Some remarks about level sets of Cesaro averages of
binary digits
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Abstract

The problem of averaging the binary digits of numbers in [0, 1] is considered. It
is well known that Lebesgue a.e. in [0,1] the usual Cesaro average is equal to %
and that the Hausdorff dimension of the set where the Cesaro average is equal to «
is given by an entropy function d («)). We prove that if o # % then the Hausdorff
measure HU® of such set is infinite. We moreover explicitly construct an infinite
matrix T (in a class M of Toeplitz matrices regular with respect to Cesaro averages)
such that the Hausdorff dimension of the set of the points not having Cesaro average
and where the T-generalized average is « is still given by d («).

AMS subject classification: 40C05 (primary), 26A30, 28A78 (secondary).

1. Introduction

In this paper we consider the classic problem of averaging the binary digits of numbers in
[0,1] and of studying the (Hausdorff) dimension and measure of some sets related to these
averages.

Let us more precisely consider ¢ € [0,1], the sequence z (t) = (x, (t)),, of its binary
digits (cf. (2.4)) and the sequence of their averages y (t) = (y, (t)),, given by

1 n
Yo () == x(t),Vn €N (1.1)
"=
We call the ’Cesaro average’ of the binary digits of ¢ the quantity, when it exists:
hl}rl yn (1) (1.2)
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A classical result due to Borel is that, for almost every ¢ € [0,1] (with respect to the
Lebesgue measure) the Cesaro average is 5 (see [S], example 1 page 369).

Let the s-dimensional Hausdorff measure and the Hausdorff dimension be respectively
defined by (2.2) and (2.3) and let us set

Fo = {t € [0,1] : limy, (1) = a} (1.3)

A coincise expression for the Borel result quoted above is H* <F %> =1.

Another well known result (see Theorem 14 of [E| or Proposition 10.1 of [F]) states
that the set F'* has Hausdorff dimension d («), where the entropy function d (¢) is given by

d(t) = { ()_’ (tlog,(t) + (1 —t)logy(1 _lf)t)a:zzfle (0,1) (1.4)

In the present paper we prove that if o # 1 then HU® (F*) = +o0 (Corollary 3.2).

It is moreover possible to generalize the definitions given by (1.1) + (1.3).

To be more precise, let w = {z: N — R} the set of the sequences of real numbers,
then having in mind Toeplitz summation method (cf. [Hal, pag.41), we consider an infinite
matrix 7' = (@nk),, pey Of real numbers, lower triangular (i.e. an, = 0if & > n), and define,
for every x = (x,), € w, T (x) = (T (x),,),, by

T(z), =Y s (1.5)

Then we pose
T-Fo = {t €01+ T (x (1)), = a} . (1.6)

Ift € T-F* we call a the T-generalized average of the binary digits of t.
Let the matrix C; be defined by

1
- if k<h

(Cipe=19 A’ BE= o (1.7)
0, otherwise;

it is called Cesaro matrix of order 1 and we obviously have F'* = C-F“
If we consider the following class of matrices
limsup (7' (z)),, < limsup (C4 (2)),
=<T1 tri 1 trix : n n v,
M ower triangular matrix: . " . (T'(2)), > liminf (C4 (z)), rew,,
(1.8)
it is easy to see (cf. Proposition 4.1) that if T' € M then F® C T-F® and H¥® ((T-F*)\F*) =
0; in particular this implies dimgy ((75-F) \ F*) < d(«).
We eventually prove by an explicit example (Theorem 4.4) that there exists a matrix
Ty € M such that
dimy ((To-F*) \ F*) = d ().



2. Notations and preliminary results

Let us denote by N = {1,2,3,...}, by Ny = NU {0} and by R=RU{—oc0, +co} Given
a finite subset M C N we will denote by card (M) the number of its elements. Given a
subset £ C R we will denote by diam (E) = sup{|z — y| : z,y € E} its diameter and if in
addition F is a measurable, we define by |F| its Lebesgue measure.

Let 0 > 0 and s > 0 real numbers and let us pose

H; (E) = inf i diam® (F},) (2.1)

where the family {£,}, .y is a countable covering of £ such that diam(F,) < d, ¥n € N and
the infimum is taken on this kind of families. The s-dimensional Hausdorff outer measure
of F is given as usual by

H* (E) = 5;2187'(3 (E) = lim H5(E), (2.2)
while Hausdorff dimension of F is given by

dimy(E) = inf {s € R‘H* (E) = 0} . (2.3)
Let us denote by w = {2 : N — R} the set of the sequences of real numbers and ¢ =

{z:N — R:lim, z,, = [ € R} the set of converging ones.

