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Abstract: River vegetation radically modifies the flow field and turbulence characteristics. To analyze
the vegetation effects on the flow, most scientific studies are based on laboratory tests or numerical
simulations with vegetation stems on smooth beds. Nevertheless, in this manner, the effects of bed
sediments are neglected. The aim of this paper is to experimentally investigate the effects of bed
sediments in a vegetated channel and, in consideration of that, comparative experiments of velocity
measures, performed with an Acoustic Doppler Velocimeter (ADV) profiler, were carried out in
a laboratory flume with different uniform bed sediment sizes and the same pattern of randomly
arranged emergent rigid vegetation. To better comprehend the time-averaged flow conditions, the
time-averaged velocity was explored. Subsequently, the analysis was focused on the energetic
characteristics of the flow field with the determination of the Turbulent Kinetic Energy (TKE) and its
components, as well as of the energy spectra of the velocity components immediately downstream of
a vegetation element. The results show that both the vegetation and bed roughness surface deeply
affect the turbulence characteristics. Furthermore, it was revealed that the roughness influence
becomes predominant as the grain size becomes larger.

Keywords: rigid vegetation; bed roughness; turbulent flow; Turbulent Kinetic Energy (TKE); energy spectra

1. Introduction

Vegetation exerts important effects on hydraulic resistance, turbulent structures, mix-
ing processes and sediment transport in rivers [1–5]. For this reason, a large amount of
both experimental and numerical researches has been devoted to the study of the impacts
of vegetation on the flow characteristics, influencing mass and momentum exchange across
the river section, together with geomorphology, water quality and aquatic biodiversity
(e.g., [6,7]). The flow through emergent rigid vegetation has been widely investigated,
neglecting impacts introduced by natural vegetation usually observed in many fluvial
ecosystems [8]. In order to understand the flow evolution in the presence of emergent and
submerged vegetation, which is founded on different specific aspects of the canopy flow
(mean momentum balance, turbulence budget, exchange dynamics), several works have
focused on flexible vegetation (e.g., [9–11]).

Maji et al. [12] compiled a state-of-the-art study that included works on flow dynamics
and interactions between flow and vegetation. Most of them aimed only at the study of the
flow–vegetation interactions on smooth beds (e.g., [1,2,13–21]). Nevertheless, special inter-
est should be devoted to works on vegetated flows with rough beds, since the interactions
between fluid, vegetation and bed sediment allow for reaching better knowledge of the
turbulence characteristics in real rivers, which have a crucial role in sediment transport. In
fact, with respect to a smooth bed, in the case of a rough bed a pronounced velocity spike
occurs near the rough surface and immediately downstream of a stem [22]. In addition, a
rough bed induces a decrease in the temporal-averaged streamwise velocity and an increase
in the Turbulent Kinetic Energy (TKE) [23]. In rough conditions, the streamwise velocity
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also has a quasi-constant distribution in the layer where the flow is principally controlled
by the vegetation [16]. Then, approaching the bed, it reduces logarithmically from the
maximum constant magnitude toward zero. Moreover, the Reynolds shear stresses present
very small values, practically vanishing in the region dominated by the vegetation [16,22].

Very recently, Penna et al. [24,25] studied the flow field around a rigid cylinder in
three different rough bed conditions with a uniform pattern of stems that are regularly
aligned. Penna et al. [24] analyzed the velocity, shear stress distributions, TKE and the
energy spectra, showing that, in the region near the free surface, the flow is deeply affected
by the stems. Moving toward the bed surface, the flow is influenced by both the vegetation
and bed roughness effects. Penna et al. [25], using the so-called Anisotropy Invariant Maps
(AIMs), investigated for the first time the turbulence anisotropy through uniform emergent
rigid vegetation on rough beds. The study of the AIMs indicated that, approaching the bed
surface, the combined impact of vegetation and bed roughness affects the turbulence evo-
lution from the quasi-three-dimensional isotropy to axisymmetric anisotropy. This proved
that, as the influence of the bed roughness decreases, the turbulence tends to isotropy.

Starting from the results of Penna et al. [24,25] in the case of a uniform vegetation
pattern, the aim of this work is to study the impact of bed roughness and random vegetation
pattern distribution on turbulence. In particular, in order to describe the flow domain,
the time-averaged approaching flow velocity field, TKE, normal shear stresses and energy
spectra of the velocity components were computed in an area centered on a single stem.

