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Abstract
Does wealth inequality make financial crises more likely? If so, how can a government
intervene, and how does this affect the distribution of resources in the economy? To
answer these questions, we study a banking model where strategic complementarities
among wealth-heterogeneous depositors trigger systemic self-fulfilling runs. In equi-
librium, higher wealth inequality increases directly the incentives to run of the poor,
and indirectly those of the rich via higher bank liquidity insurance, thus increasing
the probability of a systemic self-fulfilling run overall. A government intervention on
illiquid but solvent banks redistributes resources towards the poor and makes systemic
self-fulfilling runs less likely.
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1 Introduction

Does wealth inequality make financial crises more likely? If so, how can a govern-
ment intervene, and how does this government intervention affect the distribution of
resources in the economy? The motivation for these questions comes from the debate
over the role of wealth inequality in causing large financial crises. Kumhof et al.
(2015) show that increasing wealth inequality preceded both the Great Depression
and the Great Recession. Two of the most famous arguments to explain this observa-
tion (particularly regarding the latter episode) focus on the role played by government
intervention. Stiglitz (2012) argues that higher wealth inequality depressed aggregate
demand, forcing monetary authorities to lower interest rates too much for too long,
thus fuelling a credit bubble and the following crisis. Rajan (2010) instead maintains
that higher wealth inequality called for some form of redistribution, and politicians
promoted it by allowing households to collateralize their real-estate wealth, thus again
fuelling a credit bubble and a crisis. Our paper contributes to this debate by developing
an alternative theory directly connecting wealth heterogeneity among banks’ depos-
itors to systemic financial fragility, and in particular to the probability of systemic
self-fulfilling bank runs. Bank runs have always been considered a crucial trigger of
financial crises since the seminal work of Friedman and Schwartz (1963) on the US
National Banking Era. Moreover, they have also played a critical role in more recent
episodes, like in Argentina in 2001, Uruguay in 2002, Greece in 2015 and the Great
Recession (Gorton 2010). We show that increasing wealth inequality has different
effects on the incentives to run of the rich and of the poor, and brings about higher sys-
temic financial fragility. Moreover, a government intervention that redistributes from
rich to poor brings about the “trickle up” effect of lower systemic financial fragility
for the whole economy.

To formalize our arguments, our starting point is the seminal work by Goldstein
and Pauzner (2005). In this framework, banks provide liquidity insurance to their
depositors against idiosyncratic shocks that force them to consume in an interim date,
i.e. before their investments mature. To provide liquidity insurance, banks engage
in maturity transformation: They issue short-term liabilities (i.e. deposits) backed by
long-term assets.We extend theGoldstein and Pauzner (2005) framework by assuming
that the depositors are divided into groups of different wealth levels, that are homo-
geneous within themselves. The depositors fully deposit their wealth in the banks.
We assume that wealth maps one-to-one into deposits to reflect the stylized fact of
Table 1: Excluding the lowest 25th percentile (for which the median net worth in 2007
is less than US$1500) the ratio of transaction accounts (e.g. deposits and deposit-
like instruments) to total financial assets is basically constant across percentiles of
US households’ net worth.1 As such, deposit inequality is almost an exact mirror of
wealth inequality.

1 Transaction accounts as a percentage of total assets are also basically constant, between 0.39 and 0.56
percent. These stylized facts refer to 2007, but are quite stable across time, too. In the last twenty years, the
Gini indices of transaction accounts as a percentage of either total financial assets or total assets have been
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Table 1 US households’ deposit heterogeneity, median values for percentiles of net worth

Percentiles of household net worth, 2007

Less than 25 25–49.9 50–74.9 75–89.9 90–100

Transaction accounts (% of total financial assets) 6.25 2.84 2.62 2.74 2.32

Transaction accounts (% of total assets) 0.56 0.39 0.44 0.52 0.51

The economy is populated by a large number of banks. Because wealth is observ-
able, banks create separate accounts for each wealth group and offer group-specific (or
equivalently wealth-specific) deposit contracts. In the real world, these banks would
correspond to bank conglomerates or “universal” banks that offer different independent
services depending on the amounts deposited, for example through separate commer-
cial and investment banking units that are “ring-fenced” one from the other.2 In the
model, the rationale for this assumption is that banks exist because they are a mech-
anism to implement the constrained efficient allocation in a decentralized economy
in the Diamond and Dybvig (1983) tradition. Hence, they must behave in the same
way as a constrained social planner. In our framework, a constrained social planner—
i.e. operating all banks and subject to runs—would find it optimal to pool deposits
within wealth groups to provide insurance against idiosyncratic shocks, and take into
account the investment externality. However, offering the same deposit contract to all
depositors independently of their wealth would entail an ex-ante redistribution from
rich to poor. That would be equivalent to an insurance against states of nature, that is
arguably not Pareto efficient.

To repay the depositors, the banks invest the deposits into a productive asset. This
yields a positive return with some probability, which represents the aggregate state of
the economy. The return also negatively depends on the total fraction of depositors
who withdraw in the interim date in the whole economy. In this way, we introduce an
investment externality, which is similar toMorris and Shin (2000) and is in the spirit of
the production externality of Romer (1990). Another way to justify this assumption is
in terms of aggregate demand externalities (Bebchuk and Goldstein 2011): If one bank
is forced to liquidate projects prematurely, that negatively affects aggregate demand,
thus reducing overall profits in the economy (Cooper and John 1988) and eventually
impacting other banks.

In such an environment, depositors’ decisions to withdraw in the interim period
are subject to within-group strategic complementarities: The more depositors expect
the other depositors in their own wealth group to withdraw in the interim date, the
higher their incentives to withdraw in the interim date are, too.3 Because of this, if the
realization of the aggregate state is common knowledge, the economy exhibits two
equilibria: one in which only the depositors who are hit by the idiosyncratic shocks

Footnote 1 continued
almost constant, and equal to around 20 and 12%, respectively. Calculations are available upon request.
Source: US Survey of Consumer Finance.
2 In the context of mutual funds for example, regulation prevents cross-subsidization across funds, in order
to rule out Ponzi schemes.
3 For a survey on games with strategic complementarities see Amir (2005).

123



F. Garcia, E. Panetti

withdraw in the interim date, and one in which all depositors withdraw because they
expect everybody else to do the same, and are afraid that banks have insufficient
resources to pay them all. In this latter case, we say that depositors’ expectations
trigger a banking crisis in the form of a self-fulfilling “run”. Put differently, banks can
become insolvent—i.e. not able to repay depositors according to the deposit contract—
for two reasons: either because their investments turn out unproductive or because of
a run in the interim period.

To characterize a unique equilibrium,we follow the “global game” literature (Carls-
son and van Damme 1993; Morris and Shin 1998) and assume that each depositor
observes a heterogeneous private noisy signal about the realization of the aggregate
state—the probability of success of the long term asset. Based on the noisy signal, a
depositor forms posterior beliefs about the true aggregate state and the running behav-
ior of the other depositors in their wealth group, and ultimately decides whether to
run on their bank. This happens if the signal that they receive is lower than a certain
wealth-specific threshold, i.e. the critical type, which therefore is a measure of the
financial fragility of each wealth group.

The presence of the investment externality implies that the strategic complemen-
tarities operate both within and between wealth groups. As such, all depositors must
form posterior beliefs also about the running behavior of the depositors in the whole
economy. This represents a theoretical challenge, that we solve by adapting to this
framework the concept of “Belief Constraint” (Sakovics and Steiner 2012). We start
by defining the critical belief of a group as the belief of the group’s critical type
about the aggregate number of individuals running in the economy. Then, the “Belief
Constraint” states that the average of the critical beliefs, i.e. the beliefs regarding the
aggregate number of individuals running, has a constant probability distribution. We
can then employ this property to identify the unique running threshold in the econ-
omy. Another consequence of the investment externality is that the wealth-specific
thresholds that trigger a run in each group are all functions one of the others, making
the identification of each group’s critical belief a daunting task. Yet, as the volatility
of the noisy signals goes to zero all thresholds cluster around a unique value. In other
words, a self-fulfilling run becomes “systemic”: Depositors with different levels of
wealth run together, following a common threshold strategy. The Belief Constraint
allows us characterize the unique threshold by averaging out the indifference condi-
tions between running and not running of depositors of the different wealth levels. In
this way, the common threshold strategy turns out to be increasing in the endogenous
bank liquidity insurance provided to each wealth group. This means that this economy
features financial contagion through expectation formation. High liquidity insurance
for a wealth group increases the likelihood of a systemic self-fulfilling run in the whole
economy, as it increases the self-fulfilling incentives to run of that wealth group, and
as a consequence of all the others, too. Moreover, the unique threshold turns out to be
a decreasing function of depositors’ wealth. This happens because, when the wealth
of a group increases, the incentives to wait and not join a run of a depositor belonging
to that group increase. Importantly, both effects are convex as depositors’ utility is
concave.

The two previousmechanisms are at the core of the positive relation betweenwealth
inequality and systemic financial fragility that emerges in our environment. To see that,
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we run a comparative statics exercise.We increase the wealth of a rich group and lower
the wealth of a poor group in the same amount, so that the aggregate endowment of
the economy stays constant. This has the direct effect of increasing the incentives to
wait of the rich, but decreasing more the incentives to wait of the poor. Moreover, as
we prove that in equilibrium liquidity insurance is increasing in wealth, higher wealth
inequality lowers the liquidity insurance for the poor, and increases it for the rich.
This brings about the indirect effect of lowering the incentives to run of the first, but
increasing more the incentives to run of the second. In other words, by increasing the
incentives to run of the poor directly and of the rich indirectly, higher wealth inequality
leads to higher systemic financial fragility.

The presence of systemic financial fragility justifies a government intervention
against self-fulfilling runs, which are inefficient because are not due to bad fundamen-
tals but only to coordination failures (Allen and Gale 2004). We assume the existence
of an economy-wide government that, in order to maximize total welfare, employs
resources outside of the banking system to provide subsidies and affect the deposi-
tors’ incentives to run. We focus our attention on a bank liquidity assistance in the
spirit of the lender of last resort (LOLR): The government subsidizes banks, but only
when they are illiquid but solvent. Since the classical argument by Bagehot (1873),
this has been considered the standard instrument with which public authorities have
resolved financial fragility due to bank runs, and has some sound economic rationale
(Diamond and Dybvig 1983; Rochet and Vives 2004).

Bearing in mind that illiquidity is off equilibrium and as such it is not a possible
ex-post outcome, a bank liquidity assistance can have an effect on the formation of the
depositors’ expectations of a run, and therefore on the equilibrium. In fact, under this
intervention subsidies to banks, even if never actually implemented, lower systemic
financial fragility as they would allow banks to retain a larger amount of resources to
distribute to the depositors in the final date, thus lowering their incentives to run. This
means that a full liquidity assistance, that allows the banks to serve all depositors even
when they all withdraw in the interim date, can rule out systemic self-fulfilling runs
altogether. In other words, when feasibility is satisfied, no depositor has incentives
to run, and the government, just by announcing an intervention, resolves systemic
financial fragility at zero costs.

The more interesting case happens instead when a full intervention is not feasible,
and the government can only implement a partial liquidity assistance. This consists of
a set of wealth-specific subsidies that takes into account that the rich depositors’ incen-
tives to run are less sensitive to subsidization. Hence, a partial bank liquidity assistance
results in the government ranking wealth groups in increasing order of wealth, and
providing full liquidity assistance from the top of the ranking, until resources are
exhausted. In that sense, depositors at the lower end of the wealth distribution are
fully subsidized, and after a certain threshold the others receive zero. Interestingly,
the resulting redistribution does not depend on a mere welfare motivation, but on the
“trickle-up” effect of lowering systemic financial fragility for the whole economy.4

4 Mitkov (2020) finds a similar result, but for very different reasons. In his framework, rich depositors
receive lower transfers because the government wants to ensure that the ex-post payment schedule is the
same across all the banks on which it intervenes.
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The rest of the paper is organized as follows. In Sect. 2, we summarize our con-
tribution to the literature. In Sect. 3, we lay down the environment of the model. In
Sect. 4, we study the strategic complementarities in the depositors’ decisions to run,
and the banking equilibrium without government intervention. In Sect. 5, we char-
acterize government intervention. In Sect. 6, we numerically run some comparative
statics exercises to evaluate the effect of changing the wealth distribution on systemic
financial fragility. Finally, Sect. 7 concludes.

