as the flow
series and regimes [28,29] and different types of open channel flows [30–32].

This paper presents the results of the application of Kolmogorov complexity (KC)
and Kolmogorov complexity spectrum (KCS) to the experimental velocity data of both
an undular and breaking surge. The study aims at identifying how those two metrics of
complexity can improve our current knowledge about positive surges. The manuscript is
structured as follows. After some remarks about randomness, the Kolmogorov complexity
and spectrum, as well as the concept of Information, are presented. Second, a short
description of the laboratory experiments carried out to collect the velocity data and the
procedure used to post-process such data to derive KC and KCS are presented. Then, some
basic observations about the flow field during the surge passage are provided. After that,
the results from this study in terms of KC and KCS are presented and discussed to identify
some novel insights and limitations of the present research, and, finally, some conclusions
are proposed.

2. Some Remarks about Randomness, Kolmogorov Complexity and Information

While a comprehensive mechanical theory of turbulence is still missing [27], the term
randomness that is broadly used in different sciences dealing with fluids and randomness is
also one of the fundamental characteristics of a turbulent flow.

While Ichimiya and Nakamura reviewed several definitions of randomness [33],
Khrennikov [34] further developed the original definition of randomness proposed by
Kolmogorov. He outlined three different interpretations of randomness: (i) randomness
as unpredictability; (ii) randomness as typicality; and (iii) randomness as complexity. He
noted that: “As we have seen, none of the three basic mathematical approaches to the notion
of randomness (based on unpredictability, typicality, and algorithmic complexity) led to a
consistent and commonly accepted theory of randomness”. Among these interpretations,
only that from Kolmogorov is based upon the concept of complexity, but this viewpoint
is not always accepted in our understanding of probability. Furthermore, Kolmogorov
complexity is not even computable. Therefore, randomness is either a subjective measure or
an objective measure that is non-computable. Following this discussion, we might conclude
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that randomness is not a mathematical notion, but rather a physical notion. Namely, it is
the physical procedure where the true randomness is hidden. Therefore, mathematical
methods might not be sufficient to theoretically establish the concept of randomness itself.
Notably, in Kolmogorov’s approach there is “no room” in which the level of randomness
can be placed.

Many scientific analyses use the term “algorithmic” randomness, which is directly
related to the definition of complexity proposed by Kolmogorov [35]. Such metrics can be
quantified by their algorithmic complexity, which is a measure of how long an algorithm
would take to complete given an input of size n. This time bound should be finite and
practical even for large values of n. Hence, complexity is calculated asymptotically as n
approaches infinity as a measure of randomness.

It should be noted that in physical and engineering sciences, scientists often apply a
heuristic technique to choose a model. To formulate a heuristic, we consider any approach
to problem solving that uses a practical method that is not guaranteed to be optimal, but it
is sufficient either to rapidly reach a goal or until a better approach is developed [36].

Complexity measures, such as Kolmogorov complexity and its derivatives, are infor-
mation measures, i.e., they stem from algorithmic information theory, where information is
broadly defined as the pattern of organization of mass and energy [37]. This definition relates
the concept of information to any process of transfer of mass, momentum, or energy in any
fluid and across any environmental interface [27]. Inherently, the concept of information
includes all patterns of organization of matter and energy in the brains and bodies of
human beings and animals. This information comes up from their genetic heritage and is
further created by their interaction with the external and inner worlds and later recorded in
their sensory, nervous, and biochemical systems. Thus, our subjective understanding of the
world, which is embedded in our minds and feelings, can be regarded from the outer as a
body of information as having that pattern of organization [37]. Interestingly, peripheral
nerve fibers and neural pathways dedicated to conveying information from the body’s
interior to the brain end in their own dedicated region, the insular cortex, whose activity
patterns are perturbed by emotions [38].

3. Experimental Data
3.1. Channel Setup and Instrumentation

The experimental data used herein were collected in a horizontal tilting flume at the
University of Queensland, previously by Chanson and co-workers [3,16,17]. The channel
was 0.5 m wide and 12 m long, and it was made of a smooth PVC bed and glass walls.
It was fed by a constant head tank, and the discharge was measured with orifice meters
(accuracy < 2%). A tainter gate was located next to the downstream end, at x = 11.15 m from
the channel intake, where x is the distance from the channel’s upstream end. Its controlled
and rapid closure created a positive surge propagating upstream.

A constant flow rate (Q = 0.060 m3/s) was used in the experimental study. Instan-
taneous velocity before and during the propagation of the surge was measured with
an acoustic Doppler velocimeter (ADV) Sontek™ 16MHz micro-ADV equipped with a
2D side-looking head. Water depth was measured, in steady flow, with rail-mounted
pointer gauges and, in unsteady flow, using seven acoustic displacement meters (ADM)
Microsonic™ Mic + 25/IU/TC. The ADV and the seven ADMs were located at x = 5 m
and at x = 1.985 m, 2.995 m, 4 m, 5 m, 6 m, 9 m, and 10.9 m downstream the flume intake,
respectively (Figure 1).
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Figure 1. Definition sketch of a positive surge (after [16,17]). Laboratory flume (a), Surge develop-
ment (b).