The paper is organized as follows: Section 2 describes the laboratory and the method-
ology applied for the data analysis; Section 3 illustrates and discusses the results; Section 4
reports the conclusions of the present work.

2. Laboratory Experiments and Methodology

The experimental study was conducted in a 9.6-m long, 0.485-m wide and 0.5-m deep
tilting flume at the Laboratorio “Grandi Modelli Idraulici” (GMI), Università della Calabria, Italy.
In order to reduce the influence of the pump on the turbulence characteristics of the flow,
a stilling tank, an uphill slipway and honeycombs (10 mm in diameter) were placed at
the inlet of the channel. At the outlet, a tank equipped with a calibrated Thomson weir to
measure the flow discharge Q and with a tailgate to regulate the water depth h of the flow
were placed (Figure 1).
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Figure 1. Schematic of the experimental facility (dimensions are expressed in meters).

The experiments were carried out with a flow depth h ≈ 0.12 m, measured 50 cm
upstream of the vegetation array (i.e., in undisturbed flow condition) by a point gauge
with a decimal Vernier having an accuracy of ±0.1 mm and a flow discharge Q equal to
19.73 L/s (measured with a Thomson weir). The approaching cross-section average flow
velocity U = Q/(Bh) was, hence, equal to 0.30 m s−1, where B was the flume width. The
longitudinal bottom slope of the flume, S, was fixed at 1.5‰ using a hydraulic jack.

The rigid vegetation was simulated with vertical, wooden and circular cylinders. The
cylinder height and diameter were hc = 0.40 m and d = 0.02 m, respectively. The stems were
implanted into a 1.96-m long, 0.485-m wide and 0.015-m thick Plexiglas panel fixed to the
channel bottom. A total of 68 cylinders were randomly arranged in the flume (Figure 2a).
All the experiments were carried out in conditions of emergent vegetation. The frontal
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area per volume was a = nd = 1.4 m−1, where n = 71 m−2 was the number of cylinders per
bed area, while the solid volume fraction occupied by the canopy els per bed area, while
the solid volume fraction occupied by the canopy elements was φ = πad/4 = nπd24 = 0.02,
which is consistent with typical laboratory studies with vegetation [17,26,27]. Following
Nepf [28], this vegetation distribution can be classified as dense. Focus was given to the
evolution of the turbulence characteristics in a study area selected around a single stem
(Figure 2b).
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Figure 2. (a) Sketch of the cylinder array in the laboratory flume (dimensions are in cm); (b) the
measurement verticals within the study area. Here, Bs and Ls are the width and length of the study
area, respectively.

Three different types of bed roughness were simulated, employing very coarse sand
(d50 = 1.53 mm), fine gravel (d50 = 6.49 mm) and coarse gravel (d50 = 17.98 mm), respectively
(Figure 3). The grain size distributions were relatively uniform, i.e., as reported by Dey and
Sarkar [29], with a geometric standard deviation σg = (d84/d16)0.5 < 1.5, where d16 and d84
are the sediment sizes for which 16% and 84% by weight of sediment is finer, respectively.
At the beginning of each run, the flume was filled in with the sediments, which were
successively screeded to make the longitudinal bed slope equal to that of the flume bottom.
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The experimental conditions used in this research do not reproduce a specific situation of
a real river. Nevertheless, they could represent a new dataset that, for instance, may be used for
the calibration of advanced numerical models. In fact, as is known, vegetation, bed roughness
or man-made structures acting as an obstruction for the flow generate turbulence and affect the
entire flow velocity distribution, modifying the turbulence behavior [30,31].

In Table 1, the hydraulic conditions of the experimental study are reported. Along
with the aforementioned characteristics, in Table 1 the following quantities are listed: the
shear velocity (u*), the critical velocity for the inception of sediment motion (Uc), the mean
water temperature (T) measured with the Acoustic Doppler Velocimeter (ADV) integrated
thermometer (having an accuracy of ±0.1 ◦C), the water kinematic viscosity (ν), computed
as a function of the water temperature [32], the flow Froude number Fr [=U/(gh)0.5], the
flow Reynolds number Re (=Uh/ν), the shear Reynolds number Re* (=u*ε/ν, where ε is the
Nikuradse equivalent sand roughness, equal to about 2d50) and the Reynolds number of the
vegetation stems Red (=Ud/ν). In accordance with Manes et al. [33] and Dey and Das [34],
the shear velocity used to scale the flow statistics was determined as u* = (τ*/ρ) 0.5, where
τ* is the total stress acting at the roughness tops. This can be obtained by extending linearly
the distribution of the turbulent shear stress captured 50 cm upstream of the vegetation
pattern (i.e., in correspondence with the undisturbed flow condition) from the region above
the roughness elements to their tops. Thus, the shear velocity was evaluated at the sediment

crest level as
(
−u′w′

)0.5
, where u′ and w′ are the fluctuations of the temporal velocity

signal in the streamwise and vertical directions, respectively, and the symbol · indicates
the time averaging operation. The critical velocity for the inception of sediment motion
Uc was established 50 cm upstream of the vegetation array through the well-known Neill
formula [35], as follows:

Uc =

√
2.5
(

h
d50

)0.2
g∆d50 (1)

where g is the gravitational acceleration, ∆ = (ρs − ρ)/ρ is the relative submerged grain
density, ρs is the grain density and ρ is the fluid density. All the experiments were per-
formed in clear-water condition (U < Uc), which was also verified from the direct observa-
tion of the flow.

Table 1. Hydraulic conditions of the experimental study for the approaching flow.

Parameter (Units) Run 1 Run 2 Run 3

d50 (mm) 1.53 6.49 17.98
h (m) 0.12 0.12 0.12

Q (l/s) 19.73 19.73 19.73
U (m/s) 0.34 0.34 0.34
u* (m/s) 0.021 0.022 0.028
Uc (m/s) 0.39 0.69 1.04

S (‰) 1.50 1.50 1.50
T (◦C) 16.67 18.06 18.70

ν (m 2/s) 1.09 × 10−6 1.05 × 10−6 1.03 × 10−6

Fr 0.31 0.31 0.31
Re 37,431 38,857 39,612
Re* 59 272 978
Red 6239 6192 6602

An ADV profiler with down-looking probe, four beams (Nortek Vectrino) and an
automatic movement system (the Traverse System by HR Wallingford Ltd., Oxfordshire
UK) was used to capture the instantaneous velocity components (streamwise u, spanwise
v and vertical w) with an accuracy of ±5% (assessed in previous works). The instrument
sampling frequency was 100 Hz, and the duration of a single sampling was 300 s for a total
number of samples of 30,000 which, as reported by [34,36,37], is adequate for determining
accurate turbulence statistics. The sampling volume was a 1 mm long cylinder with a
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diameter of 6 mm. The ADV receivers pointed at 50 mm below their own transmitter.
Hence, the measurements were not performed near the free surface flow zone (i.e., 50 mm
below the free surface). The spatial coordinates of the Traverse System had an accuracy of
±0.1 mm. Prior to the analysis of the ADV data, it was necessary to proceed with the spike
detection. Firstly, the ADV raw data were prefiltered, discarding the values with correlation
(COR) lower than 70% and a signal-to-noise ratio (SNR) lower than 15 dB [34]; secondly, the
contaminated velocity records were cleaned using the phase-space thresholding method
and each spike was replaced with a cubic polynomial through 12 points on either side of
itself [38]. The de-spiking method resulted in a rejection of less than 5% of the original
velocity time series.

For all the runs, 44 vertical profiles were captured, as shown in Figure 2b. The vertical
spatial resolutions were 3 mm for z ≤ 15 mm and 5 mm above, where z is the vertical axis
starting from the maximum crest level in the study area.

To describe the undisturbed flow 50 cm upstream of the vegetation array, the velocity
vertical distribution was captured at the centerline of the laboratory flume during each
run. In Figure 4a, the undisturbed profiles of the dimensionless time-averaged velocity
in the streamwise direction ûUP (= uUP/u∗, where u is the time-averaged velocity in the
same direction) for the three experimental runs are reported. The vertical axis ẑ was made
dimensionless by dividing the elevation z by the local water level that, for the undisturbed
distributions, was equal to the flow depth h reported in Table 1. As the elevation z increases,
the streamwise velocities u increase; instead, near the sediment grains, in the so-called
roughness sublayer, they tend to zero owing to the bed roughness (this is typical in the
open-channel flow condition) [39]. In particular, for Run 3, owing to higher roughness
dimension, the streamwise velocity profile tended rapidly to zero starting from elevation
z = 0.1h [40]. In addition, û in the three runs shows different values at a fixed ẑ. This
happens owing to the different bed roughness conditions that lead to an increase of the
shear velocity as d50 increases and, consequently, to a decrease in û. The distributions of the
dimensionless turbulent shear stresses τ̂uw (= −u′w′/u2

