Some remarks about level sets of Cesaro averages of binary digits

G.Cardone* A.Corbo Esposito ${ }^{\dagger}$ L.Faella ${ }^{\ddagger}$

Abstract

The problem of averaging the binary digits of numbers in $[0,1]$ is considered. It is well known that Lebesgue a.e. in $[0,1]$ the usual Cesaro average is equal to $\frac{1}{2}$ and that the Hausdorff dimension of the set where the Cesaro average is equal to α is given by an entropy function $d(\alpha)$. We prove that if $\alpha \neq \frac{1}{2}$ then the Hausdorff measure $\mathcal{H}^{d(\alpha)}$ of such set is infinite. We moreover explicitly construct an infinite matrix T (in a class \mathcal{M} of Toeplitz matrices regular with respect to Cesaro averages) such that the Hausdorff dimension of the set of the points not having Cesaro average and where the T-generalized average is α is still given by $d(\alpha)$.

AMS subject classification: 40C05 (primary), 26A30, 28A78 (secondary).

1. Introduction

In this paper we consider the classic problem of averaging the binary digits of numbers in $[0,1]$ and of studying the (Hausdorff) dimension and measure of some sets related to these averages.

Let us more precisely consider $t \in[0,1]$, the sequence $x(t)=\left(x_{n}(t)\right)_{n}$ of its binary digits (cf. (2.4)) and the sequence of their averages $y(t)=\left(y_{n}(t)\right)_{n}$ given by

$$
\begin{equation*}
y_{n}(t)=\frac{1}{n} \sum_{k=1}^{n} x_{k}(t), \forall n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

We call the 'Cesaro average' of the binary digits of t the quantity, when it exists:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} y_{n}(t) . \tag{1.2}
\end{equation*}
$$

[^0]A classical result due to Borel is that, for almost every $t \in[0,1]$ (with respect to the Lebesgue measure) the Cesaro average is $\frac{1}{2}$ (see [S], example 1 page 369).

Let the s-dimensional Hausdorff measure and the Hausdorff dimension be respectively defined by (2.2) and (2.3) and let us set

$$
\begin{equation*}
F^{\alpha}=\left\{t \in[0,1]: \lim _{n} y_{n}(t)=\alpha\right\} \tag{1.3}
\end{equation*}
$$

A coincise expression for the Borel result quoted above is $\mathcal{H}^{1}\left(F^{\frac{1}{2}}\right)=1$.
Another well known result (see Theorem 14 of [E] or Proposition 10.1 of [F]) states that the set F^{α} has Hausdorff dimension $d(\alpha)$, where the entropy function $d(t)$ is given by

$$
d(t)= \begin{cases}-\left(t \log _{2}(t)+(1-t) \log _{2}(1-t)\right), & \forall t \in(0,1) \tag{1.4}\\ 0, & \text { if } t=0,1 .\end{cases}
$$

In the present paper we prove that if $\alpha \neq \frac{1}{2}$ then $\mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)=+\infty$ (Corollary 3.2).
It is moreover possible to generalize the definitions given by $(1.1) \div(1.3)$.
To be more precise, let $\omega=\{x: \mathbb{N} \rightarrow \mathbb{R}\}$ the set of the sequences of real numbers, then having in mind Toeplitz summation method (cf. [Ha], pag.41), we consider an infinite matrix $T=\left(a_{n k}\right)_{n, k \in \mathbb{N}}$ of real numbers, lower triangular (i.e. $a_{n k}=0$ if $k>n$), and define, for every $x=\left(x_{n}\right)_{n} \in \omega, T(x)=\left(T(x)_{n}\right)_{n}$ by

$$
\begin{equation*}
T(x)_{n}=\sum_{k=1}^{\infty} a_{n k} x_{k} . \tag{1.5}
\end{equation*}
$$

Then we pose

$$
\begin{equation*}
T-F^{\alpha}=\left\{t \in[0,1]: \lim _{n} T(x(t))_{n}=\alpha\right\} \tag{1.6}
\end{equation*}
$$

If $t \in T$ - F^{α} we call α the T-generalized average of the binary digits of t.
Let the matrix C_{1} be defined by

$$
\left(C_{1}\right)_{h, k}= \begin{cases}\frac{1}{h}, & \text { if } k \leq h \tag{1.7}\\ 0, & \text { otherwise }\end{cases}
$$

it is called Cesaro matrix of order 1 and we obviously have $F^{\alpha}=C_{1}-F^{\alpha}$
If we consider the following class of matrices

$$
\mathcal{M}=\left\{T \text { lower triangular matrix : } \begin{array}{l}
\lim \sup (T(x))_{n} \leq \limsup _{n}\left(C_{1}(x)\right)_{n} \tag{1.8}\\
\lim _{n} \inf _{n}(T(x))_{n} \geq \liminf _{n}\left(C_{1}(x)\right)_{n}
\end{array}, \forall x \in \omega\right\},
$$

it is easy to see (cf. Proposition 4.1) that if $T \in \mathcal{M}$ then $F^{\alpha} \subset T-F^{\alpha}$ and $\mathcal{H}^{d(\alpha)}\left(\left(T-F^{\alpha}\right) \backslash F^{\alpha}\right)=$ 0 ; in particular this implies $\operatorname{dim}_{H}\left(\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}\right) \leq d(\alpha)$.

We eventually prove by an explicit example (Theorem 4.4) that there exists a matrix $T_{0} \in \mathcal{M}$ such that

$$
\operatorname{dim}_{H}\left(\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}\right)=d(\alpha)
$$

2. Notations and preliminary results

Let us denote by $\mathbb{N}=\{1,2,3, \ldots\}$, by $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and by $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$ Given a finite subset $M \subset \mathbb{N}$ we will denote by card (M) the number of its elements. Given a subset $E \subseteq \mathbb{R}$ we will denote by $\operatorname{diam}(E)=\sup \{|x-y|: x, y \in E\}$ its diameter and if in addition E is a measurable, we define by $|E|$ its Lebesgue measure.

Let $\delta>0$ and $s \geq 0$ real numbers and let us pose

$$
\begin{equation*}
\mathcal{H}_{\delta}^{s}(E)=\inf \sum_{n=1}^{\infty} \operatorname{diam}^{s}\left(F_{n}\right) \tag{2.1}
\end{equation*}
$$

where the family $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ is a countable covering of E such that $\operatorname{diam}\left(F_{n}\right)<\delta, \forall n \in \mathbb{N}$ and the infimum is taken on this kind of families. The s-dimensional Hausdorff outer measure of E is given as usual by

$$
\begin{equation*}
\mathcal{H}^{s}(E)=\sup _{\delta>0} \mathcal{H}_{\delta}^{s}(E)=\lim _{\delta \rightarrow 0^{+}} \mathcal{H}_{\delta}^{s}(E) \tag{2.2}
\end{equation*}
$$

while Hausdorff dimension of E is given by

$$
\begin{equation*}
\operatorname{dim}_{H}(E)=\inf \left\{s \in \mathbb{R}: \mathcal{H}^{s}(E)=0\right\} \tag{2.3}
\end{equation*}
$$

Let us denote by $\omega=\{x: \mathbb{N} \rightarrow \mathbb{R}\}$ the set of the sequences of real numbers and $c=$ $\left\{x: \mathbb{N} \rightarrow \mathbb{R}: \lim _{n} x_{n}=l \in \mathbb{R}\right\}$ the set of converging ones.