2 Contribution to the literature

The present paper contributes to the literature in several respects. First, by developing
a theory of banking system with heterogeneous depositors, it studies how systemic
financial fragility is connected to deposit and wealth heterogeneity, which some new
evidence suggests is a key driver of depositors’ withdrawing behavior (Iyer et al.
2019). Importantly, this link is not conveyed through the raising of credit bubbles,
which is a channel that applies well to the US (Kumhof et al. 2015) but is far from
general.5 In contrast, our argument is based on financial contagion (Allen and Gale
2000) in particular through expectation formation, which has been analyzed in the
past in two-group environments (Dasgupta 2004; Goldstein 2005; Leonello 2018).6

The empirical literature on bank heterogeneity and systemic risk (Laeven et al.
2016) finds support for the argument that bank size has a positive impact on systemic
risk. Nevertheless, the amount of theoretical work aimed at rationalizing this channel
has been small, Davila and Walther (2020) being one of the few exceptions. Choi
(2014) and Goldstein et al. (2020) are instead two examples that focus on the role of
heterogeneity in affecting financial stability, but on the asset side of banks’ balance
sheets. Differently from these papers, we focus on the liability side, and in particular
on depositors’ heterogeneity and how it alters their incentives to run, while keeping
banks homogeneous.

Second, our work contributes to the analysis of the economics of government inter-
vention in the face of self-fulfilling run risk. In a recent paper, Allen et al. (2018) extend
the bank-run framework of Goldstein and Pauzner (2005) by introducing a benevo-
lent regulator who provides guarantees to banks’ depositors. However, the authors
study a homogeneous economy, which is not suitable to analyze heterogeneity and
the redistributive implications of government intervention. Cooper and Kempf (2016),
Mitkov (2020) and Davila and Goldstein (2021) develop banking models with deposit
heterogeneity, and study government intervention after self-fulfilling runs modelled
as sunspot-driven coordination failures.7 Our contribution with respect to them is to

5 Atkinson and Morelli (2010, 2015) and Bordo and Meissner (2012) find little evidence of a connection
between inequality, household credit bubbles and financial crises, and Gu and Huang (2014) find that the
relation holds only in Anglo-Saxon countries.
6 In particular, we distinguish our contribution fromCorsetti et al. (2004) and Bannier (2005) by abstracting
from the presence of a larger depositor (a “Soros”) who is so much richer than the others that can act
strategically, possibly exploiting better information or a first-mover advantage.
7 See Bertolai et al. (2019) for another model of government redistribution in the presence of run risk.
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endogenize systemic financial fragility, and explicitly characterize its link to deposit
heterogeneity.

Finally, the present paper contributes to the theoretical literature on bank runs as
“global games” (Rochet and Vives 2004; Goldstein and Pauzner 2005) by studying
the role of wealth heterogeneity and adapting the concept of Belief Constraint, that
Sakovics and Steiner (2012) developed and applied to a canonical problem of invest-
ment subsidization. Guimaraes and Morris (2007) is an example of currency-crisis
model with a global game, in which the authors study an extension with wealth het-
erogeneity. Differently from our work, they assume Cobb-Douglas utility function
that allows linear aggregation of threshold strategies across population. Drozd and
Serrano-Padial (2018) instead study a model of a debt-financed entrepreneur subject
to enforcement externalities. Theoretically, their contribution lies in the characteriza-
tion of an equilibrium in which the threshold strategies of the agents, differently from
our work and from Sakovics and Steiner (2012), might cluster around more than one
value.

3 Amodel of banking with heterogeneous depositors

3.1 Preferences and endowments

The economy lives for three dates, labeled t = 0, 1, 2, and is populated by a unitary
continuum of bank depositors, divided into G groups indexed by j , each of equal
mass.8 The groups are heterogeneous with respect to the wealth that they deposit in
the banking system: All depositors in group j have an initial endowment e j at date
0, and nothing at dates 1 and 2. At date 1, a depositor i in wealth group j is hit by a
private idiosyncratic shock θ i j , that takes value 0 with probability 1 − π and 1 with
probability π . The shock affects the point in time at which the depositor wants to
consume, in accordance with the welfare function:

U (c j1 , c
j
2 , θ

i j ) = θ i j u(c j1) + (1 − θ i j )u(c j2). (1)

The depositors gain utility from consumption either at date 1 or at date 2. If θ i j = 1,
a depositor only wants to consume at date 1, while if θ i j = 0 they only want to
consume at date 2. Thus, in line with the literature, we call type-0 and type-1 deposi-
tors late (or “patient”) consumers and early (or “impatient”) consumers, respectively.
The law of large numbers holds, so π and 1 − π are the fractions of depositors in
the whole economy who turn out to be early or late consumers. The utility func-
tions u(c) is twice continuously differentiable, increasing and concave. Moreover,
u(0) = 0 and limc→0 u′(c) = F , with F arbitrarily large but finite. This is a
modified Inada condition that has the same rationale of the standard condition that
several models assume, including the original work by Diamond and Dybvig (1983):
It ensures that the depositors really value the possibility of avoiding zero consumption.

8 The assumption of groups of equal mass comes at no loss of generality for the main results concerning
wealth inequality. This is because financial fragility will depend on the beliefs of each single atomistic
depositor, which do not depend on the size of the groups to which they belong.
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However, a standard Inada condition with limc→0 u′(c) = +∞ would not be consis-
tent with u(0) = 0. Then, the modified condition allows us to reconcile the two
assumptions. A utility function satisfying these assumptions is u(c) = ((c+ψ)1−γ −
ψ1−γ )/(1 − γ ). The constant ψ ensures that u(0) = 0 and limc→0 u′(c) = ψ−γ ,
which can be arbitrarily large but finite as assumed.

3.2 Banks and technologies

The economy is also populated by a large number of competitive banks. The relation-
ship that depositors have with their banks is exclusive, that is, they can can make a
deposit only in one bank.9 At date 0, the banks collect the initial endowments e j of
the depositors—which are the only liability on their balance sheets—and invest them
so as to maximize their profits, subject to depositors’ participation and to budget con-
straints. Perfect competition ensures that the banks solve the equivalent dual problem
of maximizing the expected welfare of their depositors subject to budget constraints.

The banks invest the deposits in a productive asset yielding a stochastic return A at
date 2 for each unit invested at date 0. This stochastic return takes values R(1−�)with
probability p, and 0 with probability 1− p, where � is the total fraction of depositors
who withdraw at date 1 in the whole economy. The probability of success of the
productive asset p represents the aggregate state of the economy, and is distributed
uniformly over the interval [0, 1], with (1− π)E[p]R > 1. Moreover, the productive
asset can be liquidated at date 1, i.e. before its natural maturity, and yields 1 unit of
consumption for each unit liquidated.10 Intuitively, this productive asset represents an
investment opportunity whose return in case of success depends on how much of the
initial investment reaches maturity in the whole economy. Put differently, the common
productive asset exhibits an investment externality across wealth groups.

The banks employ the productive asset to repay the depositors at date 1 and 2.
As the banks observe the amounts deposited, they can perfectly discriminate across
wealth groups. Put differently, they operate as “universal banks” that serve all wealth
groups, but set up separate balance sheets for each one of them and offer group-
specific deposit contracts. The deposit contracts state the uncontingent amount d j

that the depositors can withdraw at date 1 and the state-dependent amount d j
L(A)

that they can withdraw at date 2, which is an equal share of the residual available
resources.11 As the realizations of the idiosyncratic shocks θ i j are private information,
the depositors must have the incentives to truthfully report them. This implies that the
deposit contracts must satisfy the incentive compatibility constraint d j ≤ d j

L(R) in

9 Farhi et al. (2009) and Panetti (2017) show the inefficiency of competitive banking equilibria where
this assumption is relaxed and deposit contracts are non-exclusive, and study the welfare implications of
liquidity requirements.
10 Deidda and Panetti (2018) study the banking equilibrium when the liquidation value of the productive
asset is smaller than 1, and the bank has to solve a liquidity management problem.
11 In order to rule out uninteresting run equilibria, we assume that the parameters are such that equilibrium
early consumption d j turns out to be smaller than min{1/π, R}. Being well established in the literature, the
assumption of standard deposit contract can be rationalized as a way to resolve conflicts between banks’
managers and shareholders (Calomiris and Kahn 1991; Diamond and Rajan 2001) or as a consequence of
asymmetric information (Flannery 1986; Dang et al. 2017).
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every group j . The banks commit to the deposit contracts at date 0, and pay early
withdrawals by liquidating the productive asset until their resources are exhausted.
When this happens, and the banks are not able to fulfill their contractual obligations,
they go into insolvency. In this case, theymust liquidate all the productive assets at date
1, and equally share the proceeds inside each wealth group among all the depositors
who withdraw early.12

We assume that the depositors cannot observe the true value of the realization of
the aggregate state p, but receive at date 1 a noisy private signal σ i j = p + ηi j . The
term ηi j is an idiosyncratic noise, indistinguishable from the true value of p and drawn
from a uniform distribution over the interval [−ε,+ε], with ε positive but negligible.13

Given the received signal, late consumers decide whether to withdraw from the bank
at date 2, as the realization of the idiosyncratic shock would command, or “run on the
bank” and withdraw at date 1. We assume that they take this decision following the
threshold strategy:14

ai j (σ ) =
{
wait if σ i j ≥ σ j∗,
run if σ i j < σ j∗.

(2)

3.3 Timing and definitions

The timing of actions is the following: At date 0, the banks collect the initial endow-
ments, and choose the deposit contracts {d j , d j

L(A)}; At date 1, all depositors get to
know their private types and signals, and the early consumers withdraw, while the late
consumers, once observed their own signals, decide whether to run on their banks or
not; Finally, at date 2, those late consumers who have not run at date 1 receive an equal
share of the available resources.

We solve the model by backward induction, and characterize a perfect Bayesian
equilibrium, in which a representative bank chooses wealth-specific deposit contracts.
The definition of equilibrium is as follows:

Definition 1 Given the distributions of the idiosyncratic and aggregate shocks and of
the private signals, a perfect Bayesian banking equilibrium is a set of deposit contracts
{d j , d j

L(A)} and depositors’ threshold strategies, such that for every realization of
signals and idiosyncratic shocks {σ i j , θ i j }:
• The depositors’ decisions to run maximize their expected welfare;
• The deposit contractmaximizes the depositors’ expectedwelfare, subject to budget
constraints;

• The beliefs of the banks and depositors are updated according to the strategies
employed and the Bayes rule.

12 The assumption of equal shares at insolvency simplifies the analysis without altering its results.
13 The two sources of heterogeneity in our framework, namely wealth and information, are not correlated
one to the other. For an example of endogenous information acquisition in games with strategic comple-
mentarities, see Amir and Lazzati (2016).
14 The focus on threshold strategies is common in the bank-run literature. In a similar environment with
homogeneous wealth, Goldstein and Pauzner (2005) show that every equilibrium strategy is a threshold
strategy.
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3.4 Banking equilibriumwith perfect information

As a benchmark for the results that follow, we start our analysis with the character-
ization of the banking equilibrium with perfect information, in which the bank can
observe the realization of the private idiosyncratic shocks hitting the depositors. More
formally, the bank solves:

max
d j

∑
j

[
πu(d j ) + (1 − π)

∫ 1

0
pu

(
R(1 − π)

e j − πd j

1 − π

)
dp.

