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Abstract
The problem of averaging the binary digits of numbers in [0; 1] is considered. It

is well known that Lebesgue a.e. in [0; 1] the usual Cesaro average is equal to 1
2

and that the Hausdor¤ dimension of the set where the Cesaro average is equal to �
is given by an entropy function d (�). We prove that if � 6= 1

2 then the Hausdor¤
measure Hd(�) of such set is in�nite. We moreover explicitly construct an in�nite
matrix T (in a classM of Toeplitz matrices regular with respect to Cesaro averages)
such that the Hausdor¤ dimension of the set of the points not having Cesaro average
and where the T -generalized average is � is still given by d (�).
AMS subject classi�cation: 40C05 (primary), 26A30, 28A78 (secondary).

1. Introduction

In this paper we consider the classic problem of averaging the binary digits of numbers in
[0,1] and of studying the (Hausdor¤) dimension and measure of some sets related to these
averages.

Let us more precisely consider t 2 [0,1] ; the sequence x (t) = (xn (t))n of its binary
digits (cf. (2.4)) and the sequence of their averages y (t) = (yn (t))n given by

yn (t) =
1

n

nX
k=1

xk (t) , 8n 2 N (1.1)

We call the �Cesaro average�of the binary digits of t the quantity, when it exists:

lim
n!+1

yn (t) : (1.2)
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A classical result due to Borel is that, for almost every t 2 [0; 1] (with respect to the
Lebesgue measure) the Cesaro average is 1

2
(see [S], example 1 page 369).

Let the s-dimensional Hausdor¤measure and the Hausdor¤dimension be respectively
de�ned by (2.2) and (2.3) and let us set

F� =
n
t 2 [0,1] : lim

n
yn (t) = �

o
(1.3)

A coincise expression for the Borel result quoted above is H1
�
F

1
2

�
= 1.

Another well known result (see Theorem 14 of [E] or Proposition 10.1 of [F]) states
that the set F� has Hausdor¤ dimension d (�), where the entropy function d (t) is given by

d(t) =

�
� (t log2(t) + (1� t) log2(1� t)) ; 8t 2 (0; 1)
0, if t = 0; 1:

(1.4)

In the present paper we prove that if � 6= 1
2
then Hd(�) (F�) = +1 (Corollary 3.2).

It is moreover possible to generalize the de�nitions given by (1.1) � (1.3).
To be more precise, let ! = fx : N! Rg the set of the sequences of real numbers,

then having in mind Toeplitz summation method (cf. [Ha], pag.41), we consider an in�nite
matrix T = (ank)n;k2N of real numbers, lower triangular (i.e. ank = 0 if k > n), and de�ne,
for every x = (xn)n 2 !, T (x) = (T (x)n)n by

T (x)n =
1X
k=1

ankxk: (1.5)

Then we pose
T -F� =

n
t 2 [0,1] : lim

n
T (x (t))n = �

o
: (1.6)

If t 2 T -F� we call � the T -generalized average of the binary digits of t.
Let the matrix C1 be de�ned by

(C1)h;k =

( 1

h
; if k � h;

0, otherwise;
: (1.7)

it is called Cesaro matrix of order 1 and we obviously have F� = C1-F�

If we consider the following class of matrices

M =

(
T lower triangular matrix :

lim sup
n

(T (x))n � lim sup
n

(C1 (x))n

lim inf
n

(T (x))n � lim infn
(C1 (x))n

;8x 2 !
)
;

(1.8)
it is easy to see (cf. Proposition 4.1) that if T 2M then F� � T -F� andHd(�) ((T -F�) nF�) =

0; in particular this implies dimH ((T0-F�) n F�) � d (�) :
We eventually prove by an explicit example (Theorem 4.4) that there exists a matrix

T0 2M such that
dimH ((T0-F�) n F�) = d (�) :
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2. Notations and preliminary results

Let us denote by N = f1; 2; 3; :::g, by N0 = N [ f0g and by R=R[f�1;+1g Given
a �nite subset M � N we will denote by card (M) the number of its elements. Given a
subset E � R we will denote by diam (E) = sup fjx� yj : x; y 2 Eg its diameter and if in
addition E is a measurable, we de�ne by jEj its Lebesgue measure.