During the experiments, two different gate openings after closure hg were used leading
to the formation of both undular (non-breaking) and breaking surges (Table 1). For both
the steady and unsteady state conditions, for the ADV the velocity range was 1.0 m/s,
the sampling rate was 50 Hz, and the data accuracy was 1% of the velocity range [16].
All measurements were carried out on the channel centerline. Further details about the
experiments are presented in [16].

Table 1. Experimental flow conditions.

Run Q—m3/s d0—m hg—m Type U—m/s dconj—m Fr1 Remarks

60-6 0.060 0.1429 0.005 Breaking 0.918 0.237 1.484 ADV measurements
60-7 0.060 0.1427 0.100 Undular 0.519 0.171 1.149 ADV measurements

The velocity distribution was measured in the steady flow at x = 5 m. The results show
that the inflow conditions were partially developed. The boundary-layer thickness was
about δ/d0 = 0.265, where d0 is the initial flow depth (Table 1). The velocity data agreed
with theoretical velocity profiles in the turbulent boundary layer and the experimental
data collected in a large wind tunnel operating at comparable Reynolds numbers [39]
(Figure 2). From the data best fit with the low law, the shear velocity was estimated:
V* = 0.0375 m/s. The findings demonstrated that the flume was hydraulically smooth, and
the flow was smooth turbulent.
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Figure 2. Dimensionless velocity distribution in the steady flow. Time-averaged velocity Vx/V*.
Comparison between ADV data, law of the wall, and Osterlund [39] (redrawn from [16]).

3.2. Generation of the Surge

The surge was created using the following procedure. The flow was measured for
at least 5 min in steady gradually varied conditions, which previous experiments demon-
strated to be effective to achieve steady conditions [3]. Then, measurements and data
acquisition started approximately 1.5 min before gate closure. The surge was created by
the rapid (closure time < 0.2 s) partial closure of the downstream gate [16,20]. After the
closure, the surge propagated upstream, and data acquisition ended when the bore front
reached the channel inlet (Figure 1). In Table 1, the surge front celerity U was derived from
the displacement meters data between x = 6 m and 4 m. Moreover, d0 was measured at
x = 5 m, and dconj was calculated from the continuity and momentum equations. Note that
the data in Table 1 for 60-6 and Run 60-7 are those derived from the average of 23 runs with
the same gate opening but different vertical elevation z for the ADV system.

4. Kolmogorov Complexity and Spectrum: Past Applications and Calculation
4.1. Complexity Measures

Complexity measures, such as Kolmogorov complexity and its derivatives, can be used
to provide the scientific community with new insights into the behavior of complex systems
and processes that cannot be identified with traditional mathematical methods. Past studies
have indicated that a large value of KC in solar radiation time series points out the presence
of variable cloudiness [24], while, in biomedical studies, a large KC of measurements (heart
rate, respiration rate, etc.) might indicate a particular stage of sleep-apnea [25,26], and, if the
KC is larger, the neuron activity is more disordered. Thus, a decrease in the KC complexity
in the tasking state might be related to the increase in neuronal activity synchronization [26].
Furthermore, low values of KC for the streamflow time series in rivers are often due to
human activity, such as urbanization, drainage, irrigation, etc. [28,29].
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In open channel turbulent flows, the approach based upon complexity measures was
already applied. Mihailović et al. [30] quantified the randomness of turbulent velocity
data measured in laboratory canopy flows with different densities of vegetation using
Kolmogorov complexity and Kolmogorov complexity spectrum and found that KC was
related to the size of the eddies and the coherent structures of the flow. Sharma et al. [31]
applied those complexity metrics to the experimental velocity data collected in an alluvial
channel with and without downward seepage. They identified larger values of KC and
higher randomness in the flow with seepage. This result was confirmed by the spectral
analysis of the velocity time series. Lade et al. [32] explored the effect of a mining pit on the
randomness of a turbulent flow around the pier using KC and KCS. They comparatively
considered two cases: one where only a pier was placed in the channel and the second
where a rectangular mining pit was excavated upstream of the pier. They found that
the pit excavation increased both KC and KCS around the pier, suggesting an increased
degree of randomness associated with the pit in the channel. In the end, these studies
demonstrated the potential of complexity measures to identify patterns of turbulence in
complex open-channel flows.

In the present study, both metrics, i.e., Kolmogorov complexity and the Kolmogorov
Complexity Spectrum, were calculated for the velocity field in the open-channel flow both
in a steady state (before the formation of the surge) and in an unsteady state (during the
passage of the surge).