Given $t \in \mathbb{R}$, we will denote by $[t]$ the integer part of t, i.e. $[t]=\max \{m \in \mathbf{Z}: m \leq t\}$ and by I the interval $[0,1]$.

Let us call

$$
\mathcal{D}=\left\{t \in I: \exists p \in \mathbb{N}_{0}, q \in \mathbb{N} \text { s.t. } t=\frac{p}{2^{q}}\right\}
$$

the set of dyadic points. Let us observe that \mathcal{D} is countable and therefore $\operatorname{dim}_{H}(\mathcal{D})=0$.
Let $t \in I$. We define the sequence $x(t)=\left\{x_{n}(t)\right\}_{n}$ in the following way

$$
\begin{equation*}
x_{n}(t)=\left[2^{n} t\right]-2\left[2^{n-1} t\right] \quad \forall n \in \mathbb{N} . \tag{2.4}
\end{equation*}
$$

Such sequence is the one of the binary digits of t (if $t \in \mathcal{D}$, it can be expressed in two ways as binary numbers: e.g. $\frac{1}{2}=0,1_{2}$ and also $\frac{1}{2}=0,0 \overline{1}_{2}$; the sequence defined corresponds in this case to the representation with a finite number of digits equal to 1).

For a fixed $n \in \mathbb{N}, x_{n}(t)$ is a step function assuming only values 0 and 1

$$
x_{n}(t)=\frac{1}{2}\left(\chi_{[0,1)}+\sum_{j=0}^{2^{n}-1}(-1)^{j+1} \chi_{\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right)}(t)\right) \quad \forall t \in I,
$$

where for a set A, the function χ_{A} is the characteristic function of A.

Now let $y(t)=\left(y_{n}(t)\right)_{n}$ the sequence defined by (1.1); $y_{n}(t)$ is a step function constant on every interval $\left[\frac{j}{2^{n}}, \frac{j+1}{2^{n}}\right), j=0,1, \ldots, 2^{n}-1$, and takes only values $\frac{k}{n}, k=0,1, \ldots, n$.

Moreover

$$
\begin{equation*}
\left|\left\{t: y_{n}(t)=\frac{k}{n}\right\}\right|=\binom{n}{k} 2^{-n} \tag{2.5}
\end{equation*}
$$

where $\binom{n}{k}$ is the binomial coefficient of n over k.
For every $\alpha, \beta \in I$ we define

$$
\begin{gather*}
F^{\alpha}=\left\{t \in I: \lim _{n} y_{n}(t)=\alpha\right\}, \\
G^{\alpha}=\left\{t \in I: \limsup _{n} y_{n}(t)=\alpha\right\}, \quad G_{\alpha}=\left\{t \in I: \liminf _{n} y_{n}(t)=\alpha\right\}, \tag{2.6}\\
S^{\alpha}=\left\{t \in I: \limsup _{n} y_{n}(t) \geq \alpha\right\}, \quad S_{\alpha}=\left\{t \in I: \liminf _{n} y_{n}(t) \leq \alpha\right\}, \\
G_{\alpha}^{\beta}=\left\{t \in I: \liminf _{n} y_{n}(t)=\alpha \text { and } \limsup _{n} y_{n}(t)=\beta\right\} .
\end{gather*}
$$

Obvious relations among the sets defined above are

$$
\begin{gather*}
F^{\alpha}=G_{\alpha}^{\alpha}, \quad G^{\alpha}=\cup_{0 \leq \beta \leq \alpha} G_{\beta}^{\alpha}, \quad G_{\alpha}=\cup_{\alpha \leq \beta \leq 1} G_{\alpha}^{\beta}, \tag{2.7}\\
G_{\alpha}^{\beta}=G^{\beta} \cap G_{\alpha}, \\
S^{\alpha}=\cup_{\alpha \leq \beta \leq 1} G^{\beta},
\end{gather*} \quad S_{\alpha}=\cup_{0 \leq \beta \leq \alpha} G_{\beta}
$$

for every α and β in I.
Therefore obvious relations among the Hausdorff dimensions of such sets are

$$
\begin{gather*}
\operatorname{dim}_{H}\left(F^{\alpha}\right) \leq \operatorname{dim}_{H}\left(G^{\alpha}\right) \leq \sup _{\alpha \leq \beta \leq 1} \operatorname{dim}_{H}\left(G^{\beta}\right) \leq \operatorname{dim}_{H}\left(S^{\alpha}\right), \tag{2.8}\\
\operatorname{dim}_{H}\left(F^{\alpha}\right) \leq \operatorname{dim}_{H}\left(G_{\alpha}\right) \leq \sup _{0 \leq \beta \leq \alpha} \operatorname{dim}_{H}\left(G_{\beta}\right) \leq \operatorname{dim}_{H}\left(S_{\alpha}\right), \tag{2.9}\\
\operatorname{dim}_{H}\left(G^{\alpha}\right) \geq \sup _{0 \leq \beta \leq \alpha} \operatorname{dim}_{H}\left(G_{\beta}^{\alpha}\right), \quad \operatorname{dim}_{H}\left(G_{\alpha}\right) \geq \sup _{\alpha \leq \beta \leq 1} \operatorname{dim}_{H}\left(G_{\alpha}^{\beta}\right), \tag{2.10}\\
\operatorname{dim}_{H}\left(G_{\alpha}^{\beta}\right) \leq \min \left\{\operatorname{dim}_{H}\left(G^{\beta}\right), \operatorname{dim}_{H}\left(G_{\alpha}\right)\right\} \tag{2.11}
\end{gather*}
$$

for every α and β in I.
We collect in the following theorem the known results about the dimension of set $F^{\alpha}, G_{\alpha}, G^{\alpha}, S_{\alpha}, S^{\alpha}, G_{\alpha}^{\beta}$.

Theorem 2.1. Let $\alpha, \beta \in I$ and let $F^{\alpha}, G_{\alpha}, G^{\alpha}, S_{\alpha}, S^{\alpha}, G_{\alpha}^{\beta}$ be defined by (2.6). Then
i) $\operatorname{dim}_{H}\left(G_{\alpha}^{\beta}\right)=\min \{d(\alpha), d(\beta)\}, \forall \alpha, \beta \in[0,1]$,
ii) $\operatorname{dim}_{H}\left(F^{\alpha}\right)=d(\alpha)$,
iii) $\operatorname{dim}_{H}\left(G_{\alpha}\right)=\operatorname{dim}_{H}\left(G^{\alpha}\right)=d(\alpha)$,
iv) $\operatorname{dim}_{H}\left(S_{\alpha}\right)=\left\{\begin{array}{ll}d(\alpha), & \text { if } \alpha \leq 1 / 2 \\ 1, & \text { if } \alpha \geq 1 / 2\end{array}, \operatorname{dim}_{H}\left(S^{\alpha}\right)=\left\{\begin{array}{ll}1, & \text { if } \alpha \leq 1 / 2 \\ d(\alpha), & \text { if } \alpha \geq 1 / 2\end{array} \quad \forall \alpha \in[0,1]\right.\right.$.

