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Abstract: The selective N-4 alkylation of cytosine plays a critical role in the synthesis of biologically
active molecules. This work focuses on the development of practical reaction conditions toward
a regioselective synthesis of N-4-alkyl cytosine derivatives. The sequence includes a direct and
selective sulfonylation at the N-1 site of the cytosine, followed by the alkylation of the amino site
using KHMDS in CH2Cl2/THF mixture, providing a fast and efficient approach consistent with
pyrimidine-based drug design.
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1. Introduction

Integrase (IN) catalyzes the insertion of viral DNA [1] into the genome of infected cells
and acts as a cofactor for reverse transcription [2].

In the context of HIV-1 infection, IN was successfully targeted for drug develop-
ment [3]. Raltegravir (MK-0518) [4,5] was approved by the Food and Drug Administration
in 2007, and other integrase inhibitors (INI), including Elvitegravir (GS-9137) [6,7], are
progressing through clinical development [8]. The breakthrough of INI has produced a
great impulse in the use of multiple drugs that act on different viral targets, known as
Highly Active Antiretroviral Therapy (HAART) [9]. Important examples of this class are the
lens epithelium-derived growth factor (LEDGF) inhibitors [10–12] (Figure 1).
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Figure 1. Small molecule inhibitors of the LEDGF/p75-IN interaction.

Unfortunately, the development of resistance is a constant and inevitable threat to the
application of therapies; there is always a need for new antiviral drugs with high activity
and low cytotoxicity to assist and sometimes also substitute previously utilized drugs.
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Molecules acting on the IN HIV-1 are not immune to this problem [13]. This has
prompted the research of more efficient and inexpensive new drugs. In this context is the
design and synthesis of new cytosine-based antiretroviral (ARV) compounds, which are
able to inhibit IN HIV-1.

Current studies of structure–activity relationships (SAR) on the above mentioned INI
structures have identified two common regions [14]: a region with two metal-binding motifs
critical to all members of this class of active site binders and a region with a hydrophobic
site that requires a substituted benzyl group [15,16].

Taking into consideration these findings, we exploited the commercially available
cytosine scaffold to synthetize new integrase strand transfer inhibitors (INSTIs) [1,3,4,17,18].
In detail, starting from a preliminary docking analysis [19], which clarified that chelation
motif N-(aryl/alkyl sulfonyl) amide could selectively fill the binding site, we set out
to investigate an original and efficient strategy for the synthesis of type 1 nucleobases
(Figure 2).
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Cytosine derivatives are versatile intermediates in the synthesis of biologically and
pharmaceutically active molecules [20–27] and are widely used as antineoplastic [6], an-
tiviral [24], and anti-AIDS agents [27]. Some groups have very recently focused their
attention on N-4 alkyl analogue, which improves uptake and bioavailability of gemcitabine,
a worldwide chemotherapeutic cytidine analogue [20].

The reaction to obtain N-1 substituted cytosines has been intensively investigated [28–33];
nevertheless, to date, only a few examples describe N-4 alkyl derivatives [34–39]. One of the
most useful examples involves a sodium bisulfate catalyzed transamination experiencing
careful control of the pH, which is sometimes incompatible with the chemical stability of
biological groups [39].

Likewise, the Borch reductive alkylation method [36,37] and the titanium (IV), which
also catalyzed [35], required an excess of amine to favor the formation of the iminium
intermediates, thereby hampering the dissolution in the solvent that was usually used.

The methodology described herein shows the regioselective formation of our new
compounds under conditions consistent with the stability of future drug moieties.

2. Materials and Methods

All reagents (Aldrich, St. Louis, MA, USA and Merck, KGaA, Darmstadt, Germany)
were acquired at the highest purity available and used without further purification. Thin-
layer chromatographies were performed with silica gel plates Merck 60 F254, and the
display of the products on TLC was performed with a lighting UV lamp, solutions of nin-
hydrin (0.2% in CH3OH mol), and molecular iodine. The column chromatographies were
carried out using silica gel 70–230 mesh (Merck, KGaA, Darmstadt, Germany). Elemental
analyses were performed on a FlashSmart V Elemental Analyzer (ThermoFisher Scientific,
Waltham, MA, USA). The 1H and 13C NMR spectra were recorded on spectrometers: Bruker
DRX (400 MHz) and Varian Inova Marker (500 MHz) in CDCl3 solution unless otherwise
specified. The chemical shifts are reported in ppm (δ) and the J in Hz.
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2.1. Synthesis of 4-amino-1-((4-chlorophenyl)sulfonyl) pyrimidin-2(1H)-one (2)