4.2. Kolmogorov Complexity

If X is the flow velocity, and x is its specific value, we can define the Kolmogorov
complexity KC (x) of an object x as the length, in bits, of the smallest program that can be
run on a universal Turing machine U and that prints object x. However, the complexity KC
(x) cannot be directly computed for an arbitrary object x. Hence, we need to approximate
KC using a binary object x, which is compressed, and the size of the compressed object is
associated with the Kolmogorov complexity.

In the present study, the Lempel and Ziv Algorithm (LZA) [40] was applied for
calculating the KC of a time series. The calculation of the KC of a time series X(x1, x2, x3,
. . . , xN) using the LZA algorithm includes the following steps:

(1) the time series are encoded by creating a sequence S of the characters 0 and 1 written
as s(i) = 1, 2, . . . , N according to the rule s(i) = 0 if xi < xt or s(i) = 1 if xi > xt, where xt
a threshold value. The threshold is often selected as the mean value of the time series,
while other encoding schemes are also available [28];

(2) the complexity counter c(N), which is the minimum number of distinct patterns
contained in a sequence of characters, is computed. The complexity counter c(N), is
a function of the sequence length, N, bounded by b(N) = N/log2N, as it approaches
infinity, i.e., c(N) = O (b(N));

(3) the normalized information measure Ck (N),whichis Ck(N) ≡ c(N)/b(N) = c(N)
log2 N

N ,
is calculated. For a nonlinear time series, Ck (N) ranges from 0 to 1, although it can be
larger than 1 for random finite-size sequences.

4.3. Kolmogorov Complexity Spectrum

It should be acknowledged that the application of Kolmogorov complexity has two
shortcomings: (1) this metric is not able to distinguish between time series with different
amplitude variations and those with similar random components (it depends on structure
of a time series); and (2) in the procedure of binarization of a time series, its complexity is
not explicitly seen in the rules of the applied procedure. Hence, it should be acknowledged
that, when threshold coding is identified, some information about the composition of time
series might be lost. This shortcoming suggested to apply in the present study also the
Kolmogorov complexity spectrum metric, which is described in [30].
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The procedure for the calculation of the KCS C (c1, c2, c3, . . . , cN) for a time series X(x1,
x2, x3, . . . , xN) is presented in Figure 3. Using the KCS, the range of amplitudes in a time
series that represents a complex system with highly enhanced stochastic components can
be systematically investigated. The KCS considers the aforementioned issues in computing
the KC, as it calculates the complexity of taking each element of the series as a threshold
value. In the end, this relates to the probability distribution with compressibility.

Figure 3. Flow chart for calculating the Kolmogorov complexity spectrum.

5. Results
5.1. Time-Variable Depth and Velocity Field

Figures 4 and 5 show the effects of the undular surge (Run 60-7) and the breaking
surge (Run 60-6), respectively, on the velocity field at two vertical dimensionless elevations
z/d0, close to the bed and the free surface, respectively. Those elevations were chosen
as they reflect some differences in the streamwise velocity close to the bed between the
undular surge and the breaking surge. Note that z = z′ + ADV measurement volume,
where z′ is the elevation from the bed of the measurement point. Each plot presents the
distribution against the dimensionless time t × (g/d0)0.5 of the dimensionless velocities
Vx/V* and Vy/V* and water depth d/d0. Note that Vx and Vy are the longitudinal and
horizontal transverse velocity components, respectively. They are assumed to be positive
downstream and towards the left wall, respectively. In the plots, the zero dimensionless
time corresponds to a time placed 10.0 s before to the first wave crest passage at the
sampling location.

Velocity data were filtered using a cutoff frequency, such that the averaging time is
greater than the characteristic period of fluctuations and smaller than the characteristic
period for the time-evolution of the mean properties. In the undular surge, Eulerian flow
properties showed an oscillating pattern with a period of ranging from 1.01 to 1.87 s
that corresponded to the period of the free-surface undulations. The unsteady data were
therefore filtered with a low/high-pass filter threshold greater than 0.99 Hz (i.e., 1/1.01 s)
and smaller than the Nyquist frequency (herein 25 Hz). Following previous studies [3,19],
the cutoff frequency was selected as 1 Hz. The same filtering technique was applied
to both longitudinal and transverse velocity components for both the undular and the
breaking surges.
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Figure 4. Undular surge, Run 60-7. Dimensionless instantaneous water depth d/d0 and velocity
components Vx/V* and Vy/V* at (a) z/d0 = 0.060; (b) at z/d0 = 0.793 (redrawn from [17]).

Figure 5. Breaking surge, Run 60-6. Dimensionless instantaneous water depth d/d0 and velocity
components Vx/V* and Vy/V* (a) at z/d0 = 0.060 (left); (b) at z/d0 = 0.738 (redrawn from [17]).