Proof. The result i) is the theorem 6 proved in [C].
We observe that ii) is a direct consequence of i). Statements iii) and iv) follow from theorem 14 and the related corollary at page 87 of [E].

Let us observe that the sets defined by (2.6) can have dimension strictly between 0 and 1.

Now let T be a infinite matrix lower triangular. Recall the definitions (2.6) and the definition of the set $T-F^{\alpha}$ given by (1.6). Then we can define in analogous way the sets $T-G^{\alpha}, T-G_{\alpha}, T-G_{\beta}^{\alpha}, T-S^{\alpha}, T-S_{\alpha}$.

Then it is easy to deduce the following proposition.
Proposition 2.2. If $T \in \mathcal{M}$ (the class defined by 1.8), then

$$
\begin{aligned}
\operatorname{dim}_{H}\left(T-F^{\alpha}\right) & =\operatorname{dim}_{H}\left(T-G_{\alpha}\right)=\operatorname{dim}_{H}\left(T-G^{\alpha}\right)=d(\alpha) \\
\operatorname{dim}_{H}\left(T-S_{\alpha}\right) & =\left\{\begin{array}{c}
d(\alpha), \text { if } \alpha \leq 1 / 2 \\
1, \text { if } \alpha \geq 1 / 2
\end{array}, \operatorname{dim}_{H}\left(T-S^{\alpha}\right)=\left\{\begin{array}{c}
1, \text { if } \alpha \leq 1 / 2 \\
d(\alpha), \text { if } \alpha \geq 1 / 2
\end{array} \quad \forall \alpha \in[0,1] .\right.\right.
\end{aligned}
$$

Proof. We have to recall the following inclusions which are consequence of definition of class \mathcal{M}

$$
\begin{aligned}
& F^{\alpha} \subseteq T-F^{\alpha} \subseteq T-G^{\alpha} \subseteq T-S^{\alpha} \subseteq S^{\alpha} \\
& F^{\alpha} \subseteq T-F^{\alpha} \subseteq T-G_{\alpha} \subseteq T-S_{\alpha} \subseteq S_{\alpha}
\end{aligned}
$$

Then we can apply theorem 2.1.
Remark 1. It is nontrivial to evaluate the Hausdorff dimension of $T-G_{\alpha}^{\beta}$.
In the paper [C2] it is proved that if $T \in \mathcal{M}$ then $\operatorname{dim}_{H}\left(T-G_{\alpha}^{\beta}\right)=\operatorname{dim}_{H}\left(G_{\alpha}^{\beta}\right)=$ $\min \{d(\alpha), d(\beta)\}$.

We now give a generalization of Cantor like subsets of $I=[0,1]$ (slightly more general than the one given in [C], definition 3).

Definition 2.3. Let us consider a sequence $\left\{k_{h}\right\}_{h},\left\{q_{h}\right\}_{h} \subseteq \mathbb{N}$ such that

$$
1 \leq k_{h}<q_{h} \quad \forall h \in \mathbb{N} .
$$

Furthermore, for every $h \in \mathbb{N}$ we consider a k_{h}-tuple of integers between 0 and $q_{h}-1$

$$
0 \leq p_{h}^{1}<p_{h}^{2}<\ldots<p_{h}^{k_{h}}<q_{h} .
$$

Let us denote

$$
P_{h}=\left(p_{h}^{1}, p_{h}^{2}, \ldots, p_{h}^{k_{h}}\right)
$$

Let us construct the following sequence of sets $\left\{C_{h}\right\}_{h}$

$$
\begin{gather*}
C_{1}=\cup_{i_{1}=1}^{k_{1}}\left[\frac{p_{1}^{i_{1}}}{q_{1}}+\frac{1}{q_{1}} I\right], \quad C_{2}=\cup_{i_{1}=1}^{k_{1}} \cup_{i_{2}=1}^{k_{2}}\left[\frac{p_{1}^{i_{1}}}{q_{1}}+\frac{1}{q_{1}}\left[\frac{p_{2}^{i_{2}}}{q_{2}}+\frac{1}{q_{2}} I\right]\right] \\
C_{h}=\cup_{i_{1}=1}^{k_{1}} \cup_{i_{2}=1}^{k_{2}} \ldots \cup_{i_{h}=1}^{k_{h}}\left[\frac{p_{1}^{i_{1}}}{q_{1}}+\frac{1}{q_{1}}\left[\frac{p_{2}^{i_{2}}}{q_{2}}+\frac{1}{q_{2}}\left[\cdots\left[\frac{p_{h}^{i_{h}}}{q_{h}}+\frac{1}{q_{h}} I\right] \ldots\right]\right]\right], \quad \ldots \tag{2.12}
\end{gather*}
$$

and define

$$
\begin{equation*}
C=\cap_{h=1}^{+\infty} C_{h} . \tag{2.13}
\end{equation*}
$$

In other words C is a set obtained in a way similar to the Cantor set.
Every C_{h} is an essential disjoint union of $k_{1} k_{2} \cdots k_{h}$ intervals of length $\left(q_{1} q_{2} \cdots q_{h}\right)^{-1}$; you obtain C_{h+1} from C_{h} performing the following steps:
a) divide I in q_{h+1} intervals;
b) choose k_{h+1} intervals among them according to (order) numbers $p_{h+1}^{1}, \ldots, p_{h+1}^{k_{h+1}}$;
c) scale down the set obtained in b) to the length of the intervals of C_{h};
d) replace every interval of C_{h} with the set obtained in c), translated by the left endpoint of the interval.

Let us first recall the following inequality proved in [C] (see lemma 2).
Lemma 2.4. Let m, n be natural numbers such that $n \geq 1,0 \leq m \leq n$;
let d the function defined by (1.4). Then

$$
n d\left(\frac{m}{n}\right)-\frac{1}{2} \log _{2}(n)-1 \leq \log _{2}\binom{n}{m} \leq n d\left(\frac{m}{n}\right) .
$$

The following lemma holds.
Lemma 2.5. Let C be a set constructed like in definition 2.3. Let moreover C^{\prime} be the set obtained by the same construction where $I=[0,1]$ is replaced by $I^{\prime}=[0,1[$.

Let $\gamma>0$ and assume that there exists $\lambda>0$ and $h_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
k_{1} k_{2} \cdots k_{h-1} \geq \lambda\left(q_{1} q_{2} \cdots q_{h}\right)^{\gamma} \quad \forall h \geq h_{0} . \tag{2.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathcal{H}^{\gamma}\left(C^{\prime}\right)=\mathcal{H}^{\gamma}(C)>0 \tag{2.15}
\end{equation*}
$$

Proof. The equality in (2.15) easily follows from the following inclusions

$$
C^{\prime} \subseteq C \subseteq C^{\prime} \cup \mathcal{D}
$$

where \mathcal{D} is the set of dyadic points.