]
(3)

Thebankknows thatwith probabilityπ adepositorwill turnout to be an early consumer
and consume d j , and with probability 1−π they will turn out to be a late consumer.15

In this case, the total amount of available resources at date 2 depends on the realization
of the aggregate state p, on the total number of late consumers in the whole economy,
equal to 1 − (1/G)

∑
j π = 1 − π , and on the amount of productive assets that are

not liquidated to pay early consumption, e j − πd j . The first-order conditions with
respect to early consumption d j give the equilibrium conditions:

u′(d j ) = (1 − π)E[p]Ru′(R(e j − πd j )), (4)

for every group j . Intuitively, this result shows that the bank provides an allocation
such that the marginal rate of substitution between early and late consumption is equal
to the expected return of the productive asset. Moreover, as the utility function u(c) is
concave, the equilibrium amounts d j and d j

L(R) = R(e j −πd j ) are both increasing in
the initial endowment e j , given that the ratio d j/e j is constant across wealth groups.16

Finally, the concavity of the utility function and the assumption that (1−π)E[p]R >

1 imply that the incentive compatibility constraint is satisfied. In otherwords, a banking
equilibrium without perfect information, i.e. in which a bank needs to ensure truth-
telling, would be equivalent to the banking equilibrium with perfect information.

4 Systemic self-fulfilling runs

We now move to the analysis of the banking equilibrium in the presence of private
signals regarding the aggregate state of the economy. To this end, we go by backward
induction, and start by studying the Bayesian Nash equilibrium of the stage game in
which the depositors choose their threshold strategies according to which they run.
Then, we characterize the banking equilibrium.

15 In equilibrium, by the modified Inada condition, both early and late consumption must be positive.
16 To see that d j is increasing in e j , notice that the bank objective function is supermodular, as its cross
derivative with respect to d j and e j is positive (see the definition of supermodular function in footnote 26).
Also, with a simple change of variable, namely by letting x j = e j − πd j , we can show that the objective

function is supermodular in (x j , e j ). This is equivalent to saying that d j
L (R) = R(e j − πd j ) is increasing

in e j .
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4.1 Endogenous threshold strategies

As in Ennis and Keister (2006), we assume that at date 1 the depositors arrive at the
bank in randomorder, andknowneither howmanyof themare in line nor their positions
in the line. As a result, the depositors do not accept a deposit contract contingent on
either their position in line or the number of early withdrawals.17 In other words, when
taking their withdrawal decisions, depositors do not know whether a run is under way
or not.

Due to its commitment to pay an amount of early consumption d j , the bankmust liq-
uidate the productive asset to pay early withdrawals until the resources are exhausted.
As a consequence, if late consumers expect only early consumers to withdraw at date
1, they will withdraw at date 2 and receive the incentive-compatible consumption
d j
L(R) > d j . However, if late consumers expect all other depositors to withdraw at

date 1, they will rather withdraw at date 1 as well, because in that case they will be
served pro-rata at date 1 instead of getting zero at date 2. Thismeans that this economy,
if there is common knowledge about the realization of the aggregate state, features a
“no run” equilibrium and a “run” equilibrium as any Diamond-Dybvig environment.18

Aswewill show, the private signals allow us to resolve thismultiplicity of equilibria
by forcing the depositors to coordinate their actions: run under some range of signals,
and not run under another. The effect of the signals is twofold: They provide private
information about the aggregate state of the economy, and about the signals of the
other depositors. Intuitively, obtaining a high signal increases the incentives for a late
consumer to wait until date 2 and not withdraw (i.e. not “run on the bank”) at date 1,
because it induces the belief that the realization of the aggregate state is good, and the
signals of the other depositors are also high (under the assumption that the volatility
of the signal is negligible).

More formally, a late consumer i in group j receives a private signal σ i j at date
1, and takes as given the deposit contract fixed at date 0. Based on these, they create
posterior beliefs about how many depositors withdraw at date 1 in their own group as
well as in the whole economy, and the probability of the realization of the aggregate
state, and decides whether to withdraw at date 1 or not. Two regions of extremely
high and extremely low signals arise. In these, the decision of a late consumer of any
group is independent of their beliefs regarding the actions of the other depositors. In
the “lower dominance region”, the signal is so low that late consumers of all groups
run irrespective of the behavior of the others. This happens below the threshold signal
σ = min j σ

j , that is the lowest of the thresholds that make depositors indifferent
between withdrawing or not, when all other depositors wait:

u(d j ) = σ j u
(
R(e j − πd j )

)
. (5)

17 For the same reason, the depositors also do not accept a deposit contract that involves deposit pooling
across wealth groups at a run, that would modify the bank insolvency threshold and create a further source
of between-group externality.
18 For this argument to hold, we need to assume that a government cannot credibly commit to suspend
deposit convertibility in the case of a run.Ennis andKeister (2009) study the time inconsistencyof suspension
policies in a banking model with multiple equilibria. Cavalcanti and Monteiro (2016) study the role of
suspension for the early acquisition of information about opportunistic bank behavior.
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From here, it is easy to see that the threshold signal σ j is decreasing in the initial
endowment e j and increasing in the early consumption d j : The more a bank promises
to an early consumer in group j , the larger is the set of signals below which the
depositors in that group run irrespective ofwhat the others do. In the “upper dominance
region”, instead, the signal is so high that late consumers always wait until date 2
to withdraw. Following Goldstein and Pauzner (2005), we assume that this happens
above a threshold σ̄ , where the investment is safe, i.e. p = 1, and gives the same return
R(1− π) at date 1 and date 2. In this way, a late consumer is sure to get R(e j − πd j )

at date 2, irrespective of the behavior of all the other late consumers, and prefers to
wait.

The existence of the lower and upper dominance regions, regardless of their size,
ensures the existence of an equilibrium in the intermediate region [σ, σ̄ ], where the
late consumers decide whether to run or not based on their posterior beliefs. In this
region, late consumers run if their signal is lower than a threshold signal σ j∗, which is
the value of the signal that makes them indifferent between running or not given their
beliefs. More formally, define the utility advantage of waiting versus running as:

v j (n, n j ) =
⎧⎨
⎩

σ i j u
(
R(1 − n) e

j−n j d j

1−n j

)
− u(d j ) if π ≤ n j < e j

d j ,

−u
(
e j

n j

)
if e j

d j ≤ n j ≤ 1,
(6)

where n j and n are the total fraction of depositors withdrawing at date 1 in group j
and in the whole economy, respectively. By the law of large numbers, these fractions
are given by:

n j = π + (1 − π)prob(σ i j ≤ σ j∗), (7)

n =
∑
k

nk = π + (1 − π)
∑
k

prob{σ ik ≤ σ k∗}, (8)

i.e. the fraction of depositors withdrawing at date 1 is the sum of theπ early consumers
who withdraw for sure plus those among the 1 − π late consumers who get a signal
below the threshold signal σ j∗.

The expression for v j (n, n j ) highlights that,when the fraction of depositors running
is between π (i.e., when there is no run) and e j/d j (i.e. the maximum fraction of
depositors that a bank can serve in a wealth group j according to the contract with the
available resources), a late consumer receiving a signal σ i j holds the belief that the
productive asset yields a positive return with probability E[p] = E[σ −ηi j ] = σ i j . In
that case, if they wait until date 2 depositors consume an amount of late consumption
that—with a slight abuse of notation—we denote as d j

L(A, n, n j ), to keep track that it
explicitly depends on the realization of the aggregate state, and on the total fraction of
depositors withdrawing at date 1 in the whole economy and in group j . In other words,

if they wait until date 2 depositors consume either d j
L(R, n, n j ) = R(1−n) e

j−n j d j

1−n j or

d j
L(0, n, n j ) = 0, and if theywithdraw they consume d j . In contrast, when the fraction

of depositors running is higher than e j/d j , the representative bank of wealth group j
goes into insolvency: It is forced to liquidate all productive assets and equally share the
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proceeds among the depositors who withdraw. Hence, late consumers get zero if they
wait, and e j/n j if they withdraw at date 1. As in Goldstein and Pauzner (2005), we can
show that the function v j (n, n j ) exhibits both between- and within-group one-sided
strategic complementarities. To see that, calculate:

∂v j

∂n� �= j
=

⎧⎨
⎩−Rσ i j u′

(
R(1 − n) e

j−n j d j

1−n j

)
e j−n j d j

1−n j if π ≤ n j < e j

d j ,

0 if e j

d j ≤ n j ≤ 1,
(9)

and notice that the derivative in the first interval is always negative. As far as the
within-group strategic complementarity, instead:

∂v j

∂n j
=

⎧⎨
⎩
Rσ i j u′ (R(1 − n) e

j−n j d j

1−n j

) [
− e j−n j d j

1−n j + (1 − n) e j−d j

(1−n j )2

]
if π ≤ n j < e j

d j ,

u′ ( e j

n j

)
e j

n j2 > 0 if e j

d j ≤ n j ≤ 1.

(10)

Again, the derivative in the first interval is negative (i.e. we have one-sided strategic
complementarity) as n j < 1.Moreover, the derivative in the second interval is positive
as an insolvent bank equally shares the proceeds from liquidation among all depositors
running. Hence, the more depositors run, the lower the amount they will receive.

We can now show that there is a unique equilibrium in threshold strategies. Assume
that all late depositors in group j run below the threshold σ j∗, and consider a late
depositorwhoobtained signalσ i j . To compute the expected utility differential between
withdrawing at date 2 versus date 1, notice that since both state p and error terms ηi j
are uniformly distributed, depositors’ posterior distribution of p given σ i j is uniformly
distributed over [σ i j −ε, σ i j +ε].19 Also, the posterior belief of depositor i regarding
the signal of agent k �= i is symmetric around σ i j . Hence we can compute the expected
utility differential, denoted E[v j (n, n j )|σ j∗]. We derive the threshold signal σ j∗ as
the value of the signal such that E[v j (n, n j )|σ j∗] = 0, i.e.:

∫ 1

π

∫ e j

d j

π

σ j∗u
(
R(1 − n)

e j − n jd j

1 − n j

)
f (n j )dn j f (n)dn

=
∫ 1

π

⎡
⎣∫ e j

d j

π

u(d j ) f (n j )dn j +
∫ 1

e j

d j

u

(
e j

n j

)
f (n j )dn j

⎤
⎦ f (n)dn, (11)

The one-sided strategic complementarity, together with the fact that v(n, n j ) is
increasing in σ i j , guarantees the uniqueness of a threshold signal σ j∗ in between the
dominance regions, below which a self-fulfilling run happens (Goldstein and Pauzner
2005). In this case, depositors run not because it is dominant strategy (as in the lower
dominance region) but because the signal is sufficiently bad for them to expect all the
other depositors to run. In a similar problem with a global game among heterogeneous

19 This claim works even when the realized state is close to 1 as we assume positive but vanishing noise.
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agents, Frankel et al. (2003) show that, as the noise ε of the signals vanishes, there
exists a unique threshold signal σ ∗ around which the thresholds signals σ j∗ tend to
cluster, which is the solution to the system of equations of (11) for every group j .
However, finding a solution to that system is cumbersome, as the expressions for
σ j∗ are highly non-linear. Instead, we solve the problem by applying the concept of
“Belief Constraint” which states that the average critical beliefs are uniform, so we can
characterize the critical type by averaging out the indifference conditions (Sakovics
and Steiner 2012). The following proposition ensues:

Proposition 1 The set of equilibrium threshold strategies characterizing thewithdraw-
ing decisions of the depositors is unique. As the volatility of the noise ε goes to zero,
all threshold signals σ j∗ converge to a common limit σ ∗, which is characterized by
the average indifference condition:

∑
j

E[v j (n, n j )|σ ∗] = 0, (12)

and gives:

σ ∗(d) =
(1 − π)

∑
j

⎡
⎣∫ e j

d j

π

u(d j )dn j +
∫ 1

e j

d j

u

(
e j

n j

)
dn j

⎤
⎦

∑
j

∫ 1

π

∫ e j

d j

π

u

(
R(1 − n)

e j − n jd j

1 − n j

)
dn jdn

, (13)

where d = {d j }Gj=1.