In the undular surge (Run 60-7), Vx sharply decreased with the passage of the first
wave crest and later oscillated with the same period as, but out of phase with, the free-
surface undulations (Figure 4). The maximum and minimum velocities were observed
below the wave troughs and crests, respectively. This trend was seen at all vertical locations.
In the upper flow region, above z/d0 = 0.50, fluctuations for both velocity components were
observed beneath the undulations, but Vx was always positive (Figure 4).

In the breaking surge (Run 60-6), as the water level gently raised, Vx rapidly decreased
for at both z′ = 100 mm and z′ = 0.00 mm. Immediately after, the passage of the positive
surge roller was associated with a sharp increase in the free-surface elevation corresponding
with a discontinuity in terms of the water depth. Such an increase in the water depth



Fluids 2022, 7, 162 9 of 19

corresponded to a rapid deceleration to a slower flow motion to satisfy mass conservation
(Figure 5). Notably, at the same relative elevation z/d0, the rate of flow deceleration in the
breaking surge was larger than that in the undular surge (Figures 4a and 5a). No significant
patterns were observed for the transverse velocity Vy/V*, which was seen to fluctuate
around 0.

Second, the vertical elevation z affected the temporal distribution of the velocity
(Figure 5). At the larger depth, i.e., z/d0 > 0.3, Vx decreased rapidly at the surge front
but remained positive (Figure 5b). On the contrary, for z/d0 < 0.3, for a dimensionless
time t × (g/d0)0.5 from 86 to 106, Vx values were negative with a minimum value of
(Vx/V*)min = −2.35 (Figure 5a). Such a sudden longitudinal flow reversal revealed an
unsteady flow separation below the surge front. This finding is consistent with previous
studies in both the laboratory and the field on positive surges [3,18], and it is believed to
impact the local suspended sediment processes and ecology [18]. During all experiments,
both velocity components were seen to fluctuate beneath the surge and in the flow field
behind the surge. For both undular and breaking surges, large temporal variations of the
longitudinal and transverse velocity components were seen at all vertical elevations.

5.2. Reynolds Stresses

A Reynolds stress tensor component equals the fluid density times the cross-product
of turbulent velocity fluctuations, which is the deviation of the instantaneous velocity from
an average velocity component, which in unsteady flow is the low-pass filtered velocity
component. Filtered velocity data were used to calculate the velocity fluctuations and
finally to obtain the Reynolds stresses.

Figure 6 shows the vertical distribution of the dimensionless normal Reynolds stresses
in the undular surge (Run 60-7) for the longitudinal velocity component Vx (Figure 6a) and
the horizontal transverse velocity Vy (Figure 6b), respectively, in both steady-state (SS) and
unsteady-state (US) conditions. For the SS, the median of the KC values of several time
series which were 10 s long was considered.

Figure 6a shows that normal stresses for the Vx component were larger everywhere
in an unsteady state (US) than in a steady state (SS). This is due to the intense normal
stresses observed during the US beneath wave crests and just before each crest. Over the
water depth, in SS, normal stresses were larger at the bed and rapidly decreased as the
distance from the bed increased, but above z′ = 4.5 mm they were almost constant with the
elevation from the bed. In US, normal stresses values increased as the distance from the bed
increased. Such large turbulent stresses were already observed during the surge passage
and the ensuing undulations, especially far from the channel bed [3]. For the transverse
velocity component Vy (Figure 6b), normal stresses were, again, generally larger in US than
is SS. The largest values were observed at the bed in SS. They sharply decreased with bed
elevation, but, above z′ = 20 mm, they ranged from 0.15 to 0.30. In US, along the depth,
normal stresses Vy

2/V*2 were almost all in the range from 0.30 to 0.60.
Figure 7 shows the vertical distribution of the dimensionless normal Reynolds stresses

in the breaking surge (Run 60-6) for the longitudinal velocity component Vx (Figure 7a) and
the horizontal transverse velocity Vy (Figure 7b), respectively, in both SS and US conditions.

Normal stresses for the Vx component (Figure 7a) were generally larger in a steady
state than those in an unsteady state. However, rather than at the bed, the difference
between SS and US values was quite small. Over the depth, above z′ = 4.5 mm, the vertical
distributions of Vx

2/V*2 in both SS and US were almost constant, as the elevation from the
bed increased. Even normal stresses for the Vy component (Figure 7b) were generally larger
in SS than those in US. Again, contrary to measurements at the bed, the difference between
SS and US values was small. In SS at the bed, a value of 0.9 was observed. Vy

2/V*2 values
rapidly decreased as the distance from the bed increased, and, above z′ = 20 mm, they were
almost constant. In US, Vy

2/V*2 values were almost constant over the depth.
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Figure 6. Undular surge, Run 60-7. Dimensionless normal Reynolds stresses (a) Vx
2/V*2;

(b) Vy
2/V*2.