Given t € R, we will denote by [t] the integer part of ¢, i.e. [t] = max{m € Z : m <t}
and by I the interval [0, 1].

Let us call

'D:{tGI:EIpENo,QENS.t.t:%}

the set of dyadic points. Let us observe that D is countable and therefore dimy (D) = 0.
Let t € 1. We define the sequence z (t) = {z,(t)}, in the following way

z,(t) = [27] — 2 [2" 7] Vn € N. (2.4)

Such sequence is the one of the binary digits of ¢ (if ¢ € D, it can be expressed in
two ways as binary numbers: e.g. % = 0,1, and also % = 0,01,; the sequence defined
corresponds in this case to the representation with a finite number of digits equal to 1).

For a fixed n € N, x,(t) is a step function assuming only values 0 and 1

271
1
Tn(t) = B (X[O,l) + Z(_D]HX[L Jf)(ﬂ) vt el,
=0

oM om

where for a set A, the function x , is the characteristic function of A.



Now let y (t) = (yn (t)),, the sequence defined by (1.1); y, (t) is a step function con-
stant on every interval [, 1) §=0,1,...,2" — 1, and takes only values %, kE=0,1,..n.

Moreover
vt~

where (Z) is the binomial coefficient of n over k.
For every «, 8 € I we define

F* = {t €I :limy,(t) = a},

G* = {t € I : limsup,, y,(t) = a}, Go = {t € I : liminf,, y,(t) = a}, (2.6)
S* ={t € I : limsup,, y,(t) > a}, S = {t € I : liminf,, y,(t) < a},
G8 = {t € I : liminf, y,(t) = o and limsup,, y,(t) = 8} .

Obvious relations among the sets defined above are
Fa — Gg, Ga = UogﬁgaGg, Ga == Uagggng, (27)

Gl =G NGay 5% =Uacpa1G?,  So = Up<p<aGp

for every o and (3 in 1.
Therefore obvious relations among the Hausdorff dimensions of such sets are

dim g (F*) < dim g (G%) < sup dim 5(G?) < dim 5 (S%), (2.8)
as<p<1
dim 5 (F*) < dim 4(G,) < sup dim y(Gg) < dim 5(S,), (2.9)
0<f<a
dim 5 (G*) > sup dim 5 (G3), dim 5 (G,) > sup dim z(GP), (2.10)
0<B<a a<p<1
dim (G?) < min {dim 5 (G”), dim (Ga) } (2.11)

for every o and 3 in [I.
We collect in the following theorem the known results about the dimension of set

Fe, Ga, G, S, S°, GE.
Theorem 2.1. Let o, 3 € I and let F'*, Go, G, S,, S%, G? be defined by (2.6). Then

= min{d(a),d(8)}, VYo, € [0,1],
d(a),
= dimy(G*) =d(a),
d(a), ifa<1/2 . o 1, ifa<1/2
- { 1, ifa>1ye o dmalS ):{ d(a), ifa>1/2

~— ~— ~— ~—

Va € [0, 1].



Proof. The result i) is the theorem 6 proved in [C] .

We observe that ii) is a direct consequence of i). Statements iii) and iv) follow from
theorem 14 and the related corollary at page 87 of [E]. B

Let us observe that the sets defined by (2.6) can have dimension strictly between 0
and 1.

Now let T' be a infinite matrix lower triangular. Recall the definitions (2.6) and the
definition of the set T-F* given by (1.6). Then we can define in analogous way the sets
-G, T-G,, T-Gg, T-5*,T-Sa.

Then it is easy to deduce the following proposition.

Proposition 2.2. If T' € M (the class defined by 1.8), then
dimy(T-F*) = dimg(T-G,) = dimy(T-G*) = d («)

. d(a), ifa<1/2 . o
dm(1-5) = "0 T amrs = |

1, ifa<1/2

d(a), ifa>1/2 ‘eI

Proof. We have to recall the following inclusions which are consequence of definition
of class M

FOZ
Fa

T-F* C T-G* C T-5* C S°,

C
g T‘Fa g T‘Ga g T’Sa g Sa.
Then we can apply theorem 2.1. W

Remark 1. It is nontrivial to evaluate the Hausdorff dimension of T-G?.
In the paper [C2] it is proved that if T € M then dimy(T-G?) = dimy(G?) =
min {d(a), d(5)}-

We now give a generalization of Cantor like subsets of I = [0, 1] (slightly more general
than the one given in [C], definition 3).