Let us now prove the inequality in (2.15).
Let $\left\{B_{j}\right\}_{j}$ a countable covering of C with open balls such that diam $\left(B_{j}\right)<\frac{1}{q_{1} q_{2} \cdots q_{h_{0}}}$ for every $j \in \mathbb{N}$. By the compatcness of C we can assume that exists $\nu \in \mathbb{N}$ such that $\left\{B_{j}\right\}_{1 \leq j \leq \nu}$ is still a covering of C. For every $1 \leq j \leq \nu$ there exists $h_{j} \geq h_{0}$ such that

$$
\begin{equation*}
\frac{1}{q_{1} q_{2} \cdots q_{h_{j}}} \leq \operatorname{diam}\left(B_{j}\right)<\frac{1}{q_{1} q_{2} \cdots q_{h_{j-1}}} \tag{2.16}
\end{equation*}
$$

Let $m=\max \left\{h_{j}: 1 \leq j \leq \nu\right\}$ and observe that C is contained in C_{m} that in turn is the essential disjoint union of $k_{1} k_{2} \cdots k_{m}$ intervals of length $\left(q_{1} q_{2} \cdots q_{m}\right)^{-1}, C_{m}=C_{m}^{1} \cup C_{m}^{2} \cup$ $\ldots \cup C_{m}^{k_{1} k_{2} \cdots k_{m}}$.

Let us define

$$
\begin{equation*}
\mu_{j} \doteq \frac{\operatorname{card}\left\{i=1, \ldots, k_{1} k_{2} \cdots k_{m}: B_{j} \cap C_{m}^{i} \neq \emptyset\right\}}{k_{1} k_{2} \cdots k_{m}} \tag{2.17}
\end{equation*}
$$

Since for every $i=1, \ldots, k_{1} k_{2} \cdots k_{m}$ the interval C_{m}^{i} contains points of C and $\left\{B_{j}\right\}_{1 \leq j \leq \nu}$ is a covering of C we have

$$
\begin{equation*}
\sum_{j=1}^{\nu} \mu_{j} \geq 1 \tag{2.18}
\end{equation*}
$$

If we divide $[0,1]$ in $q_{1} q_{2} \cdots q_{h_{j-1}}$ intervals, B_{j} can have nonempty intersection with at most two such intervals, and each of these intervals contains $k_{h_{j}} k_{h_{j+1}} \cdots k_{m}$ intervals of C_{m}.

By (2.17), (2.14) and (2.16) we have

$$
\begin{equation*}
\mu_{j} \leq \frac{2 k_{h_{j}} k_{h_{j+1}} \cdots k_{m}}{k_{1} k_{2} \cdots k_{m}}=\frac{2}{k_{1} k_{2} \cdots k_{h_{j}-1}} \leq \frac{2}{\lambda}\left(\frac{1}{q_{1} q_{2} \cdots q_{h_{j}}}\right)^{\gamma} \leq \frac{2}{\lambda}\left(\operatorname{diam}\left(B_{j}\right)\right)^{\gamma} \tag{2.19}
\end{equation*}
$$

Then (2.19) and (2.18) give

$$
\sum_{j=1}^{\nu} \operatorname{diam}\left(B_{j}\right)^{\gamma} \geq \frac{\lambda}{2} \sum_{j=1}^{\nu} \mu_{j}=\frac{\lambda}{2}>0
$$

whence, taking into acoount definitions (2.1) and (2.2) the thesis follows.
The following result (see also lemma 12 in [C2]) is a particular case of lemma 2.5.
Lemma 2.6. Let $q \in \mathbb{N},\left(z_{h}\right)_{h} \subseteq \mathbb{N}$ a sequence such that $z_{h} \leq q, \forall h \in \mathbb{N}$,

$$
E_{h}=\left\{t \in[0,1): \sum_{i=1}^{q} x_{(k-1) q+i}(t)=z_{k}, \forall 1 \leq k \leq h\right\}
$$

and

$$
E=\cap_{h=1}^{\infty} E_{h} .
$$

Then
i) E_{h} can be obtained as in definition 2.3, with I replaced by $[0,1), q_{h}=2^{q}$ and $k_{h}=\binom{q}{z_{h}}$;
ii)

$$
\operatorname{dim}_{H}(E) \geq \liminf _{h} \frac{1}{h q} \sum_{j=1}^{h} \log _{2}\binom{q}{z_{j}} .
$$

3. The computation of the measure of level sets of Cesaro averages.

Proposition 3.1. Let $\alpha \in\left(\frac{1}{2}, 1\right)$. Let C^{\prime} be the set defined by

$$
\begin{equation*}
C^{\prime}=\left\{t \in[0,1]:\left[k\left(\alpha-\frac{6}{\sqrt{k}}\right)\right]<\sum_{j=\frac{(k-1) k}{2}+1}^{\frac{k(k+1)}{2}} x_{j}(t) \leq[k \alpha], \forall k \in \mathbb{N}\right\} \tag{3.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
C^{\prime} \subset F^{\alpha} \text { and } \mathcal{H}^{d(\alpha)}\left(C^{\prime}\right)>0 ; \tag{3.2}
\end{equation*}
$$

(3.2) can be obtained in a similar way if $\alpha \in\left(0, \frac{1}{2}\right)$.

Proof. Let us first verify that $C^{\prime} \subset F^{\alpha}$.
If $t \in C^{\prime}$ and $n \in \mathbb{N}$ then we have

$$
\begin{equation*}
y_{\frac{n(n+1)}{2}}(t)=\frac{2}{n(n+1)} \sum_{j=1}^{\frac{n(n+1)}{2}} x_{j}(t) \leq \frac{2 \alpha}{n(n+1)} \sum_{k=1}^{n} k=\alpha \tag{3.3}
\end{equation*}
$$

and
$y_{\frac{n(n+1)}{2}}(t)=\frac{2}{n(n+1)} \sum_{j=1}^{\frac{n(n+1)}{2}} x_{j}(t) \geq \frac{2 \alpha}{n(n+1)} \sum_{k=1}^{n}(k-6 \sqrt{k}) \geq \alpha-\frac{12 \alpha \sqrt{n}}{n(n+1)} \geq \alpha\left(1-\frac{12}{\sqrt{n}}\right)$.
Let now $k, n \in \mathbb{N}$ such that $\frac{n(n+1)}{2}<k \leq \frac{(n+1)(n+2)}{2}$. Then if $t \in C^{\prime}$ we have

$$
\begin{equation*}
y_{k}(t) \leq \frac{2}{(n+1)(n+2)}\left(\frac{n(n+1)}{2} y_{\frac{n(n+1)}{2}}(t)+(n+1)\right) \leq \frac{n \alpha+2}{(n+2)} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{k}(t) \geq \frac{n}{(n+2)} y_{\frac{n(n+1)}{2}}(t) \geq \frac{\alpha n}{(n+2)}\left(1-\frac{12}{\sqrt{n}}\right) . \tag{3.6}
\end{equation*}
$$

