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A B S T R A C T   

One of the hallmarks of COVID-19 is the cytokine storm that provokes primarily pneumonia followed by systemic 
inflammation. Emerging evidence has identified a potential link between elevated interleukin-17A (IL-17A) 
levels and disease severity and progression. Considering that per se, IL-17A can activate several inflammatory 
pathways, it is plausible to hypothesize an involvement of this cytokine in COVID-19 clinical outcomes. Thus, IL- 
17A could represent a marker of disease progression and/or a target to develop therapeutic strategies. This 
hypothesis paper aims to propose this “unique” cytokine as a silent amplifier of the COVID-19 immune response 
and (potentially) related therapy.   

1. Introduction 

Despite the considerable effort of the scientific community to 
comprehend the molecular basis of Coronavirus disease 2019 (COVID- 
19) signs and symptoms, the physiopathology of COVID-19 is still not 
fully clarified [1–3]. Nevertheless, what it is widely ascertained is that 
COVID-19-related pulmonary inflammation is associated with increased 
plasma levels of a pattern of pro-inflammatory cytokines that include 
interleukin (IL)− 6, IL-17A, tumour necrosis factor-α (TNF-α) Inter-
feron-γ (IFN-γ) and IL-12, defining a characteristic feature known as 
cytokine storm [4–8]. 

The cytokine storm, and related cytokine release syndrome (CRS), 
can be considered as “an inflammatory response flaring out of control”, 
mostly responsible for the mortality in COVID-19 patients [9–11]. In this 
context, the potential role of IL-6 in COVID-19 pneumonia has provided 
a rationale for the investigation of IL-6 signalling inhibitor tocilizumab 
[12]. Even if better outcomes in patients with severe COVID-19 pneu-
monia who received tocilizumab have been observed in case reports [13, 
14], in a recent randomized trial involving hospitalized patients with 

moderate to severe COVID-19 pneumonia, the use of tocilizumab did not 
result in significantly better clinical status or lower mortality [15]. 

On this basis, the need for effective treatments for patients with se-
vere COVID-19 pneumonia, specifically targeting the cytokine storm, 
continues to be a major challenge. In particular, it is becoming apparent 
that in some patients, severe COVID-19 disease is accompanied by a 
fulminant immune reaction characterized by pronounced infiltration of 
macrophages and monocytes into the alveolae, a pro-inflammatory T- 
helper 17 (Th17) response, and elevated levels of inflammatory cyto- 
chemokines [16–18]. 

Indeed, among the variety of cytokines involved, several reports 
reveal elevated levels of Th17 cells and circulating IL-17A in the pe-
ripheral blood of severe acute respiratory syndrome Coronavirus 2 
(SARS-CoV-2) infected patients [19,20]. This clinical evidence is of 
particular importance since IL-17A induces the production of other 
pro-inflammatory mediators such as IL-1, IL-6, TNF-α that, together with 
matrix metalloproteinases, may play a pertinent role in tissue damage 
[21]. In line with this view, the hypothesis of a direct relationship be-
tween elevated levels of IL-17A and disease severity and progression are 
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becoming more consistent [22,23]. 

2. IL-17A: from discovery to COVID-19 

In the nineties, identifying two distinct subsets of helper T cells, IFN- 
γ-producing Th1 cells and IL-4-producing Th2 cells, enabled the scien-
tific community to understand better the immunopathology of inflam-
matory diseases in humans [24,25]. However, the observation that T 
cell-mediated experimental autoimmune and auto-inflammatory dis-
eases were independent by Th1 and Th2 subsets prompted the in-
vestigators to identify any distinct subset in the helper T cell population 
named Th17 [26]. 

Therefore, the discovery of Th17 cells and relative IL-17 cytokines 
family gave a new impulse to the immunology field, bridging the gap 
and giving not only “a wider vision" of both innate and adaptive im-
munity, but also to identify this ”unique” cytokine as a silent amplifier of 
the immunity process [27]. The IL-17A peculiarity relies on a specific 
subset of T helper cells that selectively produce this cytokine, namely 
Th17. The discovery of IL-17A and its biological function has revolu-
tionized the field of immunology. and it has completely changed the way 
we look at many immune-related and inflammatory-based diseases [28]. 
Chronologically, the discovery of IL-17A as a pro-inflammatory cytokine 
in arthritis preceded the description of the Th17 cells by many years. 
However, following the identification of Th17 cells, a significant role for 
this cytokine in host defence, as well as in the context of acute and 
chronic inflammation, has been definitively assessed [29,30]. Data 
available from both basic research and clinical trials demonstrate that 
the IL-17A immune axis is undoubtedly characterized by distinct bio-
logical effects that vary among diseases. 