Proof In Appendix A. 	

Intuitively, the proof of the proposition can be summarized as follows. In principle,

every group j should have its own threshold signal σ j∗ belowwhich a signal triggers a
self-fulfilling run. This threshold signals should be characterized by thewealth-specific
indifference conditions for a late consumer between withdrawing early and waiting,
given their beliefs. However, the presence of between-group strategic complementar-
ities implies that the running behavior of a late consumer in a group j influences the
running behavior of the late consumers in all the other groups, too. That would mean
that we should solve for the groups-specific threshold signals σ j∗ by solving a system
of G indifference conditions in G unknowns. However, as the volatility of the noise ε

goes to zero, all depositors tend to form the same posterior beliefs about the aggregate
state. Moreover, the depositors have to form posterior beliefs about the behavior of
all the other depositors, in their own group as well as in the others. The Laplacian
Property (Morris and Shin 1998) ensures that the cumulative distribution functions of
the random signals σ i j in all groups j are uniformly distributed over the interval [0, 1].
Hence, the fraction of depositors withdrawing early in group j , which is given by (7),
is a random variable uniformly distributed over the interval [π, 1], and its probability
distribution function is f (n j ) = 1/(1 − π).
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To characterize the distribution of the total fraction of depositors running in the
whole economy, we instead adapt to our environment the concept of “Belief Con-
straint” of Sakovics and Steiner (2012). The Belief Constraint states that the Laplacian
property holds on average across the threshold types of the groups (from Sakovics and
Steiner 2012). Hence, the total fraction of depositors withdrawing early in the whole
economy, as given by (8), is also a randomvariable uniformly distributed over the inter-
val [π, 1], as the average cumulative distribution function of the signals is uniformly
distributed over the interval [0, 1]. In other words, given their signals all depositors
tend to assign the same probability to the future realization of the aggregate state
and are all agnostic about how many depositors run in their own wealth group as
well as in the others. Thus, all their threshold signals σ j∗ must cluster around a com-
mon threshold signal σ ∗(d), which uniquely determines the probability of a systemic
self-fulfilling run occurring in the economy. The characterization of this value should
come from the solution of a system of G indifference conditions in one unknown. By
averaging out the indifference conditions we can apply the Belief Constraint property
(that only applies to the average strategic beliefs). Doing so allows us to retrieve the
unique threshold signal σ ∗(d).

Importantly, the common threshold signal σ ∗(d) depends on the deposit contracts
chosen by the representative bank for each wealth groups. The following corollary
sheds light on this relationship:

Corollary 1 The threshold signal σ ∗(d) is an increasing and convex function of each
d j .

Proof In “Appendix A”. 	

This result highlights the channels of financial contagion from one wealth group

to the rest of the economy via expectation formation. As the bank promises a higher
amount of early consumption, it increases a late consumer’s expected utility of running
before bankruptcy (the numerator of σ ∗), and decreases the expected utility of waiting
(the denominator of σ ∗). Hence, the incentives to run are higher (σ ∗ increases) when
d j increases. Furthermore, σ ∗ is also convex in d j . To understand the intuition we
use Fig. 1. Figure 1a illustrates the effect of increasing d j on the expected utility of
running. For high d j , a further increase in d j (2) has a lower positive effect on the utility
of running than for a lower d j (1). Figure 1b illustrates instead the effect of increasing
d j on the expected utility of waiting. An increase in d j lowers late consumption d j

L .
The effect on the expected utility is higher for low d j (2) as in that case, an increase in
d j brings late consumption closer to zero, where marginal utility becomes very large
by the modified Inada conditions. This effect is necessarily larger than the effect on
the expected utility of running. Since σ ∗ balances the expected utility of running with
the expected utility of waiting, then it must increase more when d j is high than when
it is low.

Finally, the expression for the endogenous threshold signal σ ∗(d) in (13) allows us
to study how the endowments affect the probability of a systemic self-fulfilling run.

Corollary 2 For any given set of deposit contracts d, the threshold signal σ ∗(d) is a
decreasing and convex function of the initial endowments e j .
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(a) (b)

Fig. 1 Convexity of the threshold signal σ∗ with respect to d j

(a) (b)

Fig. 2 Convexity of the threshold signal σ∗ with respect to e j

Proof In “Appendix A”. 	

In the proof of the corollary, we show that increasing e j has two effects on the

threshold signal σ ∗(d). On the one hand, a higher e j means that at insolvency a
depositor of wealth group j receives a higher liquidation value (call it d j

B(e j )), and
this increases σ ∗(d). On the other hand, a higher e j increases the consumption of
a late consumer who does not run at illiquidity, i.e. when the fraction of depositors
running in their wealth group lies in the interval [π, e j/d j ], and this lowers σ ∗(d).
This second channel dominates and its dominance increases with e j : With a higher
e j those late consumers not running just before insolvency (i.e. when n j approaches
e j/d j ) consume a positive amount instead of zero, and this has a large effect on their
marginal utility due to concavity. Hence, the threshold signal σ ∗(d) is decreasing in
e j .

The intuition for why σ ∗ is convex in e j is similar to that of the convexity in d j , and
we analyze it in Fig. 2. Figure 2a illustrates the effect of a drop in e j on the expected
utility of running (the numerator of σ ∗) via a reduction in the bank liquidation value
d j
B(e j ) = e j/n j . For high e j , a further drop in e j (1) has a lower negative effect on

the utility of running than for a lower e j (2), by the concavity of the utility function.
Figure 2b illustrates instead the effect of a drop in e j on the expected utility of waiting
(the denominator of σ ∗) via lower late consumption d j

L(e j ). The effect on the expected
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utility is higher for low e j (2) than for high e j (1) as in the former case, a drop in e j
brings late consumption closer to zero, where marginal utility becomes very large by
the modified Inada conditions. This effect is necessarily larger than the effect on the
expected utility of running. Since σ ∗ balances the expected utility of running with the
expected utility of waiting, then it must decrease more when e j is low than when it is
high.

4.2 Banking equilibrium

Having characterized the endogenous threshold strategy played by the late consumers
at date 1, we proceed by backward induction and determine the deposit contract offered
by the bank to each wealth group at date 0. To this end, the bank solves the following
problem:

max
{d j } j=1,...,G

∑
j

[∫ σ ∗(d)

0
u(e j )dp

+
∫ 1

σ ∗(d)

[
πu(d j ) + (1 − π)pu

(
R(e j − πd j )

)]
dp

]
. (14)

Whenever the signal is between 0 and σ ∗(d) a systemic run happens, and all depositors
receive the pro-rata wealth-specific return e j from the liquidation of the productive
assets available in portfolio. When instead the signal is between σ ∗(d) and 1, no sys-
temic run happens, and the depositors turn out to be early consumers with probability
π and late consumers with probability 1−π , as in the banking equilibriumwith perfect
information.

To complete the characterization of the banking equilibrium, define the welfare
gain from avoiding a run in a wealth group j when a depositor i receives a signal
σ i j = σ ∗(d) as:

�U j = πu(d j ) + (1 − π)σ ∗(d)u(R(e j − πd j )) − u(e j ), (15)

which is decreasing in the initial endowment e j as the effect of a higher e j on the thresh-
old signal σ ∗(d) is large and negative, as shown in Corollary 2. Then, the first-order
condition with respect to d j implicitly determines the equilibrium early consumption
d j :

π

∫ 1

σ ∗

[
u′(d j ) − (1 − π)pRu′ (R(e j − πd j )

)]
dp = ∂σ ∗(d)

∂d j

∑
k

�Uk . (16)

This Euler equation highlights that the endogeneity of the threshold signal σ ∗(d)

forces the bank to impose a wedge between the marginal rate of substitution between
early and late consumption and the expected return on the productive asset. To see that
more clearly, rewrite (16) in terms of the marginal rate of substitution:
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MRS j ≡ u′(d j )

u′ (R(e j − πd j )
) = 1

π(1 − σ ∗(d))

1

u′(R(e j − πd j ))

∂σ ∗(d)

∂d j

∑
k

�Uk

+ (1 − π)E[p]R(1 + σ ∗(d)). (17)

The right-hand side of (17) is higher than the expected return on the productive asset,
namely (1−π)E[p]R, which is equal to themarginal rate of substitution between early
and late consumption in the banking equilibrium with perfect information. In other
words, the endogeneity of the threshold signal σ ∗(d) forces the banks to increase the
marginal rate of substitution. This means that the banking equilibrium exhibits lower
amount of early consumption with respect to the banking equilibrium with perfect
information, and as a consequence lower liquidity insurance.

The following lemma employs the Euler equation in (16) to derive the implications
of the endowment heterogeneity for the heterogeneity of the deposit contract. This
will be instrumental for the analysis of the effect of heterogeneity on the probability
of a systemic self-fulfilling run.

Lemma 1 In the banking equilibrium, early consumption d j is an increasing and
convex function of the initial endowment e j .

Proof In “Appendix A”. 	

The proof of the lemma shows that the derivative of the bank objective function

in (14) with respect to early consumption d j is increasing in the initial endowment
e j for the following reason. On the one hand, a higher e j lowers the threshold signal
σ ∗, as shown in Corollary 2, and decreases the marginal utility of late consumption.
On the other hand, the derivative of the bank objective function is decreasing in early
consumption d j , because of the concavity of the utility function and the fact that
the threshold signal σ ∗ is a convex function of d j , as proved in Corollary 1. Hence,
optimality requires that increasing e j (which increases the derivative of the bank
objective function) must be counterbalanced by an increase in d j (which lowers the
derivative of the bank objective function). As far as convexity is concerned, in the
proof we show that the marginal change in expected welfare induced by an increase in
early consumption is a quasi-convex function of the initial endowment. This implies
that the bank ’s objective function exhibits quasi-convex differences in (d j , e j ) which
in turn implies that the policy function is convex (Jensen 2018). Put differently, an
increase in e j creates such a large increase in the expected welfare change that it must
be optimally counterbalanced by a more than proportional increase in d j .

With this result in hand, we are ready to state how the inequality in the distribution
of the initial endowments impacts the probability of a systemic self-fulfilling run.

Proposition 2 Higher inequality in the distribution of the initial endowments ceteris
paribus brings about a higher probability of a systemic self-fulfilling run.

Proof In “Appendix A”. 	

To prove this proposition, assume an increase in inequality. Marginally increase the

endowment ek for a wealth group k and lower for the same amount the endowment e�
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for another wealth group for which e� < ek so that the aggregate initial endowment∑
j e

j remains constant. Changing the distribution of the endowments has a direct and
an indirect effect on the threshold signalσ ∗. The direct effect obtains from the threshold
signal being a decreasing convex function of the initial endowment e j . Therefore, the
increasing effect on σ ∗ induced by the drop in e� is larger than the decreasing effect
on σ ∗ induced by the growth in ek . At the same time, by the convexity of d j in e j ,
increasing the endowments of the rich increases their early consumption more than the
corresponding decrease for the poor. Finally, by the convexity of σ ∗ in d j , increasing
the endowment of a rich wealth group k induces an increase in the threshold signal
σ ∗ (through an increase in dk) that is not counterbalanced by the effect of a lower d�

induced by the lower endowment of a poor wealth group �. Put differently, increasing
the inequality in the distribution of the initial endowments has a stronger direct effect
on the incentives to run of the poor, and an indirect stronger effect on the incentives to
run of the rich. Both bring about a higher probability of a systemic self-fulfilling run.