Let � > 0 and s � 0 real numbers and let us pose

Hs
� (E) = inf

1X
n=1

diams (Fn) (2.1)

where the family fFngn2N is a countable covering of E such that diam(Fn) < �, 8n 2 N and
the in�mum is taken on this kind of families. The s-dimensional Hausdor¤ outer measure
of E is given as usual by

Hs (E) = sup
�>0

Hs
� (E) = lim

�!0+
Hs
� (E) ; (2.2)

while Hausdor¤ dimension of E is given by

dimH(E) = inf fs 2 R:Hs (E) = 0g : (2.3)

Let us denote by ! = fx : N! Rg the set of the sequences of real numbers and c =
fx : N! R: limn xn = l 2 Rg the set of converging ones.

Given t 2 R, we will denote by [t] the integer part of t, i.e. [t] = max fm 2 Z : m � tg
and by I the interval [0; 1].

Let us call
D =

n
t 2 I : 9p 2 N0; q 2 N s.t. t =

p

2q

o
the set of dyadic points. Let us observe that D is countable and therefore dimH (D) = 0:

Let t 2 I. We de�ne the sequence x (t) = fxn(t)gn in the following way

xn(t) = [2
nt]� 2

�
2n�1t

�
8n 2 N: (2.4)

Such sequence is the one of the binary digits of t (if t 2 D, it can be expressed in
two ways as binary numbers: e.g. 1

2
= 0; 12 and also 1

2
= 0; 0�12; the sequence de�ned

corresponds in this case to the representation with a �nite number of digits equal to 1).
For a �xed n 2 N, xn(t) is a step function assuming only values 0 and 1

xn(t) =
1

2

 
�[0;1) +

2n�1X
j=0

(�1)j+1�[ j
2n
; j+1
2n
)(t)

!
8t 2 I;

where for a set A, the function �A is the characteristic function of A.
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Now let y (t) = (yn (t))n the sequence de�ned by (1.1); yn (t) is a step function con-
stant on every interval [ j

2n
; j+1
2n
); j = 0; 1; :::; 2n � 1, and takes only values k

n
; k = 0; 1; :::; n.

Moreover �����t : yn (t) = k

n

����� = �nk
�
2�n; (2.5)

where
�
n
k

�
is the binomial coe¢ cient of n over k.

For every �; � 2 I we de�ne

F� =
n
t 2 I : lim

n
yn(t) = �

o
;

G� = ft 2 I : limsupn yn(t) = �g ; G� = ft 2 I : liminfn yn(t) = �g ;
S� = ft 2 I : limsupn yn(t) � �g ; S� = ft 2 I : liminfn yn(t) � �g ;

G�� = ft 2 I : liminfn yn(t) = � and limsupn yn(t) = �g :

(2.6)

Obvious relations among the sets de�ned above are

F� = G��; G� = [0����G�� ; G� = [����1G��; (2.7)

G�� = G
� \G�; S� = [����1G�; S� = [0����G�

for every � and � in I.
Therefore obvious relations among the Hausdor¤ dimensions of such sets are

dimH(F
�) � dimH (G

�) � sup
����1

dimH(G
�) � dimH (S

�) ; (2.8)

dimH(F
�) � dimH(G�) � sup

0����
dimH(G�) � dimH(S�); (2.9)

dimH(G
�) � sup

0����
dimH(G

�
�); dimH(G�) � sup

����1
dimH(G

�
�); (2.10)

dimH(G
�
�) � min

�
dimH(G

�); dimH(G�)
	

(2.11)

for every � and � in I.
We collect in the following theorem the known results about the dimension of set

F�; G�; G
�; S�; S

�; G��.