By (3.3), (3.4) (3.5) and (3.6) we easily get

$$
\begin{equation*}
\lim _{k} y_{k}(t)=\alpha \tag{3.7}
\end{equation*}
$$

In order to complete the proof we only have to prove that $\mathcal{H}^{d(\alpha)}\left(C^{\prime}\right)>0$.
If we consider the construction given by definition 2.3 where $I=[0,1]$ is replaced by $I^{\prime}=\left[0,1\left[\right.\right.$ and, for every $h \in \mathbb{N}, P_{h}$ given by

$$
\begin{equation*}
P_{h}=\left\{0 \leq m \leq 2^{h-1}:\left(\alpha-\frac{6}{\sqrt{h}}\right) \leq \sum_{j=1}^{h} x_{j}\left(\frac{m}{2^{h}}\right) \leq \alpha\right\} \tag{3.8}
\end{equation*}
$$

then it is easy to verify that

$$
\begin{gather*}
q_{h}=2^{h}, k_{h}=\sum_{m=\left[h\left(\alpha-\frac{6}{\sqrt{h}}\right)\right]+1}^{[h \alpha]}\binom{h}{m} \tag{3.9}\\
C_{h}^{\prime}=\left\{t \in[0,1]: k\left(\alpha-\frac{6}{\sqrt{k}}\right) \leq \sum_{j=\frac{(k-1) k}{2}+1}^{\frac{k(k+1)}{2}} x_{j}(t) \leq k \alpha, \forall k \leq h\right\} . \tag{3.10}
\end{gather*}
$$

and that $C^{\prime}=\cap_{h=1}^{+\infty} C_{h}^{\prime}$.
Let us now recall that by lemma 2.4 we have

$$
\begin{equation*}
\frac{2^{h d\left(\frac{m}{h}\right)}}{2 \sqrt{h}} \leq\binom{ h}{m} \leq 2^{h d\left(\frac{m}{h}\right)} \tag{3.11}
\end{equation*}
$$

Let h_{0} such that $[h \alpha]-\left[h\left(\alpha-\frac{6}{\sqrt{h}}\right)\right]>4 \sqrt{h}$ and $\left[h\left(\alpha-\frac{6}{\sqrt{h}}\right)\right]>\frac{1}{2} h$ for every $h \geq h_{0}$.

Then for every m in the sum in (3.9) we have $\frac{1}{2}<\frac{m}{h}<\alpha$ and $d\left(\frac{m}{h}\right)>d(\alpha)$. Then we get

$$
k_{h} \geq 4 \sqrt{h} \frac{2^{h d\left(\frac{m}{h}\right)}}{2 \sqrt{h}} \geq 2^{h d(\alpha)+1}>2^{(h+1) d(\alpha)}
$$

Then

$$
\begin{aligned}
k_{1} k_{2} \cdots k_{h-1} & \geq k_{h_{0}+1} k_{h_{0}+2} \cdots k_{h-1} \geq 2^{\left(h_{0}+2\right) d(\alpha)} 2^{\left(h_{0}+3\right) d(\alpha)} \cdots 2^{h d(\alpha)}= \\
& =\left(q_{h_{0}+2} q_{h_{0}+3} \cdots q_{h}\right)^{d(\alpha)} \geq\left(\frac{1}{q_{1} q_{2} \cdots q_{h_{0}+1}}\right)^{d(\alpha)}\left(q_{1} q_{2} \cdots q_{h}\right)^{d(\alpha)} .
\end{aligned}
$$

Then assumption (2.14) of Lemma 2.5 is satisfied and by this Lemma we obtain $\mathcal{H}^{d(\alpha)}\left(C^{\prime}\right)>0$ and the thesis in the case $\alpha \in\left(\frac{1}{2}, 1\right)$.

If $\alpha \in\left(0, \frac{1}{2}\right)$ we can perform a similar proof giving an analogous definition of C^{\prime}.
Corollary 3.2. Let $\alpha \in[0,1], \alpha \neq \frac{1}{2}$. Then $\mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)=+\infty$.

Proof. If $\alpha=0$ or $\alpha=1$ then $d(\alpha)=0$ and $\mathcal{H}^{d(\alpha)} \equiv \mathcal{H}^{0}$ is the counting measure. Since $\operatorname{card}\left(F^{0}\right)=\operatorname{card}\left(F^{1}\right)=+\infty$ the thesis follows in this case.

If $\alpha \in(0,1)$ by the equalities

$$
F^{\alpha}=\left(F^{\alpha} \cap\left[0, \frac{1}{2}\right)\right) \cup\left(F^{\alpha} \cap\left[\frac{1}{2}, 1\right)\right)=\left(\frac{1}{2} F^{\alpha}\right) \cup\left(\frac{1}{2}+\frac{1}{2} F^{\alpha}\right)
$$

and the properties of Hausdorff measure we deduce

$$
\begin{equation*}
\mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)=2^{1-d(\alpha)} \mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right) ; \tag{3.12}
\end{equation*}
$$

if $\alpha \neq \frac{1}{2}$ then $1-d(\alpha)>0$ and (3.12) gives $\mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)=0$ or $\mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)=+\infty$; by Proposition $3.1 \mathcal{H}^{d(\alpha)}\left(F^{\alpha}\right)>0$ and the thesis follows.

4. Some remarks about level sets of generalized averages.

In this section we consider a matrix T in the class \mathcal{M} and the generalized averages level sets T - F^{α} defined by (1.6).

We have the simple following proposition.
Proposition 4.1. $\mathcal{H}^{d(\alpha)}\left(T-F^{\alpha}\right)=+\infty ; \mathcal{H}^{d(\alpha)}\left(\left(T-F^{\alpha}\right) \backslash F^{\alpha}\right)=0$.
Proof. The thesis follows from the inclusions

$$
\begin{align*}
F^{\alpha} & \subset T-F^{\alpha} \tag{4.1}\\
\left(T-F^{\alpha}\right) \backslash F^{\alpha} & \subset\left(\cup\left\{S^{\lambda}: \lambda>\alpha, \lambda \in \mathbb{Q}\right\}\right) \cap\left(\cup\left\{S_{\mu}: \mu>\alpha, \mu \in \mathbb{Q}\right\}\right)
\end{align*}
$$

and the observation that at least one of the sets in the intersection in (4.1) has $\mathcal{H}^{d(\alpha)}$ measure equal to zero.