3. IL-17A in acute and chronic inflammation 

In the last few years, the scientific community has focused attention 
on IL-17A due to its pivotal role in the ongoing events typical of some 
inflammatory-based chronic diseases [27,31]. Indeed, this cytokine is 
implicated in the mechanisms involved in cell activation, growth, and 
proliferation [32,33]. Specifically, current studies have shown a close 
correlation, in the early stages of the inflammatory response, between 

IL-17A and the recruitment of polymorphonuclear cells (PMNs) [34,35]. 
Indeed, both preclinical and clinical data have underlined the impor-
tance of IL-17A as a regulator of PMNs infiltration due to its chemotactic 
activity [29,36]. In this context, it has been shown that IL-17A plays a 
main role in neutrophils maturation and differentiation. This is due to its 
ability to increase granulocyte-colony stimulating factor (G-CSF) release 
[37], thereby fostering the differentiation of the progenitors hemato-
poietic CD34+ towards neutrophils [38]. IL-17 can also induce other 
granulopoiesis markers and chemokines, such as growth-regulated 
oncogene-α (GRO-α), that regulate neutrophil penetration into tissues 
[36,39]. Furthermore, IL-17A promotes also cyto-chemokines release 
namely IL-1, IL-6, TNF-α, macrophage inflammatory protein-2 (MIP-2), 
IL-8, Interferon-inducible protein-10 (IP-10) all used by neutrophils in 
chemotaxis [40–42]. 

The involvement of neutrophils and, more generally, of PMNs during 
the early phase of acute inflammation, involves cyto-chemokines 
released by macrophages/monocytes subset [43]. It has been reported 
that the release of macrophage-related cytokines, including IL-1, TNF-α 
and IL-6, is prompted by IL-17A to propagate and amplify the inflam-
matory onset [44]. Indeed, IL-17A induces monocyte adhesion, 
increasing the release of intercellular adhesion molecule-1 (ICAM-1), 
integrin α4, platelet endothelial cell adhesion molecule-1 (PECAM-1), 
and the cluster of differentiation 99 (CD99), representing one of the 
main stimuli for monocytes maturation and activation [45]. 

The biological effects exerted by IL-17A also include its synergistic 
activity with other pro-inflammatory “inducers”. IL-17A, in combination 
with IL-1β and TNF-α, enhances the inflammatory reaction in cartilage, 
synovium and meniscus [46,47]. IL-17A is also associated with the 
degradation of articular cartilage and destruction of bone (due to the 
production of the matrix metalloproteinase-(MMP-) 1 and MMP-13 
collagenases in chondrocytes), the degradation of proteoglycans, and 
the expression of IL-6 and leukaemia inhibitory factor in fibroblast-like 
cells of the synovium [48,49]. 

As schematically reported in Fig. 1, IL-17A can be defined as "not 
canonical" pro-inflammatory cytokine, considering the variety of its 
actions. Indeed, it plays a unique role in the context of ongoing 
inflammatory diseases by exacerbating cellular and biochemical events 
activated during the acute phase of the inflammatory response. 

Fig. 1. Biological function of IL-17. Scheme of the main biological function of IL-17A on different cells and soluble factor. Taking into account the variety of its 
actions, IL-17A can be considered a "not canonical" pro-inflammatory cytokine since it plays a unique role in the context of ongoing inflammatory diseases by 
exacerbating cellular and biochemical events activated during the acute phase of the inflammatory response. 

F. Maione et al.                                                                                                                                                                                                                                 



Biomedicine & Pharmacotherapy 142 (2021) 111980

3

Furthermore, although predominantly acting at the local site, IL-17A 
can also circulate in the bloodstream and thus may indirectly affect 
endothelial cells function, inducing vascular inflammation, increasing 
the risk of atherosclerosis, and/or cardiac and thrombotic events in 
patients with certain inflammatory-based diseases [50]. Moreover, 
IL-17A, in combination with TNF-α, is also responsible for a 
pro-coagulant and pro-thrombotic state [51,52], thus providing evi-
dence for its implication in the cardiovascular events associated with 
autoimmune diseases [53,54]. 

4. IL-17A as a rheostat of COVID-19 immune response 

To manage the severe pulmonary clinical manifestations coupled to 
tissues and organs dysfunctions generated by cytokine storm is one of 
the primary endpoints of therapeutic intervention against COVID-19. It 
has been reported increased levels of C-reactive protein, IL-1β, IL-1 
Receptor (IL-1RA), IL-2, IL-6, IL-7, IL-8, IL-9, IL-10, IL-17A, G-CSF, 
granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ, IP- 
10, monocyte chemoattractant protein-1 (MCP-1), MIP-1α, MIP-1β, 
platelet-derived growth factor (PDGF), TNF-α, and vascular endothelial 
growth factor (VEGF) in patients experiencing CRS. Comparisons be-
tween severely affected individuals and non-severe cases showed higher 
leukocyte and neutrophil counts but lower lymphocyte levels. While a 
decrease in B cells, T cells, and natural killer (NK) cells was also 
observed in all affected individuals [55]. 