Theorem 2.1. Let �; � 2 I and let F�; G�; G�; S�; S�; G�� be de�ned by (2.6). Then

i) dimH(G
�
�) = min fd(�); d(�)g ; 8�; � 2 [0; 1] ;

ii) dimH(F
�) = d (�) ;

iii) dimH(G�) = dimH(G
�) = d (�) ;

iv) dimH(S�) =

�
d (�) , if � � 1=2
1, if � � 1=2 ; dimH(S

�) =

�
1, if � � 1=2
d (�) , if � � 1=2 8� 2 [0; 1]:
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Proof. The result i) is the theorem 6 proved in [C] :
We observe that ii) is a direct consequence of i). Statements iii) and iv) follow from

theorem 14 and the related corollary at page 87 of [E]. �
Let us observe that the sets de�ned by (2.6) can have dimension strictly between 0

and 1.
Now let T be a in�nite matrix lower triangular. Recall the de�nitions (2.6) and the

de�nition of the set T -F� given by (1.6). Then we can de�ne in analogous way the sets
T -G�; T -G�; T -G�� ; T -S

�; T -S�.
Then it is easy to deduce the following proposition.

Proposition 2.2. If T 2M (the class de�ned by 1.8), then

dimH(T -F�) = dimH(T -G�) = dimH(T -G�) = d (�)

dimH(T -S�) =

�
d (�) , if � � 1=2
1, if � � 1=2 ; dimH(T -S�) =

�
1, if � � 1=2
d (�) , if � � 1=2 8� 2 [0; 1]:

Proof. We have to recall the following inclusions which are consequence of de�nition
of classM

F� � T -F� � T -G� � T -S� � S�;
F� � T -F� � T -G� � T -S� � S�:

Then we can apply theorem 2.1. �

Remark 1. It is nontrivial to evaluate the Hausdor¤ dimension of T -G��:
In the paper [C2] it is proved that if T 2 M then dimH(T -G��) = dimH(G

�
�) =

min fd(�); d(�)g.

We now give a generalization of Cantor like subsets of I = [0; 1] (slightly more general
than the one given in [C], de�nition 3).

De�nition 2.3. Let us consider a sequence fkhgh , fqhgh � N such that

1 � kh < qh 8h 2 N:

Furthermore, for every h 2 N we consider a kh-tuple of integers between 0 and qh � 1

0 � p1h < p2h < ::: < p
kh
h < qh:

Let us denote
Ph =

�
p1h; p

2
h; :::; p

kh
h

�
:
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Let us construct the following sequence of sets fChgh

C1 = [k1i1=1
�
pi11
q1
+
1

q1
I

�
; C2 = [k1i1=1 [

k2
i2=1

�
pi11
q1
+
1

q1

�
pi22
q2
+
1

q2
I

��
; :::

Ch = [k1i1=1 [
k2
i2=1

::: [khih=1
�
pi11
q1
+
1

q1

�
pi22
q2
+
1

q2

�
:::

�
pihh
qh
+
1

qh
I

�
:::

���
; ::: (2.12)

and de�ne
C = \+1h=1Ch: (2.13)

In other words C is a set obtained in a way similar to the Cantor set.
Every Ch is an essential disjoint union of k1k2 � � �kh intervals of length (q1q2 � � � qh)�1;

you obtain Ch+1 from Ch performing the following steps:
a) divide I in qh+1 intervals;
b) choose kh+1 intervals among them according to (order) numbers p1h+1; :::; p

kh+1
h+1 ;

c) scale down the set obtained in b) to the length of the intervals of Ch;
d) replace every interval of Ch with the set obtained in c), translated by the left

endpoint of the interval.
Let us �rst recall the following inequality proved in [C] (see lemma 2).

Lemma 2.4. Let m;n be natural numbers such that n � 1, 0 � m � n;

let d the function de�ned by (1.4). Then

n d(
m

n
)� 1

2
log2(n)� 1 � log2

�
n

m

�
� n d(m

n
):

The following lemma holds.