Definition 2.3. Let us consider a sequence {ky}, , {an}, € N such that
1<kyp<aq Vh € N.
Furthermore, for every h € N we consider a ky-tuple of integers between 0 and g, — 1
ng,ll<p,21<...<p’,j"'<qh.

Let us denote
k
Ph - (p}mp%u "'7phh> .



Let us construct the following sequence of sets {Cy},

i1 1 71 1 12 1
C,= U§11:1 []3_1 + —[} , Oy = Ufllzl Ui‘?:l {p_l +— [p_z + _IH )
q1 q1 qQ1 q1 [ 42 q2
i 1 pig 1 pih 1
Cp=UM_ Uk Uk [p—l + = [—2 + = { {—h + —[] }H R 2.12
" 1=t el =t q1 1192 Q an  qn ( )
and define

C =N 0. (2.13)

In other words C' is a set obtained in a way similar to the Cantor set.

Every C), is an essential disjoint union of k; ks - - - kj, intervals of length (g1qz - - - qh)_l;
you obtain C},1 from C}, performing the following steps:

a) divide [ in g4 intervals;

b) choose k1 intervals among them according to (order) numbers p; 4, ..., p:}fll;

c) scale down the set obtained in b) to the length of the intervals of Cj,;

d) replace every interval of (), with the set obtained in c), translated by the left
endpoint of the interval.

Let us first recall the following inequality proved in [C] (see lemma 2).

Lemma 2.4. Let m,n be natural numbers such that n > 1,0 < m < n;

let d the function defined by (1.4). Then

m 1 n m
nd(g) ~ 5 log,(n) — 1 < log, <m) < nd(g)

The following lemma holds.

Lemma 2.5. Let C be a set constructed like in definition 2.3. Let moreover C' be the set
obtained by the same construction where I = [0, 1] is replaced by I' = [0, 1].
Let v > 0 and assume that there exists A > 0 and hg € N such that

kikg -+ kp_1 > ANqiga - qn)” Vh > hy. (2.14)

Then
HY (C") =H"(C) > 0. (2.15)

Proof. The equality in (2.15) easily follows from the following inclusions
c'ccccup

where D is the set of dyadic points.



Let us now prove the inequality in (2.15).
1

@142 " * " Ghy
for every j € N. By the compatcness of C' we can assume that exists v € N such that

{B,}, <j<v is still a covering of C'. For every 1 < j < v there exists h; > hg such that

Let { B;}, a countable covering of C' with open balls such that diam (B;) <

1 1
—— < diam (B;) < ———; (2.16)
4142 * * * qh; 41492 * * * Gh;_,
Let m = max{h; : 1 <j < v} and observe that C' is contained in C,, that in turn is the
essential disjoint union of kiks - - - k,, intervals of length (q1¢z - - - gm) ™", C = CL UC2 U
. U OFakekm,
Let us define

ccard{i=1,..,kiks - ky : B;NCL # 0}

= 2.1
M] klkgk:m ( 7)

Since for every ¢ = 1, ..., ki ky---k,, the interval C’, contains points of C' and {Bi}i<j<u
is a covering of C' we have o

> =1 (2.18)
j=1

If we divide [0, 1] in q1g2 - - - qn,_, intervals, B; can have nonempty intersection with at most
two such intervals, and each of these intervals contains ky ks, ., - - - ky, intervals of Cy,.
By (2.17), (2.14) and (2.16) we have

M.<2khﬂ'khj+1 o 2 <2< : >W<
T kiky ek kiko -+ kn—1 = A\@uq2aqn; )

Then (2.19) and (2.18) give

(diam(B;))"  (2.19)

> o

whence, taking into acoount definitions (2.1) and (2.2) the thesis follows. B
The following result (see also lemma 12 in [C2]) is a particular case of lemma 2.5.

Lemma 2.6. Let ¢ € N, (23,), € N a sequence such that z, < g, Vh € N,

q
Eh = {t € [O, 1) : Zx(k—l)q—‘ri (t) = Zk,v1 S k S h}

i=1

and
E =N Ep.