Sodium hydride (118 mg; 4.9 mmol) at 0 ◦C under nitrogen atmosphere was added
to a stirring solution of cytosine (500 mg, 4.5 mmol) in dry DMF (38 mL). After 2 h, 4-
chlorobenzenesulfonyl chloride (1.4 g, 6.8 mmol) was added and stirring was continued over
a period of 30 min. The resulting solution was then allowed to warm to room temperature.
After 1.5 h, the reaction was quenched with methanol (0.60 mL). The solvent was evaporated
under reduced pressure, replaced with chloroform and washed with brine, and then dried
(Na2SO4). The evaporation of the solvent under reduced pressure gave a crude mixture
that was purified by column chromatography (CHCl3/MeOH 95:5) to yield compound 2
(0.96 g, 75%). 1H NMR (400 MHz; DMSO-d6): δ 8.08 (d, J 7.8 Hz, 1H), 7.97 (d, J 8.5 Hz, 2H),
7.93 (s, 2H), 7.71 (d, J 8.5 Hz, 2H), 5.95 (d, J 7.8 Hz, 1H); 13C NMR (125 MHz; DMSO-d6); δ
166.5, 151.3, 140.0, 139.7, 136.5, 131.1, 129.7, 98.1. Anal. Calcd. for C10H8ClN3O3S (285.70):
C, 42.04%; H, 2.82%; N, 14.71%; found C, 42.15%; H, 2.73%; N, 14.59%.

2.2. General Procedure Synthesis of N-4 Alkyl Cytosine Derivatives

Derivative 2 (0.5 eq) was dissolved in dry CH2Cl2:THF (1:1, 5 mL), followed by the
addition of 0.5 M KHMDS in THF (0.75 eq) at−40 ◦C under nitrogen atmosphere. After 1 h,
electrophile (0.6 eq) was added and the reaction was allowed to warm to 5 ◦C within 24 h.
TLC monitored the progress of the reaction. The mixture was then treated with methanol
(0.5 mL) and further stirred for 10 min at rt. The solvent was evaporated under reduced
pressure, replaced with ethyl acetate and washed with brine, and then dried (Na2SO4). The
evaporation of the solvent under reduced pressure gave a crude mixture that was purified
by PLC (1:1 Hexane/Ethyl Acetate) to yield the pairs 1a–3a, 1b–3b, 1e–3e, and 1h–3h.

1a. 1H NMR (400 MHz): δ 8.05 (m, 3H), 7.51 (d, J 7.2 Hz, 2H), 7.36-7.22 (m, 5H), 5.69
(d, J 7.5 Hz, 1H), 5.47 (bs, NH), 4.64 (s, 2H); 13C NMR (100 MHz, (CD3)2CO): δ 166.0, 156.9,
147.6, 139.4, 139.3, 129.9, 129.5, 128.9, 128.6, 92.6, 53.1. Anal. Calcd. for C17H14ClN3O3S
(375.83): C, 54.33%; H, 3.75%; N, 11.18%; found C, 54.35%; H, 3.83%; N, 11.03%.

3a. 1H NMR (500 MHz): δ 8.07 (d, J = 8.6 Hz, 2H), 8.05 (d, J 8.1 Hz, 1H), 7.51 (d, J
8.5 Hz, 2H), 7.36–7.26 (m, 8H), 7.09 (d, J 7.3 Hz, 2H), 5.93 (d, J 8.1 Hz, 1H), 4.96 (s, 2H), 4.54
(s, 2H); 13C NMR (125 MHz): δ 164.1, 151.3, 141.5, 140.0, 136.0, 135.1, 135.0, 131.4, 129.3,
129.2, 128.8, 128.7, 128.1, 128.0, 126.2, 94.5, 50.9, 50.8. Anal. Calcd. for C24H20ClN3O3S
(465.95): C, 61.87%; H, 4.33%; N, 9.02%; found C, 61.90%; H, 4.28%; N, 9.01%.