Figure 7. Breaking surge, Run 60-6. Dimensionless normal Reynolds stresses (a) Vx
2/V*2;

(b) Vy
2/V*2.

5.3. Kolmogorov Complexity

For both surges and in both steady-state (SS) and unsteady-state (US) conditions, the
Kolmogorov complexity was calculated at 24 different elevations from z′ = 0.00 mm (bed)
to z′ = 110.00 mm.

Figure 8 shows the vertical distribution of the Kolmogorov complexity in the undular
surge (Run 60-7) for the longitudinal velocity component Vx (Figure 8a) and the horizontal
transverse velocity Vy (Figure 8b), respectively, in both SS and US conditions. For the SS,
the median of the KC of several time series 10 s long was considered.
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Figure 8. Undular surge, Run 60-7. Kolmogorov complexity vs. vertical elevation z′ for (a) Vx; (b) Vy.

Figure 8a shows that the KC values for the Vx component were all larger in a steady
state (SS) than in an unsteady state (US). Furthermore, over the water depth, they were
almost constant and about 0.03 in US, while in SS they were generally decreasing as the
distance from the bed, ranging from 0.18 to 0.03. Thus, in terms of KC, SS and US seemed to
represent two distinctively different conditions for the longitudinal velocity. On the other
side, for the transverse velocity component Vy (Figure 8b), the differences between SS and
US were generally very minor close to the bed but much larger far from it. Furthermore,
over the depth, in the KC values in SS KC ranged from 0.21 to 0.29, and large differences
were observed in US (KC was from 0.10 to 0.27).

In the end, at any elevation, in both SS and US conditions, the KC associated with the
transverse velocity was larger than that associated with the longitudinal velocity. Moreover,
in an unsteady flow, the KC was almost constant for Vx and largely changing for Vy.
This is consistent with the velocity data observed in Figure 4, where a sudden decrease
and undular patterns were observed for Vx (and not for Vy) during the passage of the
undular surge.

Figure 9 shows the vertical distribution of the Kolmogorov Complexity in the breaking
surge (Run 60-6) for the longitudinal velocity component Vx (Figure 9a) and the hori-
zontal transverse velocity Vy (Figure 9b), respectively, in both steady-state and unsteady-
state conditions.

In SS flow, the KC values for Vx and Vy were, as expected, very similar to those for the
undular surge. In US, the KC values for Vx (Figure 9a) in the breaking surge were quite
differently distributed than those in the undular surge. They were not constant along the
vertical but ranged from 0.03 to 0.13. Furthermore, they were generally decreasing as the
distance from the bed increased. In US, for Vy (Figure 9b), the KC values ranged from 0.07
to 0.23. Again, as for the undular surge, in both SS and US conditions, the KC values for
the transverse velocity were larger than those for the longitudinal velocity.
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Figure 9. Breaking surge, Run 60-6. Kolmogorov complexity vs. vertical elevation z′ for (a) Vx; (b) Vy.

5.4. Kolmogorov Complexity Spectrum

The Kolmogorov complexity spectrum was computed for both surges at two vertical
elevations, z′ = 0.00 mm and 100 mm, before and during the passage of the surge through
the measurement point (x = 5 m downstream of the channel intake). The KCS distribution
shows how the KC values are associated with the velocity values observed during the
experiments identifying those characterized by the largest KC and randomness values.

Figure 10 shows the Kolmogorov complexity spectrum of Vx for both the undular and
the breaking surge in SS and US conditions at two elevations from the bed, z′ = 0.00 mm
and 100 mm. The widest KC spectra were associated with the breaking surge where very
low and negative Vx velocities were found at 100 mm and at the bed, respectively.

For the undular surge, Vx was in the range from 0.29 to 0.88 m/s and from 0.36 to
0.97 m/s at z′ = 0.00 mm and 100 mm, respectively, while Vx for the breaking surge was in
the range from −0.09 to 0.88 m/s and from 0.21 to 0.96 m/s at z′ = 0.00 mm and 100 mm,
respectively. The breaking surge had peaks in KC at both z′ = 0.00 mm and 100 mm that
were larger than those of the undular surge. At the bed, the largest KC was associated with
both for the undular and the breaking surge to Vx = 0.72 m/s, while at z′ = 100.00 mm,
it was found for 0.86 and 0.83 m/s for the undular and the breaking surge, respectively.
The peak values were KC = 0.225 and 0.180 for the breaking surge at z′ = 100 mm and
z′ = 0.00 mm, respectively. For the undular surge, the peak values were 0.219 and 0.174
at z′ = 100 mm and z′ = 0.00 mm, respectively. These larger peaks for the breaking surge
confirm this type of surge is characterized by a randomness larger than the undular surge,
in which the longitudinal velocity Vx followed an undular pattern associated with the
free-surface undulations. In addition, for both surges, the lower values of KC corresponded
to velocities lower than 0.60 and 0.70 m/s at z′ = 0.00 mm and 100 mm, respectively.