Lemma 2.5. Let C be a set constructed like in de�nition 2.3. Let moreover C 0 be the set
obtained by the same construction where I = [0; 1] is replaced by I 0 = [0; 1[:

Let 
 > 0 and assume that there exists � > 0 and h0 2 N such that

k1k2 � � � kh�1 � � (q1q2 � � � qh)
 8h � h0: (2.14)

Then
H
 (C 0) = H
 (C) > 0: (2.15)

Proof. The equality in (2.15) easily follows from the following inclusions

C 0 � C � C 0 [ D

where D is the set of dyadic points.
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Let us now prove the inequality in (2.15).

Let fBjgj a countable covering of C with open balls such that diam (Bj) <
1

q1q2 � � � qh0
for every j 2 N. By the compatcness of C we can assume that exists � 2 N such that
fBjg1�j�� is still a covering of C. For every 1 � j � � there exists hj � h0 such that

1

q1q2 � � � qhj
� diam (Bj) <

1

q1q2 � � � qhj�1
; (2.16)

Let m = max fhj : 1 � j � �g and observe that C is contained in Cm that in turn is the
essential disjoint union of k1k2 � � � km intervals of length (q1q2 � � � qm)�1, Cm = C1m [ C2m [
::: [ Ck1k2���kmm .

Let us de�ne

�j
:
=
card fi = 1; :::; k1k2 � � � km : Bj \ Cim 6= ;g

k1k2 � � � km
: (2.17)

Since for every i = 1; :::; k1k2 ���km the interval Cim contains points of C and fBjg1�j��
is a covering of C we have

�X
j=1

�j � 1: (2.18)

If we divide [0; 1] in q1q2 � � �qhj�1 intervals, Bj can have nonempty intersection with at most
two such intervals, and each of these intervals contains khjkhj+1 � � � km intervals of Cm.

By (2.17), (2.14) and (2.16) we have

�j �
2khjkhj+1 � � � km
k1k2 � � � km

=
2

k1k2 � � � khj�1
� 2

�

�
1

q1q2 � � � qhj

�

� 2

�
(diam(Bj))


 (2.19)

Then (2.19) and (2.18) give

�X
j=1

diam (Bj)

 � �

2

�X
j=1

�j =
�

2
> 0

whence, taking into acoount de�nitions (2.1) and (2.2) the thesis follows. �
The following result (see also lemma 12 in [C2]) is a particular case of lemma 2.5.

Lemma 2.6. Let q 2 N; (zh)h � N a sequence such that zh � q, 8h 2 N;

Eh =

(
t 2 [0; 1) :

qX
i=1

x(k�1)q+i (t) = zk;81 � k � h
)

and
E = \1h=1Eh:

Then
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i) Eh can be obtained as in de�nition 2.3, with I replaced by [0; 1), qh = 2q and
kh =

�
q
zh

�
;

ii)

dimH (E) � lim inf
h

1

hq

hX
j=1

log2

�
q

zj

�
:

3. The computation of the measure of level sets of Cesaro averages.

Proposition 3.1. Let � 2
�
1
2
; 1
�
: Let C 0 be the set de�ned by

C 0 =

8><>:t 2 [0; 1] :
�
k

�
�� 6p

k

��
<

k(k+1)
2X

j=
(k�1)k

2
+1

xj (t) � [k�] ; 8k 2 N

9>=>; : (3.1)

Then
C 0 � F� and Hd(�) (C 0) > 0; (3.2)

(3.2) can be obtained in a similar way if � 2
�
0; 1

2

�
:

Proof. Let us �rst verify that C 0 � F�:
If t 2 C 0 and n 2 N then we have

yn(n+1)
2

(t) =
2

n (n+ 1)

n(n+1)
2X
j=1

xj (t) �
2�

n (n+ 1)

nX
k=1

k = � (3.3)

and

yn(n+1)
2

(t) =
2

n (n+ 1)

n(n+1)
2X
j=1

xj (t) �
2�

n (n+ 1)

nX
k=1

�
k � 6

p
k
�
� �� 12�

p
n

n (n+ 1)
� �

�
1� 12p

n

�
:

(3.4)
Let now k; n 2 N such that n(n+1)

2
< k � (n+1)(n+2)

2
: Then if t 2 C 0 we have

yk (t) �
2

(n+ 1) (n+ 2)

�
n(n+ 1)

2
yn(n+1)

2

(t) + (n+ 1)

�
� n� + 2

(n+ 2)
(3.5)

and

yk (t) �
n

(n+ 2)
yn(n+1)

2

(t) � �n

(n+ 2)

�
1� 12p

n

�
: (3.6)

By (3.3), (3.4) (3.5) and (3.6) we easily get

lim
k
yk (t) = �: (3.7)
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In order to complete the proof we only have to prove that Hd(�) (C 0) > 0:
If we consider the construction given by de�nition 2.3 where I = [0; 1] is replaced by

I 0 = [0; 1[ and, for every h 2 N; Ph given by

Ph =

(
0 � m � 2h�1 :

�
�� 6p

h

�
�

hX
j=1

xj

�m
2h

�
� �

)
(3.8)

then it is easy to verify that

qh = 2
h; kh =

[h�]X
m=

h
h
�
�� 6p

h

�i
+1

�
h

m

�
(3.9)

C 0h =

8><>:t 2 [0; 1] : k
�
�� 6p

k

�
�

k(k+1)
2X

j=
(k�1)k

2
+1

xj (t) � k�; 8k � h

9>=>; : (3.10)

and that C 0 = \+1h=1C 0h .
Let us now recall that by lemma 2.4 we have

2hd(
m
h)

2
p
h
�
�
h

m

�
� 2hd(

m
h): (3.11)

Let h0 such that [h�] �
h
h
�
�� 6p

h

�i
> 4

p
h and

h
h
�
�� 6p

h

�i
> 1

2
h for every

h � h0:
Then for every m in the sum in (3.9) we have

1

2
<
m

h
< � and d

�
m

h

�
> d (�) : Then

we get

kh � 4
p
h
2hd(

m
h)

2
p
h
� 2hd(�)+1 > 2(h+1)d(�):

Then

k1k2 � � � kh�1 � kh0+1kh0+2 � � � kh�1 � 2(h0+2)d(�)2(h0+3)d(�) � � � 2hd(�) =

= (qh0+2qh0+3 � � � qh)
d(�) �

�
1

q1q2 � � � qh0+1

�d(�)
(q1q2 � � � qh)d(�) :

Then assumption (2.14) of Lemma 2.5 is satis�ed and by this Lemma we obtain
Hd(�) (C 0) > 0 and the thesis in the case � 2

�
1
2
; 1
�
:

If � 2
�
0; 1

2

�
we can perform a similar proof giving an analogous de�nition of C 0: �

Corollary 3.2. Let � 2 [0; 1]; � 6= 1

2
: Then Hd(�) (F�) = +1:
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Proof. If � = 0 or � = 1 then d (�) = 0 and Hd(�) � H0 is the counting measure. Since
card (F 0) = card (F 1) = +1 the thesis follows in this case.

If � 2 (0; 1) by the equalities

F� =

�
F� \

�
0;
1

2

��
[
�
F� \

�
1

2
; 1

��
=

�
1

2
F�
�
[
�
1

2
+
1

2
F�
�

and the properties of Hausdor¤ measure we deduce

Hd(�) (F�) = 21�d(�)Hd(�) (F�) ; (3.12)

if � 6= 1

2
then 1� d (�) > 0 and (3.12) gives Hd(�) (F�) = 0 or Hd(�) (F�) = +1; by

Proposition 3.1 Hd(�) (F�) > 0 and the thesis follows. �

4. Some remarks about level sets of generalized averages.

In this section we consider a matrix T in the classM and the generalized averages level
sets T -F� de�ned by (1.6).