Then



i) Ey can be obtained as in definition 2.3, with I replaced by [0,1), ¢, = 27 and
kn = (q);

Zh

if)
h
dimp (E)>1iminfi21og2 7).
~ h hg = Z;

J

3. The computation of the measure of level sets of Cesaro averages.

Proposition 3.1. Let a € (%, 1) . Let C" be the set defined by

k(k+1)
C'= te[(),l]:[k(oz—£> < Z z; (t) < [ka], VE €N} . (3.1)
\/E (k—1)k
J=" 1
Then
C" C F* and HY® (C") > 0; (3.2)

(3.2) can be obtained in a similar way if a € (0, 3) .

Proof. Let us first verify that C' C F*.
If t € C" and n € N then we have

n(n+1)
2c =
i) (1) — > k= :
Yatorn (1) = Z S Tmrp e (33)
and
n(n+1) n \/_
2a 12« 12
nntn) (t) —_— k—6 > a— > 1—-—1.
?J(+)( n+1 Z =t 1) 1( \/_> Q (n—|—1) a< \/ﬁ)
(3.4)
Let now k,n € N such that @ <k< %2(””) Then if t € C’ we have
2 n(n+1) no + 2
t) < n(nt1) (T 1)) < 3.5
yk()_(n+1)(n+2)( g Yen (D (0t ))_(n+2) (3:5)
and 1o
n an
t) > —————Ynry () > —— (1 — — | . 3.6
w02 g (02 2205 (1- 22 (3.6)
By (3.3), (3.4) (3.5) and (3.6) we easily get
liinyk (t) = a. (3.7)



In order to complete the proof we only have to prove that H4*) (C") > 0.
If we consider the construction given by definition 2.3 where I = [0, 1] is replaced by

I'=10,1] and, for every h € N, P, given by
T (2%) < a} (3.8)

6
b, = 0<m<2h_1:<a——)<
fomer (o)

then it is easy to verify that

h

7j=1

[hal

g =2", ky = > (Z) (3.9)
m=[h(a=f)]+1
k(k+1)

C) = tE[O,l]:k(a——)S 22: z; (t) < ka, Vk <hy. (3.10)

and that C' = N>C) .
Let us now recall that by lemma 2.4 we have

9hd(%) h nafm
N <m> < ohd(%), (3.11)

Let hg such that [ha] — [h( 8 )] > 4v/h and [h( 8 ﬂ > 1h for every

o — NG o — Vi
h > hy.
1
Then for every m in the sum in (3.9) we have 3 < % < o and d<%> > d (). Then
we get
ohd (3
ky, > 4\/E > 2hd(a)+1 > 2(h+1)d(o¢)‘
- 2Vh
Then
Eiky - kno1 > Engriknore - - - ko1 > 9(ho+2)d(a)9(ho+3)d(@) , | ghd(a) _

o 1 @ o
= (Qno+2qho+3 * - Qh)d( ) > <—) (12 - - - qh)d( ).
q192 * * * Gho+1

Then assumption (2.14) of Lemma 2.5 is satisfied and by this Lemma we obtain
HU ) (C") > 0 and the thesis in the case o € (1,1).
Ifae (0 1) we can perform a similar proof giving an analogous definition of C’. B

)

1
Corollary 3.2. Let a € [0,1], a # 5 Then HY ) (F*) = +o0.

9



Proof. If « = 0 or a = 1 then d(a) = 0 and H“® = H° is the counting measure. Since
card (F°) = card (F') = +oco the thesis follows in this case.
If « € (0,1) by the equalities

(o) b)) - () o)

and the properties of Hausdorff measure we deduce

Hd(a) (Fa) _ 21—d(a)Hd(a) (Fa) ; (3.12)

1
if v # 5 then 1 — d (o) > 0 and (3.12) gives H¥ ) (F*) = 0 or H ) (F*) = +o00; by
Proposition 3.1 H4® (F*) > 0 and the thesis follows. B

4. Some remarks about level sets of generalized averages.

In this section we consider a matrix 7" in the class M and the generalized averages level
sets T-F* defined by (1.6).
We have the simple following proposition.

Proposition 4.1. H®) (T-F*) = +o00; HU®) ((T-F*) \F*) = 0.
Proof. The thesis follows from the inclusions

F* C T-F° (4.1)
(T-F)\F* c (U{S*:A>a, AeQ})N(U{S,: p>a, pneQ})

and the observation that at least one of the sets in the intersection in (4.1) has H®)
measure equal to zero. H
The equality HU®) ((T-F*)\F*) = 0 obviously implies dimy ((T-F*)\F®) < d(a).
Anyway this Hausdorff dimension can be equal to d («), i.e. there exists a matrix T, € M
such that
dimy ((Ty-F*) \ (F°)) = d (a).