Figure 11 shows the Kolmogorov complexity spectrum of Vy for both the undular and
the breaking surges in SS and US conditions at two elevations from the bed, z′ = 0.00 mm
and 100 mm. At any elevation from the bed and for both for the undular and the breaking
surge, the KC was found to peak about 0.00 m/s, which was where the KCS distribution
was also centered. Both surges had a peak in KC at the bed, where KC was 0.225 and
0.235 for the undular surge and the breaking surge, respectively. At the elevation of
z′ = 100.00 mm, the peak values for KC were 0.218 and 0.209, for the undular and the
breaking surge, respectively.
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Figure 10. Undular surge, Run 60-7, and breaking surge Run 60-6. Kolmogorov complexity spectra
for Vx at z′ = 0.00 mm and 100 mm.

Figure 11. Undular surge, Run 60-7 and breaking surge Run 60-6. Kolmogorov complexity spectra
for Vy at z′ = 0.00 mm and 100 mm.

In the end, for both surges, while the transverse velocity was seen to peak at the bed,
the longitudinal velocity had the largest KC at z′ = 100.00 mm. Comparatively, mainly at
the bed, the transverse velocity had a peak in Kolmogorov complexity larger than that of
the longitudinal velocity. This is consistent with the large KC values observed at the bed
for Vy.
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6. Discussion

The analysis of KC and KCS was addressed on six specific questions: (1) Does KC
present a recognizable pattern over the depth in both SS and US flow conditions? (2) Is
there any difference in the pattern between the undular surge and the breaking surge?
(3) Is there any difference in the pattern for the longitudinal velocity Vx and the transverse
velocity Vy? (4) Is there any difference between the undular and the breaking surge in terms
of KCS distribution? (5) If compared with Reynolds normal stresses, does the KC vertical
distribution show a similar trend? (6) Do the vertical distributions of Reynolds stresses
and the KC provide different, complementary insights about the flow structure of a surge?
These questions lead to a more general and broad question: which new knowledge about
positive surges could be derived from the calculation of those two metrics of complexity?

To address Questions nn. 1-2-3, the vertical distributions of KC for both the surges
and both the velocity components Vx and Vy were analyzed in two flow conditions: before
the formation of the surge (steady-state-SS) and during the passage of the surge (unsteady-
state-US).

The vertical pattern observed for Vx, that is that the KC was largest at the bed and
decreased as the distance from the bed increases, was found in SS and US for the breaking
surge but not for the undular surge, where the KC was almost constant over the depth
and generally smaller than that in the breaking surge. This difference in the KC values
for the US may be related to the different patterns observed for Vx in the undular and
breaking surge (Figures 4 and 5). While in the former Vx followed an undular pattern
(Figure 4), in the latter Vx had a sudden decrease to a value which was almost constant but
related to the elevation from the bed and also negative for z/d0 = 0.060 (Figure 5a,b). Hence,
the undular pattern of Vx resulted in a lower degree of randomness that was unaffected
from the distance from the bed (Figure 8a). On the other hand, in the breaking surge,
randomness was found to decrease as the elevation from the bed increased (Figure 9a).
Such a pattern can be explained considering that approaching the interface, turbulent
motions become increasingly damped, and only small eddies can develop [41]. Hence,
close to the bed, the flow is dominated by small eddies being random [42] and contributing
as expected to the higher randomness observed at the bed. Far from the bed, the eddies are
larger and coherently organized, so they cannot introduce more randomness in the flow.
Interestingly, such a decaying pattern of KC with the distance from the bed is consistent
with the observations by Mihailović et al. [30] for the KC in an open channel flow with
canopies of different density but only for the water depth among the cylinders (Figure 10
in [30]).

Afterall, from this analysis, it seems that the Kolmogorov complexity for Vx could
be related to both the eddy sizes and to the temporal patterns of the longitudinal velocity
(undular or not). While in SS the distance from the bed is the main factor controlling KC
vertical distribution, in US the undular pattern, the longitudinal velocity Vx associated
with the undular surge resulted in a lower and constant degree of randomness that was
unaffected by the distance from the bed. On the other side, the almost constant velocity
associated with the passage of the breaking surge resulted in a KC vertical distribution
close to that in SS. Hence, comparatively, the vertical distribution of KC highlighted a
difference between the undular surge and the breaking surge for Vx (Question n.2).

To address Question n.3, it should be noted that the vertical distribution of the KC
for the transverse component Vy had no clear trend, while KC values for the SS both for
the undular surge and the breaking surge were generally larger than those in US. At any
elevation from the bed, in both SS and US conditions and for both surges, the KC values for
Vy were also generally larger than those for Vx.