5 Government intervention

Having characterized the banking equilibrium of the heterogeneous economy, in
this section we study a government intervention against systemic self-fulfilling runs,
and how it affects the formation of the depositors’ expectations and the redistribu-
tion of resources across the economy. To this end, we assume the existence of an
economy-wide benevolent government, who maximizes the total expected welfare of
the depositors in the economy. This government is different from a social planner,
in the sense that it operates in conjunction with markets (in this particular case, the
banking system), and it can only influence its behavior through policy. We model this
restriction by assuming that the bank collects the deposits and chooses the deposit
contracts before government intervention, and the government perfectly observes the
bank’s behavior. The intervention consists of possibly wealth-specific lump-sum non-
negative subsidies s j financed by some government resources ē. An intervention is
feasible if: ∑

j

s j ≤ ē. (18)

5.1 Bank liquidity assistance

In this section, we start by analyzing the effect of an intervention that is unanticipated
by the bank, and only affects systemic financial fragility via the change in the depos-
itors’ running behavior. We assume that the government implements an intervention
in the spirit of a lender of last resort (LOLR).20 More specifically, the government
provides wealth-specific subsidies directly to the banks as long as they are illiquid
but solvent, i.e. as long as the fraction of depositors running in each wealth group j

20 In doing so, we abstract from the possibility that this intervention might bring about moral hazard, like
in Martin (2006).
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is lower than the fraction e j/d j . Notice that the government perfectly observes both
the endowments e j and the early consumption d j promised by the banks. The budget
constraint of the representative bank at date 1 reads:

X j + s j = n jd j , (19)

where X j is the amount of productive assets that needs to be liquidated to provide
early consumption. Thus, the amount of productive assets that gets to maturity is equal
to e j − X j , and affects the amount of consumption that a late consumer gets if they
do not withdraw at date 1. Moreover, the subsidy affects the maximum fraction of
depositors that can be served before the bank goes into insolvency, i.e. (e j + s j )/d j .
Thus, the advantage of waiting versus running in the presence of a subsidy reads:

v j (n, n j , s j ) =
⎧⎨
⎩

σu
(
R(1 − n) e

j+s j−n j d j

1−n j

)
− u(d j ) if π ≤ n j < e j+s j

d j ,

−u
(
e j

n j

)
if e j+s j

d j ≤ n j ≤ 1.
(20)

By the Belief Constraint, the endogenous threshold signal σ ∗(d, s) comes from the
average indifference condition between running or not, and reads:

σ ∗(d, s) =
(1 − π)

∑
j

⎡
⎣∫ e j+s j

d j

π

u(d j )dn j +
∫ 1

e j+s j

d j

u

(
e j

n j

)
dn j

⎤
⎦

∑
j

∫ 1

π

∫ e j+s j

d j

π

u

(
R(1 − n)

e j + s j − n jd j

1 − n j

)
dn jdn

. (21)

From here, we can calculate the effect of a marginal increase of a subsidy s j on the
common threshold signal σ ∗(d, s):

∂σ∗(d, s)

∂s j
=

(1 − π)

u(d j )−u

(
e j

e j+s j
d j

)
d j − σ∗(d, s)

∫ 1

π

∫ e j+s j

d j

π
u′ (R(1 − n) e

j+s j−n j d j

1−n j

)
R(1−n)

1−n j dn j dn

∑
j

∫ 1

π

∫ e j+s j

d j

π
u

(
R(1 − n)

e j + s j − n j d j

1 − n j

)
dn j dn

.

(22)

Intuitively, a subsidy has two effects. On the one hand, it increases the maximum
fraction of depositors that the bank can serve before insolvency. This creates a positive
difference between withdrawing early just before and after insolvency, that increases
the depositors’ incentives to run (the first part of the numerator of (22)). On the other
hand, positive subsidies allow the bank to liquidate a lower amount of productive
assets, that stay until maturity and pay higher late consumption at date 2, thus lowering
the depositors’ incentives to run. By the modified Inada condition the second effect
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dominates: Providing subsidies to late consumers who are not running just before
insolvency would allow them to consume a positive amount instead of zero, and that
would have a dominant positive effect on their marginal utility of waiting. Hence, the
threshold signal σ ∗(d, s) is decreasing in the subsidies s j .

The previous result clarifies that it is possible for a government to choose a subsidy
scheme that clears systemic self-fulfilling runs. Such an intervention would allow the
bank to serve all depositors in all wealth groups at date 1, even in the case of a run.
This is possible when the maximum fraction of depositors that can be served before
insolvency (e j + s j )/d j is equal to 1, or s j = d j − e j for all groups j . If this full
liquidity assistance is feasible, every depositor internalizes that there are sufficient
resources to pay early withdrawals in the case of a systemic run, so no one runs and
the bank can implement the equilibrium with perfect information at zero costs, i.e.
s j = 0 for all groups j .

We now focus on themore interesting case of a partial bank liquidity assistance. The
government intervention can still lower systemic financial fragility, but not completely
erase it. Then, the government choose an allocation of subsidies to maximize the
expected welfare of the whole economy:

max
{s j } j=1,...,G

∑
j

[∫ σ ∗(d,s)

0
u(e j )dp

+
∫ 1

σ ∗(d,s)

[
πu(d j ) + (1 − π)pu(R(e j − πd j ))

]
dp

]
, (23)

subject to the definition of σ ∗(d, s) in (21), to its budget constraint in (18), and to
s j ∈ [0, d j − e j ] for all groups j . By solving this problem, we derive the following
result:

Proposition 3 The optimal partial bank liquidity assistance subsidizes wealth groups
according to the statistics:

� j = −∂σ ∗(d, s)
∂s j

∑
k

�Uk . (24)

There exists a unique threshold group ĵ such that all wealth groups with �( j) > �( ĵ)

are fully subsidized (i.e. s j = d j − e j ), all wealth groups with �( j) < �( ĵ) receive

zero (i.e. s j = 0) and all wealth groups with �( j) = �( ĵ) receive s j ∈ (0, 1).

Proof In “Appendix A”. 	

Intuitively, as the government intervenes only when the bank is illiquid but solvent,

the allocation of subsidies onlymaximizes their impact on the depositors’ expectations,
and therefore on the probability of a systemic self-fulfilling run. The government
achieves this by calculating the statistic � j for each group j . This depends on the
initial endowment in the following way:

Corollary 3 The statistic � j is positive and decreasing in the initial endowments e j .

Proof In “Appendix A”. 	
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The proof of this corollary is based on showing that the threshold signal σ ∗(d, s)
is decreasing in the subsidy s j , and the welfare gains from avoiding a run �Uk in any
group k is decreasing in the initial endowment e j of a group j . On top of that, the
marginal effect of a subsidy to group j on the probability of a systemic self-fulfilling
run σ ∗ is not only negative, but also increasing in the initial endowment.

Corollary 3 has a crucial consequence for the allocation of subsidies in this partial
intervention against bank illiquidity. The government finds it optimal to implement a
redistributive subsidy scheme to minimize the occurrence of systemic self-fulfilling
runs. It ranks poor wealth groups relatively higher, because they are “more systemic”:
The same subsidy has a larger dampening effect on the probability of a systemic
self-fulfilling run when paid to them than when paid to rich wealth groups.

Finally, the third part of Proposition 3 suggests a practical rule to allocate subsidies:
Rank wealth groups from the most to the least systemic according to (24), and start
fully subsidizing them from top to bottom, until the government budget constraint
clears. This means that the wealth groups at the bottom of the ranking, which are also
the richest ones, might receive no subsidy. However, notice that the economy exhibits
only two possible ex-post outcomes: run and no-run. This means that a government
intervention against bank illiquidity is off equilibrium: It is announced, but never
implemented.Richwealth groupswould benefit from this intervention anywaybecause
the redistribution towards the poor is off equilibrium, but the resulting drop in systemic
financial fragility occurs on the equilibriumpath. Therefore, this redistribution (indeed,
the mere announcement of it) has the “trickle-up” effect of lowering the probability
of a systemic self-fulfilling run in the whole economy by subsidizing the poor.

5.2 Liquidity insurance with government intervention

In this section,we study how the banks’ anticipation of government intervention affects
their provision of liquidity insurance, i.e. their choice of d j at date 0. Suppose first
that there exists a subsidy scheme that, under the optimal deposit contracts, guarantees
full bank liquidity assistance. As already argued, this is sufficient to rule out systemic
self-fulfilling runs. Therefore, the representative bank is left with dealing with “fun-
damental” runs below the lower dominance regions only. More formally, the banking
problem with bank full liquidity assistance reads:

max
{d j } j=1,...,G

∑
j

[∫ σ

0
u(e j )dp +

∫ 1

σ

[
πu(d j ) + (1 − π)pu

(
R(e j − πd j )

)]
dp

]
,

(25)

subject to the definition of the threshold for the lower dominance region:

σ = min
j

{
u(d j )

u(R(e j − πd j ))

}
. (26)

The first-order condition with respect to dk implicitly determines the equilibrium
deposit contract:
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π

∫ 1

σ

[
u′(dk) − (1 − π)pRu′ (R(ek − πdk)

)]
dp = ∂σ

∂dk
∑

�

�U �, (27)

for the group k from which σ is calculated. This expression is similar to the Euler
equation of the banking equilibriumwithout government intervention, with the excep-
tion that the wedge between the marginal rate of substitution between early and late
consumption and the expected return on the productive asset now depends on the
welfare gains from avoiding a fundamental run, as represented by the marginal effect
of dk on the threshold signal σ . For all the other groups j �= k instead, the deposit
contract is characterized by:

u′(d j ) = (1 − π)pRu′ (R(e j − πd j )
)

, (28)

which is equal to the equilibrium of the economy with perfect information.
Now suppose there is no subsidy scheme that ensures full bank liquidity assistance

once deposit contracts are optimally chosen. Then, government intervention cannot
rule out systemic self-fulfilling runs, but only lower their occurrence. Yet, as the inter-
vention only happens off equilibrium, a bank at date 0 chooses the deposit contract d j

by solving the very same problem as in (14). The only difference with the unregulated
banking equilibrium lies in the fact that the optimization problem is subject to the
expression for σ ∗(d, s) in (21) that takes into account the effect of the subsidies on the
threshold signal. This final proposition characterizes how the provision of liquidity
insurance depends on full or partial government intervention:

Proposition 4 In the banking equilibrium with bank liquidity assistance, the banks
provide more liquidity insurance than in the banking equilibrium without government
intervention, i.e. d j

FULL > d j
P ART I AL > d j for all groups j .

Proof In “Appendix A”. 	

The proof of the lemma is based in part on showing that the amount of early

consumption d j offered by the banks and the subsidy that they receive and/or other
groups receive are strategic complements in the banking problem. Then, when the
government implements a partial bank liquidity assistance, higher subsidies lower the
probability of a systemic self-fulfilling run, and the bank anticipates this by increasing
liquidity insurance.

When a full liquidity assistance is instead feasible, the effect of the government
intervention on liquidity insurance goes in a similar direction as when the intervention
is partial, but for different reasons. A full liquidity assistance rules out systemic self-
fulfilling runs, but leaves fundamental runs under the lower dominance region, whose
occurrence is not affected by the subsidies. This means that we cannot infer what is the
direct effect of this intervention on the provision of liquidity insurance. However, the
wedge between the marginal rate of substitution between early and late consumption
and the expected returnon theproductive assetwith full bank liquidity assistance is zero
for all groups j �= k and lower than in the banking equilibrium without government
intervention for the group k from which σ is calculated. This is because in (27) the
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sum of the welfare gains
∑

� �U � from avoiding a fundamental run is always lower
than the sum of the welfare gains from avoiding a systemic self-fulfilling run with
partial government intervention. Moreover, the marginal effect of increasing early
consumption dk is positive on both thresholds σ and σ ∗, but is larger on the second
one by the modified Inada condition. Hence, with full bank liquidity insurance the
bank is free to offer higher liquidity insurance to all wealth groups.