Let us first state the following lemmas that are useful in proof of theorem 4.4.

Lemma 4.2. Let 0 < a < 1 and p1, p2, ¢ € N such that % <a< %. Then there exists a
sequence (sp,), € N such that:

%) Sp € {pl,pg}, Vh € N,
hq
ii)C = {te0,1]: Y a;(t)=sy VhENH CF”
Jj=(h—1)g+1

10



Proof. Let us define the sequence (s3), used in lemma 2.6 as follows

S1 = P1, S2 = P2

h
: j=15j
o b1, if th Z «,
Sh+1 = e SR
pa, if —J,;q < a,

if h > 2. (4.2)

LetustaketEC’anan2q+1.Ifs[n;l] = py we have t € C

+1

yn(t):%éxj(t):% ij(t)fz 7 (1) <%(a[n;1]q+p2).

If S[n=1]41 = P1y let h = max {h < [”T_l} D Sphi1 = pg} . Then if, t € C, we have

<E+1)q n

O DOEIORD SECESND SEA0] (1.4

j=hg+1 j=(h+1)g+1
(ora-cne ([*5] =7)m) <
(e (53] o) -5 n)

By (4.3) and (4.4) we get

1
n
1
< —
n

lim supy,, (t) < a. (4.5)

n

In a similar way can easily be proved that
liminfy, (t) > a. (4.6)
By (4.2), (4.5) and (4.6) we obtain the thesis. H

Lemma 4.3. Let us define the functions

®(j) = 2wl 4j-1, jEN,

o = ()5 e sen

Then ® and V¥ are strictly increasing; moreover

M =& (N) = {m € N: 3k e N such that 2* — 1 <m < 2"7'3 -2}

11



S = U(N)={jeN:3dm e M such that (m—1)qg+1<j<mq}=
= {j €N:3k € Nsuch that (27" —2)¢+1< ;< (2"3-2)¢}.

and the inverse functions are given by

d1(h) = —2lesh+DI=t L p 4 q he M,

v = (5] ) [5] Jeen s

We eventually have that if h € S and h — 400, then

=3 (4.7)
Proof. The proof is elementary. In order to get (4.7), we just observe that lim;_, | 2G)
lim; s yoo ) = 2. W
Theorem 4.4. There exists Ty € M such that
dimg ((To-F*)\F*) = d («) Va € [0,1]. (4.8)
Proof. Let M and S the sets introduced in lemma 4.3 and let us pose
kn,=1SN{1,....,n}|.

Let us pose

Apk = k_nXSm{l ..... n}
If we pose Tvo = (ank)n,m the matrix Ty = fo o (1 defines a matrix in M because it satisfies
condition 2 of theorem 1.8. We claim that 7} satisfies (4.8).

If « =0 or a = 1, the thesis is obvious. Let 0 < o« < 1. We observe that for every
e > 0 there exist py, ps, ¢ € N such that

b1 D2

0<a—e<—=<a<—=<a+e<l. (4.9)
q q
and that %logT?q + % <e.
We can write » »
a=A=+(1-)N= (4.10)
q q
and assume, without loss of generality, that ‘a — % < ‘04 — % (and therefore \ > %)

Let us prove that it is possible to construct a set £ as in lemma 2.6 such that

12



i) zr € {p1,p2}, Yk €N;
i) EC(To-F*)\ F°.

By lemma 2.6 and lemma 2.4, we have

dimy (E) > min {él% (5),51% (;D} > (4.12)
> min{d(a—¢),d(a+e)}—e.