To address Question n.4, KCS data presented the distribution of KC over the velocity
values observed during the experiments. The analysis of the KCS data showed that at each
elevation KC peaked for both surges at about the same value of Vx, 0.72 m/s at the bed and
0.86-0.83 m/s about the free surface, but the peak for the breaking surge was larger than
that for the undular surge. Hence, the distribution of the KC values for Vx was related both
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to the elevation from the bed for the KC peak being larger at the free surface and to the
surge type (undular vs. breaking). This is consistent with the larger randomness associated
with the breaking surge previously pointed out (Question n.2). On the other side, the KC
values for Vy peaked and centered about 0.00 m/s, while the largest peak was observed
at the bed for both surges. Comparatively, for both surges, while transverse velocity was
seen to peak at the bed, longitudinal velocity had the largest KC at z′ = 100.00 mm, while
transverse velocity had at the bed a peak in KC larger than that of the longitudinal velocity.
In the end, the analysis of KCS revealed some differences between the undular and the
breaking surge as well as between the longitudinal and transverse velocity that were not
identified through the classical metrics previously applied to a surge.

To address Questions nn.5–6, the vertical distribution of the normal Reynolds stresses
and KC were compared. In SS, the normal Reynolds stresses for both surges and for both
Vx and Vy were seen to peak at the bed and, after a rapid decay, to remain almost constant
as the distance from the bed increased. In US, while for the undular surge the normal
Reynolds stresses were much larger than those in SS, for the breaking surge such large
difference was not observed. Furthermore, while in the undular surge the normal Reynolds
stresses increased with the elevation from the bed, as already found in previous studies [3],
in the breaking surge those stresses seemed not to be affected from the distance from
the bed. Comparatively, the vertical distribution of normal Reynolds stresses revealed a
significant difference between the two surges. However, the vertical patterns observed
for the normal Reynolds stresses were different from those related to the Kolmogorov
Complexity. Interestingly, while the vertical distribution of both the normal Reynolds
stresses and KC for both Vx and Vy seemed to not be affected by the passage of the breaking
surge, it was the passage of the undular surge that largely modified the vertical distribution
of both the normal Reynolds stresses and of KC for Vx only. Furthermore, the KC vertical
distribution provided information about eddy size structures that could not be revealed
by the distribution of the normal Reynolds stresses. The larger KC observed at the bed
could be related to a flow structure dominated by small eddies being random [42], while,
far from the bed, the eddies are larger and coherently organized, so they cannot introduce
more randomness into the flow. During the surge passage, while for the breaking surge
the KC vertical distribution was unchanged (Figure 8a), for the undular surge the KC was
almost constant (and lower) over the depth suggesting that the passage of the undular
surge modifies the vertical distribution of eddy size. In the end, the comparison between
the vertical distribution of the normal Reynolds stresses and KC demonstrated that these
metrics could provide different and complementary information about the flow structure
of a surge.

In a previous study [30], the vertical distribution of KC was associated with the integral
length scale of turbulence, defined as a measure of the longest correlation distance between
the velocity at two points of the flow field. Both parameters, i.e., KC and integral length
scale, were observed to peak at the bed and to decay as the distance from the bed increased
(Table 3 and Figure 10 in [30]).

Some characteristic turbulent time scales were derived in the literature from the
instantaneous velocity data for positive surges and tidal bores. Chanson and Toi [43]
found that, in the laboratory, for both undular and breaking surges, the dimensionless
integral time scales Tv (g/d0)1/2 for the horizontal and transverse velocity components
were similar, probably reflecting some turbulence anisotropy in the order of 0.2–0.25, while
for the vertical velocity component they were 0.08–0.1. Notably, the approximate ratio
of 2 between the longitudinal and vertical velocity time scales was consistent with the
analytical relationship for isotropic turbulence [44]. Further experiments suggested that,
in a breaking surge, integral turbulent time and length scales decreased as the vertical
elevations from the bed increased [45]. For field data collected from the Sélune River, it was
found that the dimensionless integral time scales were about 0.1–0.12 for the horizontal
velocity component and between 0.04 and 0.06 for the transverse and vertical components
of the velocity [43]. Afterall, the analysis of the turbulent integral scales indicated that the
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propagation of a surge was an anisotropic process, where the vortical structures had sizes
and lifespans in the vertical direction longer than those in the horizontal directions [45].