To sum up, the total effect of liquidity assistance on systemic financial fragility
does not depend only on the feasibility of the intervention itself. On the one hand, it is
true that full liquidity assistance, when feasible, completely resolves it. On the other
hand, for given deposit contract, a partial liquidity assistance directly reduces systemic
financial fragility. However, the anticipation of the intervention changes the provision
of liquidity insurance, and this pushes in the direction of indirectly increasing systemic
financial fragility, as Corollary 1 shows. Therefore, the total effect of a partial liquidity
assistance is ambiguous. In the next section, we shed light on the total effect (direct
and indirect) of a partial liquidity assistance in a numerical example.

6 A numerical example

In this final section, we present some properties of the model in a numerical example.
The main goal is to study the comparative statics of the equilibrium relationship
between the wealth distribution and systemic financial fragility. Moreover, we also
analyze the total effect (direct and indirect) of a partial liquidity assistance on systemic
financial fragility. To this end, we assume a utility function of the form u(c) = ((c +
ψ)1−γ −ψ1−γ )/(1−γ ), and set the parameters as follows: γ = 3 and ψ = 4, R = 5
and π = 0.10.

In the first exercise, we study the effect of increasing depositors’ relative risk aver-
sion on systemic financial fragility. In practice, we numerically solve the problem
in (14) starting from a distribution of initial endowments [0.9, 1, 1.1], and gradually
increase its standard deviation from 0.1 to 0.5 while keeping the aggregate endow-
ment constant. Figure 3a plots the threshold signal σ ∗(d) as characterized by (13), and
confirms the result of Proposition 2, namely a positive relationship between wealth
inequality and systemic financial fragility. By raising γ to 3.1 (dashed line) and 3.2
(dotted line), we find also a positive relationship between relative risk aversion and
systemic financial fragility. That is because the more risk averse depositors are, the
more insurance against idiosyncratic uncertainty (i.e. higher d j ) they are provided,
and therefore the higher the threshold signal σ ∗(d) by Corollary 1.

In the second exercise, we keep the volatility of the wealth distribution constant
and increase its aggregate size by shifting all endowments by a constant amount. We
solve again the problem in (14) starting from the distribution of the initial endowments
[0.9, 1, 1.1], and gradually increase them all by 0.1 to 0.5. In principle, two effects
should be at play here. On the one hand, according to Corollary 2 increasing the
aggregate endowment should have the direct effect of lowering the threshold signal
σ ∗(d). On the other hand, Lemma 1 shows that higher endowments bring about higher
liquidity insurance and early consumption d j , that should increase the threshold signal
σ ∗(d) by Corollary 1. Figure 3b shows that the second effect dominates. For given
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(a) (b) (c)

Fig. 3 The evolution of systemic financial fragility: comparative statics

volatility of thewealth distribution, a raise in aggregatewealth induces higher systemic
financial fragility in the economy.

Finally, our third exercise studies the total effect (direct and indirect) of a partial
liquidity assistance. To this end, we numerically solve a system of equations made
of: (i) the banking problem (14) with endowments [0.9, 1, 1.1], modified with the
threshold signal σ ∗(d, s) in (21); (ii) the equilibrium conditions for the optimal sub-
sidies in (24); (iii) the government budget constraint in (18). As a comparative-statics
exercise, we let the size of government resources ē vary in the interval [0.003, 0.009]
percent.21 Two channels should be at play here, too. First, as already argued in (22),
higher subsidies should allow the banks to serve more depositors before insolvency,
thus directly decreasing the threshold signal σ ∗(d, s) and delaying a run. Second, by
Proposition 4 higher subsidies should increase the provision of liquidity insurance and
early consumption d j , and as a consequence indirectly increase the threshold signal
σ ∗(d, s). Figure 3c shows that the direct effect always dominates the indirect effect,
hence partial liquidity assistance lowers systemic financial fragility. Interestingly, as
the size of government resources increases, the economy gets to a point at which the
direct effect dominates less the indirect effect, and systemic financial fragility increases
with the size of government resources (while still being lower than its level without
intervention). This seems to suggest that at least in the considered range of param-
eters, there exists an intermediate level of partial liquidity assistance that minimizes
systemic financial fragility. Put differently, a government with a large budget (but not
large enough for a full liquidity assistance) might prefer a smaller intervention to curb
systemic financial fragility.

7 Concluding remarks

The present paper proposes a novel mechanism through which wealth inequality exac-
erbates systemic financial fragility via the self-fulfilling expectations of a systemic
bank run. In our model, systemic financial fragility is fundamentally a consequence
of the presence of the investment externality. In fact, it creates a channel of contagion

21 We choose the lower bound of ē only for numerical convenience and for the sake of exposition. By
continuity, our results extends to the interval [0, 0.003] percent, too. Given the chosen parameters, in the
numerical solutions the equilibrium ratios d j /e j are always larger than 1 (as expected) but extremely low
for all groups j . Hence, in order to have e j + s j < d j for all groups j , so that subsidies are not sufficient
for a full liquidity assistance, we need to assume low government resources. At the upper bound for ē, the
fraction of depositors that a subsidized bank can serve in equilibrium is close to 99.8% for all wealth groups.
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across wealth groups that otherwise would be separate one from the others. For the
same reason, it is because of the investment externality that there exists a coordination
failure among depositors not only within wealth groups, but also between them. Thus,
the depositors who are unable to perfectly observe the fundamental of the economy,
rely on noisy signals and on the formation of expectations regarding other deposi-
tors’ signals to decide whether or not to run. We show that this coordination problem
becomes more acute when wealth heterogeneity is high: Increasing wealth inequality
has a direct and indirect effect on the depositors’ incentives to run, and both bring
about a higher probability of a systemic self-fulfilling run.

Notice that we build our argument in a framework without deposit insurance. This
finds its justification in the increasing role of uninsured deposits in banks’ balance
sheets. In fact, total uninsured checkable, time and savings deposits held by U.S.
chartered commercial banks today represent almost 40% of total bank liabilities, after
reaching their lowest peak at around 10% inmid-2009.22 Moreover, Allen et al. (2018)
show that a deposit insurance scheme working in the same way as in the real world
(i.e. guaranteeing a fixed repayment in any possible aggregate state and for any wealth
level) would not completely isolate the economy from depositors’ panic. In other
words, our argument holds even in the presence of deposit insurance.

Do our results justify a direct government intervention to resolve the investment
externality and against wealth inequality, for example through taxation? As far as the
first is concerned, the answer is no. The representative bank in our model serves all
depositors irrespective of their wealth group like a “universal” bank, and because of
perfect competition it takes into account how the contractual choice that it makes for
a group influences all the others. In that sense, a government intervention to resolve
the externality would be needed only in a segmented banking system, for example
one in which banks serve only specific wealth groups. In such a framework, a bank
in group j would not internalize the effect of its own choice on the marginal costs of
banks in other groups, and choose an inefficiently high early consumption d j . Thus, a
government would arguably need to impose restrictions on banks’ deposit rates (e.g.
an upper bound or a tax on early consumption d j ) much like as in Hellman et al.
(2000). In any case, the mechanism through which the wealth distribution impacts
systemic financial fragility, as characterized by Proposition 2, would hold exactly in
the same way.

As already argued, the assumption of a universal bank is natural in this framework.
Nevertheless, a universal bank can be an unstable business model. To see this, assume
that there exists a bank-formation stage in which the wealth groups decide whether or
not to create a coalition and form a universal bank at a cost. Further assume that there
is no enforcement mechanism that forces the wealth groups to stay in the coalition.
Under these assumptions, a wealth group that forms its own bank would benefit from
lower systemic financial fragility but not incur in any coalition cost. In other words,
a universal bank might not be coalition proof.23 We leave for future research some
further analyses of these issues.

22 Source: Financial Accounts of the United States.
23 This result is reminiscent of the free riding problem in climate agreements (Carraro 1997).
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Regarding a direct government intervention against wealth inequality, we showed
that loweringwealth inequality reduces systemicfinancial fragility. Therefore, awealth
redistributionmight be Pareto improving. In fact, such an intervention would undoubt-
edly benefit poor groups, and might also make rich groups better off despite the wealth
loss, because of the lower systemic financial fragility that they would enjoy. In the
model, that would be equivalent to assuming a government intervention similar to the
one in Sect. 5, but with three changes: (i) ē = 0, (ii) subsidies s j can be negative,
and (iii) must be in zero net supply, i.e.

∑
j s

j = 0. As also showed by Sakovics and
Steiner (2012), this intervention would qualitatively yield the same results as the ones
we derive: poor groups would be subsidized, and rich groups would be taxed.

Despite these considerations, it should be noted that financial fragility arises in
wealth homogeneous economies too, where coordination failures are still possible.
Moreover, a full liquidity assistance to the banks, if feasible, is extremely effective at
ruling out self-fulfilling runs, independently of the level and of the heterogeneity of
wealth in the economy. In other words, a wealth redistribution is neither necessary nor
sufficient to eliminate the coordination failure leading to systemic financial fragility.
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
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Appendices

A Proofs

Proof of Proposition 1 We start by proving the first part of the proposition. The utility
advantage of waiting versus running is:

v j (p, n, n j ) =
⎧⎨
⎩

σu
(
R(1 − n) e

j−n j d j

1−n j

)
− u(d j ) if π ≤ n j < e j

d j

−u
(
e j

n j

)
if e j

d j ≤ n j < 1,
(29)

where n j and n are as in (7) and (8) and are the aggregate actions, i.e. the total fraction
of depositors who are withdrawing at date 1 in group j and in the whole economy,
respectively. Define � j = (σ j∗ − σ ∗) as the difference between the threshold signal
σ j∗ of group j and the threshold signal σ ∗ of a generic group (which will turn out to be
the unique equilibrium threshold). Given this definition, we can rescale the aggregate
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actions as:

ñ j = π + (1 − π)(1 − F(σ j∗ − p)) = π + (1 − π)(1 − F(� j − ζ )) ≡ ñ j (ζ,� j ),

(30)

ñ =
∑
k

nk = π + (1 − π)
∑
k

(1 − F(σ k∗ − p)) ≡ ñ(ζ,�), (31)

where � is the vector of � j -s. Moreover, define ϑ(ñ,�) as the inverse of ñ(ζ,�)

with respect to ζ . Finally, define:

H j (σ ∗,�) = E[v j (σ ∗ + ϑ(ñ,�), ñ(ζ,�), ñ j (ζ,� j ))]. (32)

We follow Frankel et al. (2003) and prove by contradiction that the solution to the
system of indifference conditions:

H j (σ ∗,�) = 0, (33)

for all j = 1, . . . ,G is unique. Assume there exist two distinct solutions, namely
(σ ∗,�∗) and (σ ∗′,�∗′).We distinguish two cases:�∗ = �∗′ and�∗ �= �∗′. Suppose
first that�∗ = �∗′, then it must be that σ ∗ �= σ ∗′ and without loss of generality, σ ∗ <

σ ∗′. Since H j (σ ∗,�) is increasing in σ ∗, this implies that H(σ ∗,�∗) < H(σ ∗′,�∗′).
However, given that both (σ ∗,�∗) and (σ ∗′,�∗′) are solutions to the system,we should
have that H(σ ∗,�∗) = H(σ ∗′,�∗′) = 0, and that is a contradiction.