The equality $\mathcal{H}^{d(\alpha)}\left(\left(T-F^{\alpha}\right) \backslash F^{\alpha}\right)=0$ obviously implies $\operatorname{dim}_{H}\left(\left(T-F^{\alpha}\right) \backslash F^{\alpha}\right) \leq d(\alpha)$. Anyway this Hausdorff dimension can be equal to $d(\alpha)$, i.e. there exists a matrix $T_{0} \in \mathcal{M}$ such that

$$
\operatorname{dim}_{H}\left(\left(T_{0^{-}} F^{\alpha}\right) \backslash\left(F^{\alpha}\right)\right)=d(\alpha) .
$$

Let us first state the following lemmas that are useful in proof of theorem 4.4.
Lemma 4.2. Let $0<\alpha<1$ and $p_{1}, p_{2}, q \in \mathbb{N}$ such that $\frac{p_{1}}{q}<\alpha<\frac{p_{2}}{q}$. Then there exists a sequence $\left(s_{h}\right)_{h} \subseteq \mathbb{N}$ such that:

$$
\text { i) } s_{h} \in\left\{p_{1}, p_{2}\right\}, \forall h \in \mathbb{N}
$$

ii) $C=\left\{t \in[0,1]: \sum_{j=(h-1) q+1}^{h q} x_{j}(t)=s_{h}, \forall h \in \mathbb{N}\right\} \subseteq F^{\alpha}$.

Proof. Let us define the sequence $\left(s_{h}\right)_{h}$ used in lemma 2.6 as follows

$$
\begin{gather*}
s_{1}=p_{1}, s_{2}=p_{2} \\
s_{h+1}=\left\{\begin{array}{ll}
p_{1}, & \text { if } \frac{\sum_{j=1}^{h} s_{j}}{h q} \geq \alpha, \\
p_{2}, & \text { if } \frac{\sum_{j=1}^{h} s_{j}}{h q}<\alpha,
\end{array} \quad \text { if } h \geq 2 .\right. \tag{4.2}
\end{gather*}
$$

Let us take $t \in C$ and $n \geq 2 q+1$. If $s_{\left[\frac{n-1}{q}\right]+1}=p_{2}$ we have $t \in C$

$$
\begin{equation*}
y_{n}(t)=\frac{1}{n} \sum_{j=1}^{n} x_{j}(t)=\frac{1}{n}\left(\sum_{j=1}^{\left[\frac{n-1}{q}\right] q} x_{j}(t)+\sum_{j=\left[\frac{n-1}{q}\right] q+1}^{n} x_{j}(t)\right)<\frac{1}{n}\left(\alpha\left[\frac{n-1}{q}\right] q+p_{2}\right) . \tag{4.3}
\end{equation*}
$$

If $s_{\left[\frac{n-1}{q}\right]+1}=p_{1}$, let $\bar{h}=\max \left\{h<\left[\frac{n-1}{q}\right]: s_{h+1}=p_{2}\right\}$. Then if, $t \in C$, we have

$$
\begin{align*}
y_{n}(t) & =\frac{1}{n}\left(\sum_{j=1}^{\bar{h} q} x_{j}(t)+\sum_{j=\bar{h} q+1}^{(\bar{h}+1) q} x_{j}(t)+\sum_{j=(\bar{h}+1) q+1}^{n} x_{j}(t)\right)< \tag{4.4}\\
& <\frac{1}{n}\left(\alpha \bar{h} q+p_{2}+\left(\left[\frac{n-1}{q}\right]-\bar{h}\right) p_{1}\right)< \\
& <\frac{1}{n}\left(\alpha \bar{h} q+\left(\left[\frac{n-1}{q}\right]-\bar{h}\right) \alpha q+p_{2}\right)=\frac{1}{n}\left(\left[\frac{n-1}{q}\right] \alpha q+p_{2}\right)
\end{align*}
$$

By (4.3) and (4.4) we get

$$
\begin{equation*}
\underset{n}{\lim \sup } y_{n}(t) \leq \alpha . \tag{4.5}
\end{equation*}
$$

In a similar way can easily be proved that

$$
\begin{equation*}
\lim _{n} \inf y_{n}(t) \geq \alpha \tag{4.6}
\end{equation*}
$$

By (4.2), (4.5) and (4.6) we obtain the thesis.
Lemma 4.3. Let us define the functions

$$
\begin{aligned}
& \Phi(j)=2^{\left[\log _{2} j\right]}+j-1, \\
& \Psi(j)=\left(\Phi\left(\left[\frac{j-1}{q}\right]+1\right)-\left[\frac{j-1}{q}\right]-1\right) q+j, \quad j \in \mathbb{N} .
\end{aligned}
$$

Then Φ and Ψ are strictly increasing; moreover

$$
M=\Phi(\mathbb{N})=\left\{m \in \mathbb{N}: \exists k \in \mathbb{N} \text { such that } 2^{k}-1 \leq m \leq 2^{k-1} 3-2\right\}
$$

$$
\begin{aligned}
S & =\Psi(\mathbb{N})=\{j \in \mathbb{N}: \exists m \in M \text { such that }(m-1) q+1 \leq j \leq m q\}= \\
& =\left\{j \in \mathbb{N}: \exists k \in \mathbb{N} \text { such that }\left(2^{k+1}-2\right) q+1 \leq j \leq\left(2^{k} 3-2\right) q\right\}
\end{aligned}
$$

and the inverse functions are given by

$$
\begin{aligned}
& \Phi^{-1}(h)=-2^{\left[\log _{2}(h+1)\right]-1}+h+1, \quad h \in M, \\
& \Psi^{-1}(h)=\left(\Phi^{-1}\left(\left[\frac{h-1}{q}\right]+1\right)-\left[\frac{h-1}{q}\right]-1\right) q+h, \quad h \in S .
\end{aligned}
$$

We eventually have that if $h \in S$ and $h \rightarrow+\infty$, then

$$
\begin{equation*}
\frac{\Psi^{-1}(h)}{h} \rightarrow \frac{1}{2} . \tag{4.7}
\end{equation*}
$$

Proof. The proof is elementary. In order to get (4.7), we just observe that $\lim _{j \rightarrow+\infty} \frac{\Phi(j)}{j}=$ $\lim _{j \rightarrow+\infty} \frac{\Psi(j)}{j}=2$.

Theorem 4.4. There exists $T_{0} \in \mathcal{M}$ such that

$$
\begin{equation*}
\operatorname{dim}_{H}\left(\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}\right)=d(\alpha) \quad \forall \alpha \in[0,1] . \tag{4.8}
\end{equation*}
$$

Proof. Let M and S the sets introduced in lemma 4.3 and let us pose

$$
k_{n}=|S \cap\{1, \ldots, n\}| .
$$

Let us pose

$$
a_{n k}=\frac{1}{k_{n}} \chi_{S \cap\{1, \ldots, n\}} .
$$

If we pose $\widetilde{T}_{0}=\left(a_{n k}\right)_{n, k}$, the matrix $T_{0}=\widetilde{T}_{0} \circ C_{1}$ defines a matrix in \mathcal{M} because it satisfies condition 2 of theorem 1.8. We claim that T_{0} satisfies (4.8).