(4.11)

Since E C (To-F*) \ F*, by continuity of d and the arbitrarness of £, we obtain
dimy ((To-F*)\ F) > d(a) .
Let C and (sp,), given by lemma 4.2, let us define the sequence (my,), by
mp del H] eN:2"t<j<2" — 1 and 5; :pQH , heN, (4.13)
and the sequence (sy), as follows

Se-1(m); itme M,
Zm =14 p1, ifIREN2IZ 1< m <213 -2+ my, . (4.14)
Py, if I EN2P13 — 14 my <m <21 -2

(since my, < 2""1 Vh € N, 2"713 —1 <2713 — 2 4+ m,, < 201 — 2),
Let E the set constructed in lemma 2.6 using the sequence (z3), . Then the i) of
(4.11) is obviously satisfied and we have just to prove ii) of (4.11), that is

E C (Ty-F*) \ F°. (4.15)
Let t € E and observe that
u 1
(o), () = Y om0 == > wlo). (416)
k=1 keSn{1,...,n}

By (4.16), to obtain (4.15) is sufficient to prove that if ¢ € E the sequence (y; (t)), does
not converge, while the subsequence (yy (t)),.s converges to a.
Let v € E and let us define ¢ by

z; (t) = zg (v), VjeN, (4.17)

where U is given in lemma 4.3.

By (4.17) it follows

J2 U (j2) U(j2+1)—1
dwty= > xiw)= > oz, YeN (4.18)
J=j1 JES, j=¥(j1) JES, j=Y(j1)

13



In particular, since ¥ ((h—1)g+1) = (®(h) —1)g+ 1, ¥ (hq) =P (h)gand ®(h) € M

hq @(h)q

Z z; (t) = Z r; (v) = 2an) = Sh, YheN

j=(h—1)q+1 J=(®(h)—1)g+1

therefore t € C.
Moreover, since ¥ ((2F —1) g+ 1) = (2" = 2) ¢ + 1

(25-1)q (27+1-2)q
Yo oat)= > w;(v), VkeN
j=1 jes, j=1
By (4.14) we also have
Ede )
Z zj (v) = Z zj(v), VYkeN
jes, j=1 ¢S, j=1

Let now h € S, set

kh:max{k‘EN: (2k—2)q—|—1 §h} = [log2 (2—!—%)}
and observe that
h—U'(h)y=(2""1-1)¢ and ¥ ((2"'-1)g+1)= (2" -2)q+1;
then by (4.19) + (4.22) we have

(2n—2)q h

h
Z%’(U) = Z zj (v) + Z zj (v) =
Jj=1 J=1 j=(2"r—2)g+1
(#1-2), (24 2)g ]
= >+ ), m+ Y w)=
JES, j=1 J¢s, j=1 j:<2khf2)q+1
(Qkhfl—l)q lI,—l(h) \I;*l(h) h—‘l’fl(h)
=2 ) x4+ > mi(t)= Y x;(t)+
j=1 j=(2F0 1) g1 j=1 j=1
Therefore
] T—1(h) h—0~1(h)
(V) = 5 )+ D w)]| =
j=1 j=1

14

(U7 () gaigny (6) + (R = U7 () yrwigy (1) HES.

(4.19)

(4.20)

(4.21)

(4.22)



then, since t € C', by lemma 4.2 and (4.7) y,, (v) tends to a, as h — +o0 in S.

Let v € F and t € C be defined by (4.17). By (4.20) we have
y(2k+1_2)q (U) = y(Qk_l)q (t) , Vk € N.

Let us observe that, since yj, (t) o

(2" —1)q (2" —1)q
2h-1g Y(2r-1)q (t) — Qk—_lqy(gk_l_l)q (t) = a, as k — +o00.

But we have

y(zkfl)q (1) (Qk _ 1) q— y(zk—lfl)q (t) (2k—1 _ 1) q

2k—1q

Y

Compr+ (25 =) e omy my \ P
- 2k—1q - 2k—15 + < o 2k—1>
where my, is defined by (4.13).
Then by (4.10), (4.24) and (4.25) we have that

M 1
2k—1 — )\ > 5

Therefore if k is large my, > 2¥~2 and by (4.7)
if (2813 -1)<m<2"'3-2+2"2%  then s, =p:.

Let us take n, = (2773 4 22 — 2) ¢, we have by (4.23) and (4.26)

i (0) = 2> (o) =

(2+-13-2)q ne
= 0D, 0+ Y mw+ Y )
N
e =g
B nik <2q (27 = 1) y(georyy, () + (mapr + (2777 = ) p2) + 2”“)

that, as £k — +o00, tends to

4 2 h b2 Ip: 6 Ip:
= A=+ (1—-X)—= —— = = —— )
7a+7(q+( )q)+7q 7a+7q a

(4.23)

(4.24)

(4.25)

(4.26)

So (4.11) is fully satisfied by E. Therefore by (4.11), (4.12) and the arbitrarness of ¢ > 0,

the thesis follows. B
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