∗) and of the dimensionless viscous
shear stresses τ̂ν [= ν(du/dz)/u2

∗] along ẑ are represented in Figure 4b,c, respectively.
In particular, above the roughness surface, the prevalence of the Reynolds shear stresses
can be noted, while the viscous shear stresses are practically negligible as ẑ increases.
The viscous shear stresses achieve their maximum values near the grain crests for each
experimental run. Conversely, the turbulent shear stresses reach the peak above the crest
level and then they reduce as the vertical distance increases.
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3. Results and Discussion
3.1. Time-Averaged Flow

To investigate the time-averaged flow velocity field with respect to the approaching
flow velocity in the spatial flow domain (i.e., in the upstream plane section identified with
letters from LE to RE in the study area), Figure 5 shows the colormaps of the dimensionless
time-averaged accelerated and decelerated flow fields upstream of the investigated stem in
all the runs in the plane ŷ-ẑ. The abscissa, represented by ŷ, was made dimensionless by
dividing y by the study area width (Bs = 12 cm). The time-averaged flow is accelerated if
(ûUP − û) < 0 (blue values in the colormaps) and decelerated if (ûUP − û) > 0 (red values
in the colormaps), where û is the dimensionless time-averaged streamwise velocity.
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A strong spanwise variation of û can be noted with respect to the approaching flow
profile. Specifically, in correspondence with the cylinder (0.42Bs < y < 0.58Bs), in all
the runs the flow is decelerated. This probably occurs owing to the incidence of both the
analyzed stem and another stem immediately upstream of the former (Figure 2a). An
examination of the contours also reveals a decelerated flow zone on the left side of the
cylinder (0< y < 0.2Bs) in all the experiments. This happens owing to the presence of
another stem immediately upstream of the study area (Figure 2a). Instead, the flow fields
are accelerated both on the right side of the analyzed cylinder and, to a lesser extent, on the
left one. Moving toward the bed, it is evident that the flow velocity is also influenced by
the bed roughness. As d50 decreases, this zone becomes strongly accelerated. Conversely,
as d50 increases, in the near-bed layer, the flow field results to be influenced by the bed
roughness and much more by the vegetation, with a minor acceleration intensity.

A similar behavior can be appreciated in the downstream flow domain in Figure 6 (i.e.,
in the downstream plane section identified with letters from LV to RV in the study area).
In particular, immediately downstream of the cylinder (0.42Bs < y < 0.58Bs), the flow is
decelerated in all the runs. Conversely, Run 2 shows an accelerated flow both on the right
and on the left sides of the cylinder, while Run 1 and Run 3 show an accelerated flow mostly
on the right side of the cylinder. A sensible difference is clear in the values of ûUP − û
immediately upstream (vertical A; y = 0.5Bs) and downstream (vertical W; y = 0.5Bs) of
the cylinder. Specifically, the time-averaged streamwise velocity u is reduced by about 30%
and 50% with respect to the time-averaged streamwise velocity of the undisturbed profile,
uUP, at the verticals A and W, respectively, in all the runs. It is possible to assure that a
major deceleration is obtained beyond a cylinder. In fact, as observed in the downstream
section at y = 0.5Bs (vertical W) with respect to the upstream section at y = 0.5 Bs (vertical A),
the velocity reduction is practically due to the vicinity of the studied stem (6 cm upstream).
On the contrary, a minor deceleration is visible at vertical A, although it is between two
cylinders (an upstream stem at 9 cm and a downstream stem at 6 cm).
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Figure 6. Contours of the dimensionless time-averaged accelerated (ûUP − û) < 0 and decelerated
(ûUP − û) > 0 flow field in the downstream plane section (from LV to RV) for (a) Run 1, (b) Run 2
and (c) Run 3. The black dashed lines show the cylinder position.

In order to investigate the longitudinal evolution of the flow field, the contours of
the dimensionless time-averaged accelerated and decelerated flow field are analyzed. For
the sake of simplicity, they are reported in Figure 7 only for the extreme right vertical
plane identified with letters from RE to RV in the plane x̂-ẑ. The abscissa x̂ was made
dimensionless by dividing x by the study area width (Ls = 12 cm). In Figure 7, it is evident
that the presence of vegetation has a very visible effect on the flow field: the flow is
accelerated in all the runs with higher streamwise velocities than in the undisturbed flow
profiles along the whole water depth. At each measurement location, the vegetation causes
the velocity profile to maintain a constant value (for z > hl). Moving toward the bed (z < hl),
the influence of vegetation decreases, and the flow field becomes more accelerated, owing
to the presence of the bed.
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3.2. TKE and Normal Stresses