We have the simple following proposition.

Proposition 4.1. Hd(�) (T -F�) = +1; Hd(�) ((T -F�) nF�) = 0:

Proof. The thesis follows from the inclusions

F� � T -F� (4.1)

(T -F�) nF� �
�
[
�
S� : � > �; � 2 Q

	�
\ ([fS� : � > �; � 2 Qg)

and the observation that at least one of the sets in the intersection in (4.1) has Hd(�)

measure equal to zero. �
The equality Hd(�) ((T -F�) nF�) = 0 obviously implies dimH ((T -F�) nF�) � d (�) :

Anyway this Hausdor¤ dimension can be equal to d (�), i.e. there exists a matrix T0 2M
such that

dimH ((T0-F�) n (F�)) = d (�) :
Let us �rst state the following lemmas that are useful in proof of theorem 4.4.

Lemma 4.2. Let 0 < � < 1 and p1; p2; q 2 N such that p1q < � <
p2
q
: Then there exists a

sequence (sh)h � N such that:

i) sh 2 fp1; p2g ; 8h 2 N;

ii) C =

8<:t 2 [0; 1] :
hqX

j=(h�1)q+1

xj (t) = sh; 8h 2 N

9=; � F�:
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Proof. Let us de�ne the sequence (sh)h used in lemma 2.6 as follows

s1 = p1; s2 = p2

sh+1 =

8<: p1, if
Ph
j=1 sj

hq
� �;

p2, if
Ph
j=1 sj

hq
< �;

if h � 2: (4.2)

Let us take t 2 C and n � 2q + 1: If s[n�1q ]+1 = p2 we have t 2 C

yn (t) =
1

n

nX
j=1

xj (t) =
1

n

0B@[
n�1
q ]qX
j=1

xj (t) +

nX
j=[n�1q ]q+1

xj (t)

1CA <
1

n

�
�

�
n� 1
q

�
q + p2

�
:

(4.3)

If s[n�1q ]+1
= p1, let h = max

n
h <

h
n�1
q

i
: sh+1 = p2

o
: Then if, t 2 C, we have

yn (t) =
1

n

0B@ hqX
j=1

xj (t) +

(h+1)qX
j=hq+1

xj (t) +
nX

j=(h+1)q+1

xj (t)

1CA < (4.4)

<
1

n

�
�hq + p2 +

��
n� 1
q

�
� h
�
p1

�
<

<
1

n

�
�hq +

��
n� 1
q

�
� h
�
�q + p2

�
=
1

n

��
n� 1
q

�
�q + p2

�
:

By (4.3) and (4.4) we get
lim sup

n
yn (t) � �: (4.5)

In a similar way can easily be proved that

lim
n
inf yn (t) � �: (4.6)

By (4.2), (4.5) and (4.6) we obtain the thesis. �

Lemma 4.3. Let us de�ne the functions

� (j) = 2[log2 j] + j � 1; j 2 N;

	(j) =

�
�

��
j � 1
q

�
+ 1

�
�
�
j � 1
q

�
� 1
�
q + j, j 2 N:

Then � and 	 are strictly increasing; moreover

M = �(N) =
�
m 2 N : 9k 2 N such that 2k � 1 � m � 2k�13� 2
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S = 	(N) = fj 2 N : 9m 2M such that (m� 1) q + 1 � j � mqg =
=

�
j 2 N : 9k 2 N such that

�
2k+1 � 2

�
q + 1 � j �

�
2k3� 2

�
q
	
:

and the inverse functions are given by

��1 (h) = �2[log2(h+1)]�1 + h+ 1; h 2M;

	�1 (h) =

�
��1

��
h� 1
q

�
+ 1

�
�
�
h� 1
q

�
� 1
�
q + h, h 2 S:

We eventually have that if h 2 S and h! +1, then

	�1 (h)

h
! 1

2
: (4.7)

Proof. The proof is elementary. In order to get (4.7), we just observe that limj!+1
�(j)
j
=

limj!+1
	(j)
j
= 2: �

Theorem 4.4. There exists T0 2M such that

dimH ((T0-F�) nF�) = d (�) 8� 2 [0; 1]: (4.8)

Proof. Let M and S the sets introduced in lemma 4.3 and let us pose

kn = jS \ f1; :::; ngj :

Let us pose

ank =
1

kn
�S\f1;:::;ng:

If we pose eT0 = (ank)n;k, the matrix T0 = eT0 �C1 de�nes a matrix inM because it satis�es
condition 2 of theorem 1.8. We claim that T0 satis�es (4.8).

If � = 0 or � = 1, the thesis is obvious. Let 0 < � < 1. We observe that for every
" > 0 there exist p1; p2; q 2 N such that

0 < �� " < p1
q
< � <

p2
q
< � + " < 1: (4.9)

and that 1
2
log2 q
q
+ 1

q
< ":

We can write
� = �

p1
q
+ (1� �) p2

q
(4.10)

and assume, without loss of generality, that
����� p1

q

��� < ����� p2
q

��� (and therefore � > 1
2
):

Let us prove that it is possible to construct a set E as in lemma 2.6 such that
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i) zk 2 fp1; p2g ; 8k 2 N;
ii) E � (T0-F�) n F�:

(4.11)

By lemma 2.6 and lemma 2.4, we have

dimH (E) � min

�
1

q
log2

�
q

p1

�
;
1

q
log2

�
q

p2

��
> (4.12)

> min fd (�� ") ; d (�+ ")g � ":

Since E � (T0-F�) n F�, by continuity of d and the arbitrarness of ", we obtain

dimH ((T0-F�) n F�) � d (�) :

Let C and (sh)h given by lemma 4.2, let us de�ne the sequence (mh)h by

mh
def:
=
���j 2 N : 2h�1 � j � 2h � 1 and sj = p2	�� ; h 2 N; (4.13)

and the sequence (sh)h as follows

zm =

8<:
s��1(m), if m 2M;
p1, if 9h 2 N:2h�13� 1 � m � 2h�13� 2 +mh

p2, if 9h 2 N:2h�13� 1 +mh � m � 2h+1 � 2
: (4.14)

(since mh � 2h�1; 8h 2 N; 2h�13� 1 � 2h�13� 2 +mh � 2h+1 � 2).
Let E the set constructed in lemma 2.6 using the sequence (zh)h : Then the i) of

(4.11) is obviously satis�ed and we have just to prove ii) of (4.11), that is

E � (T0-F�) n F�: (4.15)

Let t 2 E and observe that

(T0x)n (t) =
nX
k=1

ankyk (t) =
1

kn

X
k2S\f1;:::;ng

yk (t) : (4.16)

By (4.16), to obtain (4.15) is su¢ cient to prove that if t 2 E the sequence (yk (t))k does
not converge, while the subsequence (yk (t))k2S converges to �.

Let v 2 E and let us de�ne t by

xj (t) = x	(j) (v) , 8j 2 N; (4.17)

where 	 is given in lemma 4.3.
By (4.17) it follows

j2X
j=j1

xj (t) =

	(j2)X
j2S; j=	(j1)

xj (v) =

	(j2+1)�1X
j2S; j=	(j1)

xj (v) ; 8j1; j2 2 N: (4.18)
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In particular, since 	((h� 1) q + 1) = (� (h)� 1) q + 1; 	(hq) = � (h) q and � (h) 2M
hqX

j=(h�1)q+1

xj (t) =

�(h)qX
j=(�(h)�1)q+1

xj (v) = z�(h) = sh; 8h 2 N (4.19)

therefore t 2 C:
Moreover, since 	

��
2k � 1

�
q + 1

�
=
�
2k+1 � 2

�
q + 1

(2k�1)qX
j=1

xj (t) =

(2k+1�2)qX
j2S; j=1

xj (v) ; 8k 2 N (4.20)