1b. 1H NMR (400 MHz): δ 8.07–8.01 (m, 3H), 7.51 (d, J 8.6 Hz, 2H), 7.30–7.20 (m, 2H),
7.00 (t, J 8.6 Hz, 2H), 5.70 (d, J 7.9 Hz, 1H), 4.60 (d, J 5.5 Hz, 2H). 13C NMR (100 MHz) δ
164.4, 160.3, 156.8, 141.4, 139.8, 135.7, 134.8, 131.3, 129.3, 127.9, 115.8, 94.3, 50.8. Anal. Calcd.
for C17H13ClFN3O3S (393.82): C, 51.85%; H, 3.33%; N, 10.67%; found C, 51.96%; H, 3.35%;
N, 10.76%.

3b. 1H NMR (500 MHz): δ 8.16–8.05 (m, 3H), 7.55 (d, J 8.8 Hz, 2H), 7.28 (m, 2H),
7.07–6.97 (m, 6H), 5.94 (d, J 8.2 Hz, 1H), 4.90 (s, 2H), 4.52 (s, 2H). 13C NMR (100 MHz):
164.0, 163.7, 161.2, 151.0, 141.4, 140.1, 135.0, 131.6, 131.3, 130.4, 130.3, 129.3, 129.0, 127.8,
115.7, 115.5, 94.0. 50.2, 49.9. Anal. Calcd. for C24H18ClF2N3O3S (501.93): C, 57.43%; H,
3.61%; N, 8.37%; found C, 57.37%; H, 3.67%; N, 8.35%.

1c. 1H NMR (400 MHz, (CD3)2CO): δ 8.13–8.08 (m, 3H), 8.00 (bs, 1H, NH), 7.68 (d,
J 8.6 Hz, 2H), 7.35 (m, 1H), 7.17 (d, J 7.6 Hz, 1H), 7.12 (m, 1H), 7.00 (m, 1H), 6.13 (d, J 7.9 Hz,
1H), 4.62 (d, J 4.9 Hz, 2H). 13C NMR (100 MHz, (CD3)2CO): δ 169.9, 164.0, 140.9, 140.1, 138.6,
136.4, 131.0, 130.1, 128.9, 123.5, 114.4, 113.7, 97.6, 43.4. Anal. Calcd. for C17H13ClFN3O3S
(393.82): C, 51.85%; H, 3.33%; N, 10.67%; found C, 51.87%; H, 3.25%; N, 10.63%.

3c. 1H NMR (400 MHz): δ 8.14–8.04 (m, 3H), 7.53 (d, J 8.4 Hz, 2H), 7.39–7.23 (m, 3H),
7.08–6.75 (m, 5H), 5.91 (d, J 8.1 Hz, 1H), 4.94 (s, 2H), 4.53 (s, 2H). 13C NMR (100 MHz):
167.8, 164.7, 159.8, 153.6, 145.2, 145.0, 144.4, 133.7, 131.9, 131.3, 128.2, 127.9, 116.7, 116.6,
112.5, 93.2, 58.6, 57.2. Anal. Calcd. for C24H18ClF2N3O3S (501.93): C, 57.43%; H, 3.61%; N,
8.37%; found C, 57.44%; H, 3.59%; N, 8.39%.

1d. 1H NMR (400MHz, DMSO-d6): δ 8.16–8.07 (m, 3H), 7.67 (d, J 10.0 Hz, 2H), 7.41
(m, 1H), 7.31 (m, 1H), 7.14–7.06 (m, 2H), 6.12 (d, J 10.0 Hz, 1H), 4.64 (d, J 6.5 Hz, 2H). 13C
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NMR (100MHz, (CD3)2CO): δ 163.9, 161.9, 154.7, 140.1, 138.5, 136.3, 131.0, 130.3, 129.4,
129.3, 128.9, 124.2, 115.1, 97.5, 37.9. Anal. Calcd. for C17H13ClFN3O3S (393.82): C, 51.85%;
H, 3.33%; N, 10.67%; found C, 51.80%; H, 3.31%; N, 10.59%.