The computation of the spatial distributions of the TKE is very significant in the
assessment of the energetic process in open-channel flows. Since the time-averaged spatial
fluctuations influence mechanical dispersion [41] and, in turn, this latter may be influenced
by the vegetation stems and the bed roughness, the topic is of considerable interest. In
fact, the presence of vegetation adds a further turbulence production in the wakes of the
plant elements [42]. The TKE is defined as half the sum of the variances of the velocity
components:

TKE =
1
2

[
(u′)2 + (v′)2 + (w′)2

]
. (2)

where v′ is the velocity fluctuation of the spanwise velocity v.
The colormaps of the dimensionless TKE (i.e., TKE divided by u2

∗) on the transversal
upstream plane section (identified with the letters from LE to RE in the spanwise direction)
are shown in Figure 8 for each experimental run. The highest values of the TKE are located
in front of the cylinder and at the vertical LE (y = 0).
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To analyze this behavior, in Figure 9 we consider, for all the runs, the dimensionless
normal stresses in the streamwise, spanwise and vertical directions, u′u′/u2

∗, v′v′/u2
∗ and

w′w′/u2
∗, respectively, which are essentially the three addends in Equation (2). It is possible

to observe that the high value on the left part of TKE contours (y = 0 in Figure 8a)
is practically ascribable to the streamwise and spanwise effects (Figure 9) owing to the
presence upstream of the studied stem, both of an empty zone without vegetation, which
influences u′u′, and of a wake vortex, that affects v′v′. In contrast, the high magnitude of
the TKE immediately behind the vegetation element (0.42Bs < y < 0.58Bs) is mostly due to
the spanwise fluctuations, as a consequence of the circumvention of the obstacle.
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Figure 9. Contours of the dimensionless normal stresses (a) u′u′/u2
∗, (b) v′v′/u2

∗ and (c) w′w′/u2
∗ in

the upstream plane section (from LE to RE) for (a) Run 1, (b) Run 2 and (c) Run 3. The black dashed
lines show the cylinder position.

Conversely, downstream of the studied vegetation element, the dimensionless TKE
shows higher magnitudes immediately beyond the stem, whereas no high TKE value is
detectable at y = 0 (Figure 10).
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Figure 10. Contours of the dimensionless TKE in the downstream plane section (from LV to RV) for
(a) Run 1, (b) Run 2 and (c) Run 3. The black dashed lines show the cylinder position.

Analogously to the upstream flow field, from the normal shear stress distributions
shown in Figure 11, it is possible to evaluate the contributions of the TKE patterns. Specif-
ically, the higher kinetic energy values are influenced by both the streamwise, u′u′, and
spanwise, v′v′, normal stresses, which increase owing to the presence of the von Kármán
wake vortex. This behavior, although with different magnitudes, is displayed in all the runs
and, consequently, is clearly a vegetation effect. Furthermore, from a comparison between
the TKE and the normal stress lateral distributions (Figures 8 and 10, and Figures 9 and 11,
respectively), it is evident a predominant effect of the vegetation element in the down-
stream plane section and a contribution of the vertical normal stresses in the vertical W
(downstream of the cylinder) greater than in the vertical A (upstream of the cylinder).
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Figure 11. Contours of the dimensionless normal stresses (a) u′u′/u2
∗, (b) v′v′/u2

∗ and (c) w′w′/u2
∗

in the downstream plane section (from LV to RV) for (a) Run 1, (b) Run 2 and (c) Run 3. The black
dashed lines show the cylinder position.

The distributions of the dimensionless TKE in the longitudinal extreme right vertical
plane (identified with letters from RE to RV) are illustrated in Figure 12. High TKE
magnitudes are observed in the near-bed flow zone, where the bed roughness surface causes
higher fluctuations of the velocity components. However, the TKE reduces progressively
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moving upwards from z > 0, owing to the inhibition of u′, v′, and w′. The TKE contours are
slightly spatially nonuniform for all the experiments. This is probably due to the random
vegetation array and the spatial irregular bed sediment.
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3.3. Energy Spectra