Now suppose that �∗ �= �∗′ and σ ∗ ≤ σ ∗′. Choose h ∈ argmax j (�
j∗′ − � j∗)

and let D = max j (�
j∗′ − � j∗) ≥ 0. Observe that �h∗′ − � j∗′ ≥ �h∗ − � j∗, for all

j = 1, . . . ,G,with strict inequality for at least one j .Define σ̃ = σ ∗′+D > σ ∗′ ≥ σ ∗,
hence:

Hh(σ̃ ,�∗) ≥ Hh(σ ∗,�∗) = 0. (34)

In order to prove the contradiction, we have to show that:

Hh(σ̃ ,�) ≥ Hh(σ ∗′,�∗′) = 0. (35)

To this end, rewrite:

Hh(σ̃ ,�∗) =
∫ 1

0

∫ 1

0
vh(p, n, nh) f (nh)dnh f (n)dn

=
∫ ε

−ε

vh(σ̃ h − ηh, ñ(�h∗ − ηh,�∗), nh(�h∗ − ηh,�h∗)) f (ηh)dηh,

(36)

where σ̃ h = σ̃ + �h∗, and:

Hh(σ ∗′,�∗′)

=
∫ ε

−ε

vh(σ h∗′ − ηh, ñ(�h∗′ − ηh,�∗′),
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nh(�h∗′ − ηh,�h∗′)) f (ηh)dηh, (37)

where σ h∗′ = σ ∗′ + �h∗′. It is easy to see that σ h∗′ = σ̃ h , as σ̃ h = σ̃ + �h∗ =
σ ∗′ + D + �h∗ = σ ∗′ + �h∗′ − �h∗ + �h∗ = σ ∗′ + �h∗′ = σ h∗′. Moreover:

ñ(�h∗′ − ηh,�∗′) ≥ ñ(�h∗ − ηh,�∗), (38)

for all ηh , as:∑
j

(1 − F(� j∗′ − �h∗′ + ηh)) ≥
∑
j

(1 − F(� j∗ − �h∗ + ηh)) (39)

holds due to the observation above. Similarly:

F(� j∗′ − �h∗′ + ηh) ≤ F(� j∗ − �h∗ + ηh) (40)

for all ηh . Hence, H j (σ̃ ,�) ≥ Hh(σ ∗′,�∗′) because H j (σ,�) is decreasing in
ñ(ζ,�) and ñ j (ζ,�). This gives a contradiction, and concludes the proof of the first
part of the proposition.

For the second part of the proposition, we start by showing that, when ε is small,
the system of indifference conditions H j (σ ∗,�)(ε) = 0 is well approximated by
H j (σ ∗,�)(0) = 0. Notice that, as ε → 0, we have that ζ = 0 and ϑ(ñ,�) = 0.
Hence:

H j (σ ∗,�)(ε)

=
∫ 1

0

∫ e j

d j

π

[
(σ ∗ + ϑ(ñ,�))u

×
(
R(1 − ñ(ζ,�))(e j − ñ j (ζ,�)d j )

1 − ñ j (ζ,�)

)
− u(d j )

]
× f (ñ j )dñ j (ζ,�) f (ñ)dñ(ζ,�)

−
∫ 1

0

∫ 1

e j

d j

u

(
e j

d j

)
f (ñ j )dñ j (ζ,�) f (ñ)dñ(ζ,�), (41)

H j (σ ∗,�)(0) =
∫ 1

0

∫ e j

d j

π

[
σ ∗u

(
R(1 − ñ(0,�))(e j − ñ j (0,�)d j )

1 − ñ j (0,�)

)
u(d j )

]
× f (ñ j )dñ j (0,�) f (ñ)dñ(0,�)

−
∫ 1

0

∫ 1

e j

d j

u

(
e j

d j

)
f (ñ j )dñ j (0,�) f (ñ)dñ(0,�). (42)

The intervals of integration of the two functions are the same.Moreover, the integrands
are both Lipschitz continuous in σ ∗. Hence, there exists a constant C1 such that:

|H j (σ ∗,�)(ε) − H j (σ ∗,�)(0)| ≤ C1ε. (43)
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In otherwords, as ε goes to zero, the two systems of equations coincide. To see that also
the solutions of the two systems of equations coincide, let σ ∗ and�∗ be the solution of
the system of indifference conditions H j (σ ∗,�)(0) = 0. Given any neighbourhood
N of (σ ∗,�∗), the function H j (σ ∗,�)(0) is uniformly bounded from 0 by some ι on
S \ N . Choosing ε̄ such that |H j (σ ∗,�)(ε) − H j (σ ∗,�)(0)| ≤ ι for all ε < ε̄, the
system of equations H j (σ ∗,�)(ε) = 0 has no solution outside of N.

Finally, by taking the average of the indifference conditionwe can use the Laplacian
property. This allows us to characterize the unique threshold signal σ ∗(d) in (13),

1

G

∑
j

H j (σ ∗,�)(0) =

1

G

∑
j

⎡
⎣∫ 1

0

∫ e j

d j

π

[
σ ∗u

(
R(1 − ñ(0,�))(e j − ñ j (0,�)d j )

1 − ñ j (0,�)

)
− u(d j )

]

× f (ñ j (0,�))dñ j (0,�) f (ñ(0,�))dñ(0,�)+

−
∫ 1

0

∫ 1

e j

d j

u

(
e j

d j

)
f (ñ j (0,�))dñ j (0,�) f (ñ(0,�))dñ(0,�)

]
. (44)

By the Laplacian Property, ñ j (0,�) ∼ U [π, 1], hence the probability distribution
f (ñ j (0,�))= 1/(1−π) is independent of�. In a similarway, by theBeliefConstraint
(Sakovics and Steiner 2012), the Laplacian Property holds on average, meaning that
also ñ(0,�) ∼ U [π, 1], therefore the probability distribution f (ñ(0,�)) = 1/(1−π)

is independent of �. Thus, the average indifference condition takes the form:

∑
j

∫ 1

π

∫ e j

d j

π

σ ∗u
(
R(1 − n)

e j − n jd j

1 − n j

)
dn jdn =

∑
j

∫ 1

π

∫ e j

d j

π

u(d j )dn j +
∫ 1

e j

d j

u

(
e j

n j

)
dn jdn. (45)

Rearranging this expression, we get threshold signal σ ∗(d) in (13). This ends the
proof. 	

Proof of Corollary 1 We study the sign of:

∂σ ∗(d)

∂d j
= 1

∑
j

∫ 1

π

∫ e j

d j

π

u

(
R(1 − n)

e j − n jd j

1 − n j

)
dn jdn

×
[
(1 − π)u′(d j )

(
e j

d j
− π

)

+ σ ∗(d)

∫ 1

π

∫ e j

d j

π

u′(d j
L(R, n, n j ))

R(1 − n)n j

1 − n j
dn j dn

]
(46)
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This is clearly positive, as the utility function u(c) is increasing and e j/d j is larger
than π .

To show that σ ∗ is convex in d j , calculate:

∂2σ ∗

∂d j2 = 1

∑
j

∫ 1

π

∫ e j

d j

π

u

(
R(1 − n)

e j − n jd j

1 − n j

)
dn jdn

[
(1 − π)u′′(d j )

(
e j

d j
− π

)

− (1 − π)u′(d j )
e j

d j2 + 2
∂σ ∗

∂d j

∫ 1

π

∫ e j

d j

π

u′(d j
L(R, n, n j ))

R(1 − n)n j

1 − n j
dn j dn+

− σ ∗ ∂σ ∗

∂d j

∫ 1

π

∫ e j

d j

π

u′′(d j
L(R, n, n j ))

(
R(1 − n)n j

1 − n j

)2

dn jdn

]
. (47)

The first two terms in the square brackets are negative, and the last two are positive.
By the modified Inada condition:

lim
n j→ e j

d j

u′
(
R(1 − n)

e j − n jd j

1 − n j

)
= − lim

n j→ e j

d j

u′′
(
R(1 − n)

e j − n jd j

1 − n j

)

= lim
c→0

u′(c) = F . (48)

Hence, the derivative is positive. This ends the proof. 	

Proof of Corollary 2 To prove that the threshold signal σ ∗(d) is decreasing in e j , cal-
culate:

∂σ ∗(d)

∂e j
= 1 − π

DENσ ∗

[∫ 1

e j

d j

u′
(
e j

n j

)
1

n j
dn j +

− σ ∗(d)

∫ 1

π

∫ e j

d j

π

u′
(
R(1 − n)

e j − n jd j

1 − n j

)
R(1 − n)

1 − n j
dn j dn

⎤
⎦ , (49)

where DENσ ∗ is the denominator of σ ∗(d). By the modified Inada condition, the
derivative is negative.24 For the second part of the proof regarding the convexity,
calculate instead:

∂2σ ∗(d)

∂e j2
= 1 − π

DENσ ∗

[
−u′(d j )

e j
+

∫ 1

e j

d j

u′′
(
e j

n j

)
1

n j2 dn
j +

− ∂σ ∗(d)

∂e j

⎡
⎣∫ 1

π

∫ e j

d j

π

u′
(
R(1 − n)

e j − n jd j

1 − n j

)
R(1 − n)

1 − n j
dn jdn

⎤
⎦ +

24 Notice that u(c) has a kink at c = 0, so it is not differentiable at that point. The derivative tends to
infinity, without ever getting there.

123



F. Garcia, E. Panetti

− σ ∗(d)

⎡
⎣∫ 1

π

∫ e j

d j

π

u′′
(
R(1 − n)

e j − n jd j

1 − n j

) [
R(1 − n)

1 − n j

]2
dn jdn

⎤
⎦ +

− ∂σ ∗(d)

∂e j

⎡
⎣∫ 1

π

∫ e j

d j

π

u′
(
R(1 − n)

e j − n jd j

1 − n j

)
R(1 − n)

1 − n j
dn jdn

⎤
⎦

⎤
⎦ .

(50)

As σ ∗(d) is decreasing in e j and the utility function is concave, this expression must
be positive by the modified Inada condition. Hence σ ∗(d) is a convex function of e j .
This ends the proof. 	

Proof of Lemma 1 We apply the implicit function theorem to the Euler equation (16).
In particular:

∂FOC

∂e j
= −π

∫ 1

σ ∗(d)

(1 − π)pR2u′′(R(e j − πd j ))dp+

− π
∂σ ∗(d)

∂e j

[
u′(d j ) − (1 − π)σ ∗(d)Ru′(R(e j − πd j ))

]
+

− ∂2σ ∗(d)

∂d j∂e j
∑
k

�Uk − ∂σ ∗(d)

∂d j

[
(1 − π)σ ∗Ru′(R(e j − πd j )) − u′(e j )

]
+

− ∂σ ∗(d)

∂d j
(1 − π)

∂σ ∗(d)

∂e j
∑
k

u(R(ek − πdk)). (51)

This expression is positive, as all terms are negative and:

∂2σ ∗(d)

∂d j∂e j
= 1

DENσ ∗

[
(1 − π)

u′(d j )

d j
+ ∂σ ∗(d)

∂e j

∫ 1

π

∫ e j

d j

π

u′(d j
L(R, n, n j ))

× R(1 − n)n j

1 − n j
dn j dn

+ σ ∗(d)

∫ 1

π

∫ e j

d j

π

u′′(d j
L(R, n, n j ))

(
R(1 − n)

1 − n j

)2

n jdn j dn+

− ∂σ ∗(d)

∂d j

∫ 1

π

∫ e j

d j

π

u′(d j
L(R, n, n j ))

R(1 − n)n j

1 − n j
dn jdn

]
(52)

is also negative by the modified Inada condition. Furthermore:

∂FOC

∂d j
= π

∫ 1

σ ∗(d)

[
u′′(d j ) + (1 − π)π pR2u′′(R(e j − πd j ))

]
dp+

− ∂σ ∗(d)

∂d j
π

[
u′(d j ) − (1 − π)σ ∗(d)Ru′(R(e j − πd j ))

]
+
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− ∂2σ ∗(d)

∂d j2

∑
k

�Uk − ∂σ ∗(d)

∂d j

[
πu′(d j ) − (1 − π)σ ∗πRu′(R(e j − πd j ))

]
+

−
(

∂σ ∗(d)

∂d j

)2

(1 − π)
∑
k

u(R(ek − πdk)). (53)

This expression is also negative as σ ∗(d) is convex in d j . Using these two results:

∂d j

∂e j
= − ∂FOC/∂e j

∂FOC/∂d j
(54)

is positive.
To prove convexity, we follow Jensen (2018). If the objective function u(x, y)

exhibits quasi-convex differences, then x∗ = argmaxxu(x, y) is convex in y. The
objective function u(x, y) exhibits quasi-convex differences if and only if its partial
derivative with respect to x is quasi-convex in (x, y). A differentiable function f (x, y)
is quasi-convex in (x, y) if and only if for any x1, x2 such that f (x1) ≤ f (x2) we
have that the following holds (Boyd and Vandenberghe 2004):

∇ f (x2)
T (x1 − x2) ≤ 0. (55)

In our case, (55) reads:

∂FOC

∂d j

∣∣∣∣
(d j

2 ,e j2 )
(d j

1 − d j
2 ) + ∂FOC

∂e j

∣∣∣∣
(d j

2 ,e j2 )
(e j1 − e j2) ≤ 0. (56)

Given that the first-order condition is increasing in e j and decreasing in d j , then the
pairs (d j

1 , e j1) and d j
2 , e j2 that satisfy FOC(d j

1 , e j1) ≤ FOC(d j
2 , e j2) are such that

d j
1 ≥ d j

2 and e j2 ≥ e j1 . Hence (55) holds. This ends the proof. 	