Elevated levels of Th17 cells in the peripheral blood of SARS-CoV-2 
infected patients have been described [17]. This finding strongly sug-
gests an amplifier role for IL-17A in the inflammatory response, since it 
triggers the production of other pro-inflammatory cytokines i.e. IL-1, 
IL-6, TNF-α [17]. Furthermore, the decrease in lymphocytic popula-
tion subsets, coupled with the rise in Th17 cells and Th17-derived cy-
tokines observed in these patients, consolidate the idea of an immune 
response that drives severe inflammation [21]. 

In line with this hypothesis, a recent report highlighted that in 
COVID-19 patients with pneumonia, CD4 + or CD8 + T cells are 
increased capability to produce in vitro IL-17A, activating neutrophils to 
release higher IL-17A within peripheral blood [56]. Recent studies have 
demonstrated that the excessive IL-17A production, observed in patients 
with acute lung injury, is correlated to maladaptive neutrophil recruit-
ment, pro-inflammatory mediators’ stimulation, and apoptosis preven-
tion due to induction of granulocyte induction colony-stimulating factor 
expression [57]. Accordingly, a recent study has shown that in 
COVID-19 neutrophil/T cell cocultures, neutrophils can determine a 
substantial polarity shift toward Th17 coupled to a reduction of 
IFN-γ-producing Th1 cells [58]. Congruently, a retrospective analysis of 
IL-17 gene polymorphisms (that resulted in attenuated IL-17 produc-
tion) in patients with acute respiratory distress syndrome (ARDS) 
revealed that these patients had an increased 30-day survival [59,60]. 

It should also be considered that group 3 innate lymphoid cells 
(ILC3s) and mucosal-associated invariant T (MAIT) cells are highly 
activated in patients with COVID-19, irrespective of the course of the 
disease, and express high levels of proinflammatory cytokines such as IL- 
17A, suggesting their possible involvement in COVID-19 immunopa-
thogenesis [61,62]. Finally, bioinformatic analyses to delineate the 
potential genetic crosstalk between COVID-19 and Guillain-Barré syn-
drome have suggested that aberrant Th17 cell differentiation could 
represent a possible mechanism by which SARS-COV-2 can increase the 
risk of the autoimmune peripheral nervous disease [63]. Taken 
together, these findings underline a key role of IL-17A in COVID-19 and 
likely could pave the way to novel therapeutic approaches based upon 
IL-17A blockage by biological drugs that are already available [19,64]. 

At the present stage, three are commercially available options to 
block this target (Fig. 2): Secukinumab (human monoclonal antibody to 
IL-17A), Ixekizumab (humanized monoclonal antibody to IL-17A) and 
Brodalumab (human monoclonal antibody to the IL-17R). By targeting 
IL-17A, the monoclonal antibodies could operate upstream the cytokine 

Fig. 2. Mechanism of COVID-19 replication and potential cytokines-related therapeutic targets. In the upper part of the figure is depicted the complex mechanism of 
COVID-19 infection followed by (bottom part) its replication. The cartoon also presents an overview of IL-6 and IL-17A (and cytokine-related available antibodies) 
signalling pathway. IL-17A binding a heterodimer receptor composed of IL-17RA and IL-17RC induces cytokines production. IL-17A signalling can. 
be blocked by antibodies targeting IL-17A (Secukinumab or Ixekizumab) or the A chain of its receptor (Brodalumab). 
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storm release, resulting in a reduction of neutrophil and inflammatory 
monocytes recruitment [54,59]. Consequently, IL-17A by inducing a 
pattern of pro-inflammatory cytokine, IL-6 included, could represent a 
convincing target for the treatment of severe and non-severe pulmonary 
inflammatory states in patients with COVID-19. In support of this hy-
pothesis, a case-based review [65] and preliminary reports on COVID-19 
patients who underwent secukinumab treatment suggest a favorable 
outcome [66,67], thereby modulation of IL-17A signalling through the 
JAK/STAT inhibitor fedratinib has been proposed [68]. However, 
further studies are necessary to test the benefit/risk ratio of IL-17A 
neutralizing antibodies in SARS-CoV-2 infected individuals or to test, 
preclinically and clinically, novel modulators/inhibitors of IL-17/IL-17R 
(unpublished data from our research group). 

5. Conclusion and perspective 

COVID-19 has become a real global burden. One of the main hall-
marks is the cytokine storm that provokes primarily pneumonia fol-
lowed by systemic inflammation. Currently, no treatment can act 
specifically against SARS-CoV-2 infection. Once administered to the 
global population, it will remain to see to what extent the vaccination 
program will be safe and effective and whether such vaccines act on the 
new variant/s. Therefore, also considering that the timing of post- 
vaccination immune coverage is still unknown, the need for effective 
and focused therapy to control COVID-19 clinical outcomes is becoming 
a priority. In addition, emerging investigations have identified a po-
tential link between elevated levels of IL-17A and disease severity and 
progression. Since IL-17A per se can activate specific inflammatory 
pathways, it is plausible to hypothesize an involvement of this cytokine 
in COVID-19 infection, prompting suggestions of targeting this cytokine 
for therapeutic purposes and/or to use it as a marker of disease 
progression. 
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