In order to further analyze the turbulent characteristics, the measured velocity data
were explored through the energy spectra of the velocity fluctuations. In particular, the
energy spectra are shown in Figure 13 for the vertical W, i.e., immediately downstream
of the studied cylinder for all the runs and three different elevations (z = 0, z = 0.2 h and
z = 0.4 h), as a function of the Strouhal number of the cylinder (St = fd/u, where f is the
frequency with a resolution equal to Fs/N, and N is the number of samples equal to 30,000
for an acquisition time of 300 s). The energy spectra were determined by employing the
discrete fast Fourier transform of the autocorrelation function.
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From a comparison of the spectra, the spanwise velocity revealed the presence of
large-scale coherent structures, evident as a peak located in the energy-containing range of
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the energy spectra (Figure 13). Specifically, these peaks are present in all the runs, with the
exception of two spectra of Run 3, where it is evident that the peak recedes as z decreases.
This may be due to a roughness effect, which in Run 3 is explicated with a medium
sediment diameter equal to 17.98 mm, i.e., comparable with the stem diameter, equal to
20 mm. Moreover, the peaks were observed at the same Strouhal number in the u’v’ cross-
spectra (not shown here for the sake of brevity), demonstrating that the identified coherent
structures were responsible across the vegetation for the lateral momentum transport [5].

4. Conclusions

In the present work, an experimental study was carried out to investigate the impact
of different uniform bed roughness on the flow characteristics through randomly arranged
emergent rigid vegetation. In particular, focus was given to the evolution of the turbulence
characteristics in a study area selected around a single stem. The principal results are
summarized below.

In the sections, respectively, upstream and downstream of the generic stem, the
dimensionless time-averaged accelerated and decelerated flow field is deeply affected by
the vegetation and, to a lesser extent, by the bed roughness. In particular, in the flow field
downstream of the studied cylinder it is possible to point out these zones: a decelerated
one, in correspondence to the stem (0.42Bs < y < 0.58Bs), another decelerated zone, on
the left side of the stem (0 < y < 0.2Bs, only for Runs 1 and 3) and an accelerated one
elsewhere.

From a comparison perspective, it is possible to evaluate a velocity reduction of
about 50% in the downstream plane immediately behind the analyzed stem. Conversely,
downstream of the cylinder, on the left side (0< y < 0.2Bs), the decelerated zones fade
about 30%. This is clearly attributable to the random distribution of the vegetation pattern.
Instead, in the longitudinal plane the flow is decelerated in all the runs with higher
streamwise velocities than in the undisturbed flow profiles along the whole water depth.

The analysis of the TKE distribution clearly shows the effects of the vegetation, with
high magnitudes immediately upstream and downstream of the investigated stem. This
indicates that the velocity oscillations get excited by the cylinders, producing an increased
turbulence intensity in the proximity of the stem. Moving toward the free zone (i.e., without
vegetation), this influence vanishes, causing a decrease in the TKE value. In addition,
the behavior observed in TKE colormaps was examined by comparing the streamwise,
spanwise and vertical normal stress contours. The results revealed a strong influence of
the u’ and v’ fluctuations on the energy distribution and highlighted the influence of the
so-called von Kármán vortices. In addition, from the analysis of the TKE distributions, an
effect of the cylinder greater in the downstream plane section than in the upstream one is
manifested, with an increased mean value of 25% at the abscissa y = 0.5 Bs. The longitudinal
TKE distribution revealed high values in the near-bed flow zone. This suggests that the
velocity oscillations get excited by the rough bed, producing an increase of the turbulence
level in the vicinity of the sediments. Mowing toward the free surface this effect disappears,
inducing a decrease in the TKE.

The evaluation of the energy spectra of the velocity fluctuations showed a clear
influence of both vegetation and roughness. In particular, the spanwise velocity component
revealed energetic peaks that indicate the presence of large-scale coherent structures due
to the von Kármán wake vortex along the flow depth in the case of lower roughness
(Run 1 and 2) and only in the upper part of the water depth in the case of higher roughness
(Run 3). In fact, it is interesting to point out that, when the median sediment diameter is
comparable with the stem diameter (i.e., Run 3) going towards the bed, the energetic peak
is lowered. This involves a consideration of the nature of coherent structures of turbulence,
which are significantly influenced by the characteristic scales of the flow conditions, such
as vegetation diameter, water depth and roughness size.

Further study is necessary to describe more deeply the turbulence structures in the
presence of both vegetation and sediments. In fact, the results referring to a single generic
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cylinder are representative only for such a case and cannot be generalized, owing to the
lack of further data relating to different vegetation elements. For this purpose, in future
works we intend to perform other laboratory experiments, intensifying the measurements
and adopting advanced techniques, such as the Particle Image Velocimetry (PIV), in order
to better characterize the two-dimensional (2D) turbulence structures.
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