Proof of Proposition 2 Assume an increase in inequality: Marginally increase the
endowment ek for a wealth group k and lower for the same amount the endowment e�

for another wealth group for which e� < ek so that the aggregate initial endowment∑
j e

j remains constant. The effect of this change on σ ∗(d) is represented by the total
differential:

dσ ∗(d) =
[
∂σ ∗(d)

∂ek
+ ∂dk

∂ek
∂σ ∗(d)

∂dk

]
dek +

[
∂σ ∗(d)

∂e�
+ ∂d�

∂e�

∂σ ∗(d)

∂d�

]
de�

=
[
∂σ ∗(d)

∂ek
− ∂σ ∗(d)

∂e�

]
dek +

[
∂dk

∂ek
∂σ ∗(d)

∂dk
− ∂d�

∂e�

∂σ ∗(d)

∂d�

]
dek . (57)

This expression is positive as σ ∗(d) is increasing and convex in d j and decreasing
and convex in e j , and d j is increasing and convex in e j . This ends the proof. 	
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Proof of Proposition 3 Attach the Lagrange multipliers λ j and χ j to the upper and
lower bounds of s j . The first-order condition with respect to s j then reads:

− ∂σ ∗(d, s)
∂s j

∑
k

�Uk
B − λ j + χ j = ξ, (58)

for all j = 1, . . . ,G, where �Uk
B is defined as in (15). Then, the government inter-

vention scheme satisfies the equilibrium condition:

− ∂σ ∗(d, s)
∂s j

∑
k

�Uk − λ j + χ j = −∂σ ∗(d, s)
∂s�

∑
k

�Uk − λ� + χ�, (59)

for any two groups j and �. Calculate � j according to (24), which is obviously
positive for every group j , because we proved that σ ∗(d, s) is a decreasing function
of the subsidy s j and u(c) is increasing. Then, rank the groups by decreasing � j . For
the condition (59) to hold, it must be the case that:

− λ(1) + χ(1) < −λ(2) + χ(2) < · · · < −λ(G) + χ(G), (60)

where ( j) indicates the j-th group in the ranking. Assume that −λ(1) + χ(1) > 0. For
this to be true, it must be that λ(1) = 0 and χ(1) > 0, meaning that the group with the
highest � j gets the lowest possible subsidy, or s(1) = 0. But if −λ(1) +χ(1) > 0, also
−λ j + χ j > 0 for all groups j . This means that all groups get the lowest possible
subsidy, or s j = 0 for all groups j , which cannot be an equilibrium for the same
argument that we make above. Hence, we must have that −λ(1) + χ(1) ≤ 0. On the
contrary, assume that −λ(G) +χ(G) < 0. Then χ(G) = 0 and λ(G) > 0, implying that
s(G) = d(G) − e(G) > 0. However, if −λ(G) + χ(G) < 0, also −λ j + χ j < 0 for all
groups j , and s j = d( j) − e( j) for all groups j . This is not possible, as we ruled out
the possibility of complete subsidization. Thus, the only possible equilibrium features
−λ(G) + χ(G) ≥ 0: Some groups are fully subsidized and some others get zero. This
implies that there exists a unique threshold group ĵ for which there is indifference.
This ends the proof. 	


Proof of Corollary 3 To prove the corollary, we calculate:

∂� j

∂e j
= −∂2σ ∗(d, s)

∂s j∂e j
∑
k

�Uk − ∂σ ∗(d, s)
∂s j

∑
k

∂�Uk

∂e j
. (61)

This expression is negative. To see that, notice that the threshold signal σ ∗(d, s) is
decreasing in the subsidy s j , and the welfare gains from avoiding a run �Uk in any
group k is decreasing in the initial endowment e j of a group j . Moreover, from (22):25

25 Notice that the utility function u(c) has a kink at c = 0, hence u′(0) is undefined.
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∂2σ ∗(d, s)
∂s j∂e j

=
(1 − π)

∑
j

∫ 1

π

∫ e j+s j

d j

π

u

(
R(1 − n)

e j + s j − n jd j

1 − n j

)
dn jdn

×

×
[
−u′

(
e j

e j + s j
d j

)
s j

(e j + s j )2
+

− ∂σ ∗(d, s)
∂e j

⎡
⎣∫ 1

π

∫ e j+s j

d j

π

u′
(
R(1 − n)

e j + s j − n jd j

1 − n j

)
R(1 − n)

1 − n j
dn j dn

⎤
⎦ +

− σ ∗(d, s)
∫ 1

π

∫ e j+s j

d j

π

u′′
(
R(1 − n)

e j + s j − n jd j

1 − n j

) (
R(1 − n)

1 − n j

)2

dn jdn+

− ∂σ ∗(d, s)
∂s j

⎡
⎣∫ 1

π

∫ e j+s j

d j

π

u′
(
R(1 − n)

e j + s j − n jd j

1 − n j

)
R(1 − n)

1 − n j
dn j dn

⎤
⎦

⎤
⎦ .

(62)

Again, the threshold signal σ ∗(d, s) is decreasing both in the initial endowment e j

and in the subsidy s j . Then, as the utility function is concave, (62) must be positive:
The marginal utility of consumption of a late consumer who waits until date 2 and
consumes just before insolvency (i.e. as n j approaches (e j + s j )/d j ) tends to be large
by the modified Inada condition. 	

Proof of Proposition 4 We split the proof in two parts.

Partial liquidity assistance When the government intervenes with a partial liquidity
assistance, the banking problem reads:

max
d j

∑
j

[∫ σ ∗(d,s)

0
u(e j )dp +

∫ 1

σ ∗(d,s)

[
πu(d j ) + (1 − π)pu(R(e j − πd j ))

]
dp

]
,

(63)

subject to the expression for σ ∗(d, s) in (21). To prove that d j is non-decreasing in sk

for any k, we need to prove that the bank objective function is supermodular in d j and
sk , which is true if the cross-derivative of the bank objective function with respect to
d j and sk is positive.26 The only place in the bank objective function where d j and sk

interact is in the threshold signal σ ∗(d, s), which has a negative effect on the objective
function. Hence, in order to prove supermodularity we just need to prove that the cross
derivative of σ ∗(d, s) with respect to d j and sk is negative. Differentiating (22) with

26 Let X be an open sublattice of Rm . A twice-continuously differential function F : X → R is super-
modular (submodular) on X if and only if for all x ∈ X we have that ∂2F/∂xi ∂x j ≥ (≤) 0 for any
i, j = 1, . . . ,m and i �= j (Topkis 1998).
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respect to d j , we obtain:

∂2σ ∗(d, s)
∂s j∂d j

= (1 − π)

∑
j

∫ 1

π

∫ e j+s j

d j

π

u

(
R(1 − n)

e j + s j − n jd j

1 − n j

)
dn jdn

×
⎡
⎣−

u(d j ) − u
(

e j

e j+s j
d j

)
d j2 +

u′(d j ) − u′
(

e j

e j+s j
d j

)
e j

e j+s j

d j
+

− ∂σ ∗(d, s)
∂d j

⎡
⎣∫ 1

π

∫ e j+s j

d j

π

u′(dL(R, n, n j ))
R(1 − n)

1 − n j
dn jdn

⎤
⎦

+ σ ∗
∫ 1

π

∫ e j+s j

d j

π

u′′(dL(R, n, n j ))
R2(1 − n)2n j

(1 − n j )2
dn jdn

+ ∂σ ∗(d, s)
∂s j

⎡
⎣∫ 1

π

∫ e j+s j

d j

π

u′(dL(R, n, n j ))
R(1 − n)n j

1 − n j
dn j dn

⎤
⎦

⎤
⎦ .

(64)

This expression is negative: The first two terms in the square brackets are finite, but
the last three terms are negative and large by the modified Inada condition. To prove
that d j is non-decreasing in sk for any k �= j , calculate instead:

∂2σ ∗(d, s)
∂s j∂dk

= (1 − π)

∑
j

∫ 1

π

∫ e j+s j

d j

π

u

(
R(1 − n)

e j + s j − n jd j

1 − n j

)
dn jdn

×
⎡
⎣−∂σ ∗

∂dk

⎡
⎣∫ 1

π

∫ e j+s j

d j

π

u′(dL(R, n, n j ))
R(1 − n)

1 − n j
dn jdn

⎤
⎦

+ ∂σ ∗(d, s)
∂s j

⎡
⎣∫ 1

π

∫ ek+sk

dk

π

u′(dL(R, n, nk))
R(1 − n)nk

1 − nk
dnkdn

⎤
⎦

⎤
⎦ .

(65)

For the same reasons as above, this expression is negative.

Full liquidity assistance We already proved that d j is higher in the equilibrium with
perfect information than in the banking equilibrium with systemic self-fulfilling runs.
Then, we just need to prove that dkFULL > dk . To this end, evaluate the first-order
condition of the banking problem with government intervention in (27) at dk , and
compare it to (16). Clearly, as σ < σ ∗ by construction, it is sufficient to prove that
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∂σ ∗(d, s)/∂dk > ∂σ/∂dk , where:

∂σ

∂dk
= u′(dk) + σπRu′(R(ek − πdk))

u(R(ek − πdk))
, (66)

and ∂σ ∗(d, s)/∂dk is equal to (46) with the addition of subsidies. Rearranging the
inequality, we obtain:

u(R(ek − πdk))
∫ 1

π

∫ ek+sk

dk

π

[
u′(dk) + σ ∗u′(dkL(R, n, nk))

R(1 − n)nk

1 − nk
dnkdn

]

>
[
u′(dk) + σπRu′(R(ek − πdk))

]⎡
⎣∫ 1

π

∫ ek+sk

dk

π

u(dkL(R, n, nk))dnkdn

⎤
⎦ ,

(67)and:

u′(dk)
∫ 1

π

∫ ek+sk

dk

π

u(R(ek − πdk))dnkdn

+
∫ 1

π

∫ ek+sk

dk

π

σ ∗u(R(ek − πdk))u′(dkL(R, n, nk))

× R(1 − n)nk

1 − nk
dnkdn > u′(dk)

∫ 1

π

∫ ek+sk

dk

π

u(dkL(R, n, nk))dnkdn

+
∫ 1

π

∫ ek+sk

dk

π

σu(dkL(R, n, nk))u′(R(ek − πdk))πRdnkdn. (68)

The first element on the left-hand side of this expression is larger than the first element
on the right-hand side, because R(ek−πdk) > dkL(R, n, nk) by definition. The second
term on the right-hand side is finite, while the second term on the left-hand side is
large by the modified Inada condition. This ends the proof. 	
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