By (4.14) we also have

(2k�2)qX
j2S; j=1

xj (v) =

(2k�2)qX
j =2S; j=1

xj (v) ; 8k 2 N (4.21)

Let now h 2 S, set

kh = max
�
k 2 N :

�
2k � 2

�
q + 1 � h

	
=

�
log2

�
2 +

h� 1
q

��
and observe that

h�	�1 (h) =
�
2kh�1 � 1

�
q and 	

��
2kh�1 � 1

�
q + 1

�
=
�
2kh � 2

�
q + 1; (4.22)

then by (4.19) � (4.22) we have

hX
j=1

xj (v) =

(2kh�2)qX
j=1

xj (v) +
hX

j=(2kh�2)q+1

xj (v) =

=

(2kh�2)qX
j2S; j=1

xj (v) +

(2kh�2)qX
j =2S; j=1

xj (v) +

hX
j=(2kh�2)q+1

xj (v) =

= 2

(2kh�1�1)qX
j=1

xj (t) +

	�1(h)X
j=(2kh�1�1)q+1

xj (t) =

	�1(h)X
j=1

xj (t) +

h�	�1(h)X
j=1

xj (t) :

Therefore

yh (v) =
1

h

0@	�1(h)X
j=1

xj (t) +

h�	�1(h)X
j=1

xj (t)

1A =

=
1

h

�
	�1 (h) y	�1(h) (t) +

�
h�	�1 (h)

�
yh�	�1(h) (t)

�
, h 2 S:
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then, since t 2 C, by lemma 4.2 and (4.7) yh (v) tends to �, as h! +1 in S:
Let v 2 E and t 2 C be de�ned by (4.17). By (4.20) we have

y(2k+1�2)q (v) = y(2k�1)q (t) ; 8k 2 N: (4.23)

Let us observe that, since yh (t)
h! ��

2k � 1
�
q

2k�1q
y(2k�1)q (t)�

�
2k�1 � 1

�
q

2k�1q
y(2k�1�1)q (t)! �, as k ! +1: (4.24)

But we have

=
y(2k�1)q (t)

�
2k � 1

�
q � y(2k�1�1)q (t)

�
2k�1 � 1

�
q

2k�1q
= (4.25)

=
mkp1 +

�
2k�1 �mk

�
p2

2k�1q
=
mk

2k�1
p1
q
+
�
1� mk

2k�1

� p2
q
;

where mk is de�ned by (4.13).
Then by (4.10), (4.24) and (4.25) we have that

mk

2k�1
! � >

1

2
: (4.26)

Therefore if k is large mk > 2
k�2 and by (4.7)

if
�
2k�13� 1

�
� m � 2k�13� 2 + 2k�2; then sm = p1:

Let us take nk =
�
2k�13 + 2k�2 � 2

�
q; we have by (4.23) and (4.26)

ynk (v) =
1

nk

nkX
j=1

xj (v) =

=
1

nk

0B@q �2k � 2� y(2k�2)q (v) + (2k�13�2)qX
j=(2k�2)q+1

xj (v) +

nkX
j=(2k�13�2)q+1

xj (v)

1CA =

=
1

nk

�
2q
�
2k�1 � 1

�
y(2k�1�1)q (t) +

�
mkp1 +

�
2k�1 �mk

�
p2
�
+ 2k�2p1

�
that, as k ! +1, tends to

4

7
�+

2

7

�
�
p1
q
+ (1� �) p2

q

�
+
1

7

p1
q
=
6

7
�+

1

7

p1
q
6= �:

So (4.11) is fully satis�ed by E: Therefore by (4.11), (4.12) and the arbitrarness of " > 0;
the thesis follows. �
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