If $\alpha=0$ or $\alpha=1$, the thesis is obvious. Let $0<\alpha<1$. We observe that for every $\varepsilon>0$ there exist $p_{1}, p_{2}, q \in \mathbb{N}$ such that

$$
\begin{equation*}
0<\alpha-\varepsilon<\frac{p_{1}}{q}<\alpha<\frac{p_{2}}{q}<\alpha+\varepsilon<1 . \tag{4.9}
\end{equation*}
$$

and that $\frac{1}{2} \frac{\log _{2} q}{q}+\frac{1}{q}<\varepsilon$.
We can write

$$
\begin{equation*}
\alpha=\lambda \frac{p_{1}}{q}+(1-\lambda) \frac{p_{2}}{q} \tag{4.10}
\end{equation*}
$$

and assume, without loss of generality, that $\left|\alpha-\frac{p_{1}}{q}\right|<\left|\alpha-\frac{p_{2}}{q}\right|$ (and therefore $\lambda>\frac{1}{2}$).
Let us prove that it is possible to construct a set E as in lemma 2.6 such that

$$
\begin{align*}
& \text { i) } z_{k} \in\left\{p_{1}, p_{2}\right\}, \quad \forall k \in \mathbb{N} \tag{4.11}\\
& \text { ii) } E \subseteq\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}
\end{align*}
$$

By lemma 2.6 and lemma 2.4, we have

$$
\begin{align*}
\operatorname{dim}_{H}(E) & \geq \min \left\{\frac{1}{q} \log _{2}\binom{q}{p_{1}}, \frac{1}{q} \log _{2}\binom{q}{p_{2}}\right\}> \tag{4.12}\\
& >\min \{d(\alpha-\varepsilon), d(\alpha+\varepsilon)\}-\varepsilon
\end{align*}
$$

Since $E \subseteq\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}$, by continuity of d and the arbitrarness of ε, we obtain

$$
\operatorname{dim}_{H}\left(\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha}\right) \geq d(\alpha)
$$

Let C and $\left(s_{h}\right)_{h}$ given by lemma 4.2, let us define the sequence $\left(m_{h}\right)_{h}$ by

$$
\begin{equation*}
m_{h} \stackrel{\text { def. }}{=} \mid\left\{j \in \mathbb{N}: 2^{h-1} \leq j \leq 2^{h}-1 \text { and } s_{j}=p_{2}\right\} \mid, h \in \mathbb{N}, \tag{4.13}
\end{equation*}
$$

and the sequence $\left(s_{h}\right)_{h}$ as follows

$$
z_{m}=\left\{\begin{array}{l}
s_{\Phi-1}(m), \text { if } m \in M, \tag{4.14}\\
p_{1}, \quad \text { if } \exists h \in \mathbb{N}: 2^{h-1} 3-1 \leq m \leq 2^{h-1} 3-2+m_{h} \\
p_{2}, \quad \text { if } \exists h \in \mathbb{N}: 2^{h-1} 3-1+m_{h} \leq m \leq 2^{h+1}-2
\end{array} .\right.
$$

(since $m_{h} \leq 2^{h-1}, \forall h \in \mathbb{N}, 2^{h-1} 3-1 \leq 2^{h-1} 3-2+m_{h} \leq 2^{h+1}-2$).
Let E the set constructed in lemma 2.6 using the sequence $\left(z_{h}\right)_{h}$. Then the i) of (4.11) is obviously satisfied and we have just to prove ii) of (4.11), that is

$$
\begin{equation*}
E \subseteq\left(T_{0}-F^{\alpha}\right) \backslash F^{\alpha} . \tag{4.15}
\end{equation*}
$$

Let $t \in E$ and observe that

$$
\begin{equation*}
\left(T_{0} x\right)_{n}(t)=\sum_{k=1}^{n} a_{n k} y_{k}(t)=\frac{1}{k_{n}} \sum_{k \in S \cap\{1, \ldots, n\}} y_{k}(t) . \tag{4.16}
\end{equation*}
$$

By (4.16), to obtain (4.15) is sufficient to prove that if $t \in E$ the sequence $\left(y_{k}(t)\right)_{k}$ does not converge, while the subsequence $\left(y_{k}(t)\right)_{k \in S}$ converges to α.

Let $v \in E$ and let us define t by

$$
\begin{equation*}
x_{j}(t)=x_{\Psi(j)}(v), \quad \forall j \in \mathbb{N}, \tag{4.17}
\end{equation*}
$$

where Ψ is given in lemma 4.3.
By (4.17) it follows

$$
\begin{equation*}
\sum_{j=j_{1}}^{j_{2}} x_{j}(t)=\sum_{j \in S,}^{\Psi\left(j_{2}\right)} x_{j=\Psi\left(j_{1}\right)}(v)=\sum_{j \in S, j=\Psi\left(j_{1}\right)}^{\Psi\left(j_{2}+1\right)-1} x_{j}(v), \forall j_{1}, j_{2} \in \mathbb{N} . \tag{4.18}
\end{equation*}
$$

In particular, since $\Psi((h-1) q+1)=(\Phi(h)-1) q+1, \Psi(h q)=\Phi(h) q$ and $\Phi(h) \in M$

$$
\begin{equation*}
\sum_{j=(h-1) q+1}^{h q} x_{j}(t)=\sum_{j=(\Phi(h)-1) q+1}^{\Phi(h) q} x_{j}(v)=z_{\Phi(h)}=s_{h}, \quad \forall h \in \mathbb{N} \tag{4.19}
\end{equation*}
$$

therefore $t \in C$.
Moreover, since $\Psi\left(\left(2^{k}-1\right) q+1\right)=\left(2^{k+1}-2\right) q+1$

$$
\begin{equation*}
\sum_{j=1}^{\left(2^{k}-1\right) q} x_{j}(t)=\sum_{j \in S, j=1}^{\left(2^{k+1}-2\right) q} x_{j}(v), \quad \forall k \in \mathbb{N} \tag{4.20}
\end{equation*}
$$

By (4.14) we also have

$$
\begin{equation*}
\sum_{j \in S, j=1}^{\left(2^{k}-2\right) q} x_{j}(v)=\sum_{j \notin S, j=1}^{\left(2^{k}-2\right) q} x_{j}(v), \quad \forall k \in \mathbb{N} \tag{4.21}
\end{equation*}
$$