Finally, it should be acknowledged that the analysis presented herein is based upon
a single repetition of the experiments, and this might represent a limitation of this study.
Past studies on unsteady flows and positive surges have demonstrated that the statistical
analysis of transient flows is not an easy task [16,46], because in highly unsteady transient
flows, such as the leading edge of surges, the time scale of the physical processes is often
very short, even at a prototype scale [46]. Hence, Chanson [47] argued that in laboratory
experiments, while a single experiment can properly provide information on qualitative
patterns and instantaneous quantities, to derive robust statistical data, the repetition of the
experiments and the ensemble statistics are the most reliable approach. It was suggested
that a selection of 25 repeats could provide independence in terms of free-surface properties,
longitudinal velocity, and average tangential Reynolds stress in monophase flows [47].
On the other side, a larger number of repeated experiments might be required if more
advanced parameters, such as triple correlations, extreme pressure values, and air–water
flow characteristics, are investigated [47]. Chanson [47] suggested that instantaneous
ensemble data are best analyzed using instantaneous medians, quartiles, and percentiles
of the data ensemble, which are robust parameters that are insensitive to the presence of
outliers. On the opposite hand, ensemble-averaged properties, including root mean square
errors, are not robust estimators because they may be biased by outliers and extreme values
within small data samples [47]. Finally, in the field experiments of transient flows, that in
most situations cannot be repeated under well-controlled conditions, a Fourier component
approach may therefore be the most appropriate statistical analysis [19,47].

In the end, as the analysis presented herein was based upon a single repetition of the
experiments, future studies on the application of Kolmogorov complexity and its spectrum
related to unsteady flows should include a larger number of repetitions.

7. Conclusions

Positive surges are commonly observed both in artificial and natural channels. In
rivers and estuaries, a common type of positive surge is the tidal bore. Tidal bores can have
relevant and negative impacts on a range of natural and socio-economic resources, such
local infrastructures, sedimentary processes in the upper estuary, aquatic organism and
native fish species reproduction and development, and more generally on the sustainability
of those aquatic systems [3].

This paper presented the application of Kolmogorov complexity to the 2D (longi-
tudinal and transversal) velocity data collected during the laboratory investigation of a
positive surge. Two types of surges were considered: an undular surge and a breaking
surge. In both cases, the velocity data were collected during the unsteady flow condition
(US) associated with the passage of the surge as well as during the preceding steady-state
flow condition (SS). For both surges, the Kolmogorov complexity (KC) and the Kolmogorov
complexity spectrum (KCS) were calculated in both flow conditions to identify whether
those complexity metrics can provide new knowledge about positive surges.

The analysis of the vertical distribution of the KC in both flow conditions highlighted
some interesting features. First, the results showed that the vertical distribution of KC
for Vx in SS is dominated by the distance from the bed as the KC is the largest at the
bed and the lowest at the free surface. This trend is consistent with that observed in a
past application of KC to a canopy open channel flow [30] and, even with past literature
studies on integral length scales of turbulence in positive surges [43], suggesting that the
relationship between KC and those scales should be further explored. Second, only the
passage of the undular surge was able to drastically modify such a vertical distribution of
KC resulting in a lower and constant randomness throughout the water depth, while the KC
vertical distribution was virtually unaffected by the passage of the breaking surge. Hence
the vertical distribution of KC highlighted a difference between the undular surge and
the breaking surge for Vx. Third, while these findings were identified for the longitudinal
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velocity, the vertical distribution of KC for Vy had no clear trend, but, for both surges,
the KC values in SS were generally larger than those in US. Fourth, the KCS were found
to peak at each elevation for both surges at about the same value of Vx, but the peak for
the breaking surge was larger than that for the undular surge. This confirms the larger
randomness associated with the breaking surge. Furthermore, the distribution of the KC
values for Vx was related both to the elevation from the bed and to the surge type. On the
other hand, the KC values for Vy peaked at and were centered about 0.00 m/s, while the
largest peak was observed at the bed for both surges. Finally, the analysis of the vertical
distribution of the normal Reynolds stresses revealed that the passage of the undular surge
was able to significantly modify such a distribution, which instead was not affected by the
passage of the breaking surge.

The application of the Kolmogorov complexity measures to a positive surge identified
a clear difference between undular and breaking surges in terms of the randomness vertical
distribution during the passage of the surge providing some novel findings to characterize
such intricate hydrodynamic process. In addition, the comparative analysis of the vertical
distribution of the normal Reynolds stresses and of the Kolmogorov Complexity demon-
strated that both metrics were significantly affected by the passage of the undular surge
only, and that they are providing different and, in some sense, complementary information
about the flow structure of a surge and, more generally, about the changes observed in the
flow as it moves from a steady state to an unsteady state.

However, it is acknowledged that the present study is based upon one single experi-
ment, for both the undular and the breaking surges. As past studies have demonstrated
that the analysis of laboratory data from highly transient flows, such as positive surges
should be carried out through an ensemble-averaging approach based on 25 repeated
experiments [47]. It is advisable that future studies on the application of Kolmogorov
complexity and its spectrum to unsteady flows should be based on repeated experiments.
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