Let now $h \in S$, set

$$
k_{h}=\max \left\{k \in \mathbb{N}:\left(2^{k}-2\right) q+1 \leq h\right\}=\left[\log _{2}\left(2+\frac{h-1}{q}\right)\right]
$$

and observe that

$$
\begin{equation*}
h-\Psi^{-1}(h)=\left(2^{k_{h}-1}-1\right) q \quad \text { and } \quad \Psi\left(\left(2^{k_{h}-1}-1\right) q+1\right)=\left(2^{k_{h}}-2\right) q+1 ; \tag{4.22}
\end{equation*}
$$

then by $(4.19) \div(4.22)$ we have

$$
\begin{aligned}
\sum_{j=1}^{h} x_{j}(v) & =\sum_{j=1}^{\left(2^{\left.k_{h}-2\right) q}\right.} x_{j}(v)+\sum_{j=\left(2^{k_{h}-2}\right) q+1}^{h} x_{j}(v)= \\
& =\sum_{j \in S, j=1}^{\left(2^{\left.k_{h}-2\right) q}\right.} x_{j}(v)+\sum_{j \notin S, j=1}^{\left(2^{\left.k_{h}-2\right) q}\right.} x_{j}(v)+\sum_{j=\left(2^{k_{h}-2}\right) q+1}^{h} x_{j}(v)= \\
& =2 \sum_{j=1}^{\left(2^{k_{h}-1}-1\right) q} x_{j}(t)+\sum_{j=\left(2^{k_{h}-1}-1\right) q+1}^{\Psi^{-1}(h)} x_{j}(t)=\sum_{j=1}^{\Psi^{-1}(h)} x_{j}(t)+\sum_{j=1}^{h-\Psi^{-1}(h)} x_{j}(t) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
y_{h}(v) & =\frac{1}{h}\left(\sum_{j=1}^{\Psi^{-1}(h)} x_{j}(t)+\sum_{j=1}^{h-\Psi^{-1}(h)} x_{j}(t)\right)= \\
& =\frac{1}{h}\left(\Psi^{-1}(h) y_{\Psi^{-1}(h)}(t)+\left(h-\Psi^{-1}(h)\right) y_{h-\Psi^{-1}(h)}(t)\right), \quad h \in S .
\end{aligned}
$$

then, since $t \in C$, by lemma 4.2 and (4.7) $y_{h}(v)$ tends to α, as $h \rightarrow+\infty$ in S.
Let $v \in E$ and $t \in C$ be defined by (4.17). By (4.20) we have

$$
\begin{equation*}
y_{\left(2^{k+1}-2\right) q}(v)=y_{\left(2^{k}-1\right) q}(t), \forall k \in \mathbb{N} . \tag{4.23}
\end{equation*}
$$

Let us observe that, since $y_{h}(t) \xrightarrow{h} \alpha$

$$
\begin{equation*}
\frac{\left(2^{k}-1\right) q}{2^{k-1} q} y_{\left(2^{k}-1\right) q}(t)-\frac{\left(2^{k-1}-1\right) q}{2^{k-1} q} y_{\left(2^{k-1}-1\right) q}(t) \rightarrow \alpha, \text { as } k \rightarrow+\infty . \tag{4.24}
\end{equation*}
$$

But we have

$$
\begin{align*}
& =\frac{y_{\left(2^{k}-1\right) q}(t)\left(2^{k}-1\right) q-y_{\left(2^{k-1}-1\right) q}(t)\left(2^{k-1}-1\right) q}{2^{k-1} q}= \tag{4.25}\\
& \quad=\frac{m_{k} p_{1}+\left(2^{k-1}-m_{k}\right) p_{2}}{2^{k-1} q}=\frac{m_{k}}{2^{k-1}} \frac{p_{1}}{q}+\left(1-\frac{m_{k}}{2^{k-1}}\right) \frac{p_{2}}{q},
\end{align*}
$$

where m_{k} is defined by (4.13).
Then by (4.10), (4.24) and (4.25) we have that

$$
\begin{equation*}
\frac{m_{k}}{2^{k-1}} \rightarrow \lambda>\frac{1}{2} \tag{4.26}
\end{equation*}
$$

Therefore if k is large $m_{k}>2^{k-2}$ and by (4.7)

$$
\text { if }\left(2^{k-1} 3-1\right) \leq m \leq 2^{k-1} 3-2+2^{k-2}, \quad \text { then } s_{m}=p_{1} .
$$

Let us take $n_{k}=\left(2^{k-1} 3+2^{k-2}-2\right) q$, we have by (4.23) and (4.26)

$$
\begin{aligned}
y_{n_{k}}(v) & =\frac{1}{n_{k}} \sum_{j=1}^{n_{k}} x_{j}(v)= \\
& =\frac{1}{n_{k}}\left(q\left(2^{k}-2\right) y_{\left(2^{k}-2\right) q}(v)+\sum_{j=\left(2^{k}-2\right) q+1}^{\left(2^{k-1} 3-2\right) q} x_{j}(v)+\sum_{j=\left(2^{k-1} 3-2\right) q+1}^{n_{k}} x_{j}(v)\right)= \\
& =\frac{1}{n_{k}}\left(2 q\left(2^{k-1}-1\right) y_{\left(2^{k-1}-1\right) q}(t)+\left(m_{k} p_{1}+\left(2^{k-1}-m_{k}\right) p_{2}\right)+2^{k-2} p_{1}\right)
\end{aligned}
$$

that, as $k \rightarrow+\infty$, tends to

$$
\frac{4}{7} \alpha+\frac{2}{7}\left(\lambda \frac{p_{1}}{q}+(1-\lambda) \frac{p_{2}}{q}\right)+\frac{1}{7} \frac{p_{1}}{q}=\frac{6}{7} \alpha+\frac{1}{7} \frac{p_{1}}{q} \neq \alpha
$$

So (4.11) is fully satisfied by E. Therefore by (4.11), (4.12) and the arbitrarness of $\varepsilon>0$, the thesis follows.

References

[Bs] Besicovitch A.S., On the sum of digits of real numbers represented in the dyadic system (On sets of fractional dimensions II), Math. Annalen 110 (1934), 321-330.
[B] Boos J., Classical and Modern Methods in Summability, Oxford Math. Monographs, Oxford University Press, 2000.
[C] Carbone L., Cardone G., Corbo Esposito A., Binary digits expansion of numbers: Hausdorff dimensions of intersections of level sets of averages' upper and lower limits, to appear on Scientiae Mathematicae Japonicae
[C2] Cardone G., Corbo Esposito A., Faella L., Hausdorff dimension for level sets of upper and lower limits of generalized averages of binary digits, preprint.
[E] Eggleston H.G., Sets of Fractional Dimensions which occur in Some Problems of Number Theory; Proc. of the London Math. Soc., $2^{\text {nd }}$ series, vol. 54, 1951-52, pp. 42-93.
[F] Falconer K., Fractal Geometry, Mathematical Foundations and Applications, Wiley, New York, 1990.
[Ha] Hardy G.H., Divergent Series, Oxford Univ. Press, 1949.
[Ly] Lyons R., Fourier-Stieltjes coefficients and asymptotic distribution modulo 1, Ann. of Math., 122, 155-170.
[S] Shiryaev A.N., Probability, Springer Verlag, 1984.

[^0]: *Seconda Università di Napoli- Dipartimento di Ingegneria Civile - Via Roma, 29-81031 Aversa (CE), Italy - email: giuseppe.cardone@unina2.it
 ${ }^{\dagger}$ Università di Cassino - Dipartimento di Automazione, Elettromagnetismo, Ingegneria dell'Informazione e Matematica Industriale - Via G.Di Biasio, 43-03043 Cassino (FR), Italy -e-mail: corbo@unicas.it
 ¥Università di Napoli "Federico II" - Dipartimento di Matematica e Applicazioni "R.Caccioppoli" Compl. M.S.Angelo, Via Cintia - 80126 Napoli, Italy - email: lufaella@unina.it.