3d. 1H NMR (400 MHz): δ 8.06 (d, J 8.5 Hz, 2H), 7.55–7.43 (m, 3H), 7.34–7.20 (m, 2H),
7.14–6.95 (m, 6H), 5.96 (d, J 8.2 Hz, 1H), 4.99 (s, 2H), 4.66 (s, 2H). 13C NMR (100 MHz):
164.1, 163.3, 160.9, 151.3, 141.5, 140.0, 136.0, 135.1, 135.0, 131.4, 129.2, 129.1, 128.8, 128.6,
128.1, 128.0, 126.1, 115.2, 115.1, 94.5, 50.9, 50.7. Anal. Calcd. for C24H18ClF2N3O3S (501.93):
C, 57.43%; H, 3.61%; N, 8.37%; found C, 57.45%; H, 3.63%; N, 8.38%.

1e. 1H NMR (400MHz, (CD3)2CO): δ 8.10–8.05 (m, 3H), 7.68 (d, J 8.8 Hz, 2H), 7.20 (d, J
8.0 Hz, 2H), 7.10 (d, J 8.0 Hz, 2H), 6.07 (d, J 7.9 Hz, 1H), 4.52 (d, J 5.7 Hz, 2H), 2.27 (s, 3H).
13C NMR (100 MHz, (CD3)2CO): δ 165.3, 152.3, 141.4, 139.9, 138.8, 135.7, 134.1, 132.0, 131.7,
130.9, 100.7, 46.9, 25.5. Anal. Calcd. for C18H16ClN3O3S (389.85): C, 55.46%; H, 4.14%; N,
10.78%; found C, 55.50%; H, 4.13%; N, 10.65%.

3e. 1H NMR (400 MHz; (CD3)2CO): δ 8.16 (d, J 8.2 Hz, 1H), 8.12 (d, J 8.8 Hz, 2H),
7.83 (d, J 8.7 Hz, 1H), 7.68 (d, J 8.8 Hz, 2H), 7.59 (d, J 8.7 Hz, 1H), 7.24-7.06 (m, 6H), 6.31
(d, J 8.2 Hz, 1H), 4.87 (s, 2H), 4.67 (s, 2H), 2.31 (s, 3H), 2.28 (s, 3H). 13C NMR (100 MHz;
(CD3)2CO): δ 164.6, 154.3, 140.1, 139.2, 138.8, 138.4, 131.4, 131.2, 131.1, 129.1, 129.0, 128.7,
128.6, 127.9, 127.8, 97.8, 44.3, 43.9, 32.4, 31.7. Anal. Calcd. for C26H24ClN3O3S (494.01): C,
63.22%; H, 4.90%; N, 8.51%; found C, 63.26%; H, 4.87%; N, 8.46%.

1f. 1H NMR (400MHz): δ 8.05 (d, J 8.8 Hz, 2H), 8.02 (d, J 7.9 Hz, 1H), 7.51 (d, J 8.8 Hz,
2H), 7.23 (m, 1H), 7.14-7.03 (m, 3H), 5.72 (d, J 7.9 Hz, 1H), 5.66 (m, 1H, NH), 4.60 (d, J 5.4 Hz,
2H), 2.33 (s, 3H). 13C NMR (100 MHz): δ 163.1, 151.7, 142.7, 140.7, 138.6, 136.5, 135.1, 134.8,
131.1, 129.0, 128.7, 125.2, 123.7, 97.3, 45.3, 21.2. Anal. Calcd. for C18H16ClN3O3S (389.85): C,
55.46%; H, 4.14%; N, 10.78%; found C, 55.53%; H, 4.17%; N, 10.70%.

3f. 1H NMR (400 MHz): δ 8.10 (d, J 8.4 Hz, 2H), 8.05 (d, J 8.02 Hz, 1H), 7.53 (d, J 8.4 Hz,
2H), 7.25–7.17 (m, 2H), 7.15–7.05 (m, 4H), 6.92–6.86 (m, 2H), 5.94 (d, J 8.2 Hz, 1H), 4.94 (s,
2H), 4.50 (s, 2H), 2.4 (s, 3H), 2.3 (s, 3H). 13C NMR (100 MHz): 163.1, 151.9, 141.4, 141.2,
140.7, 138.6, 136.5, 135.1, 134.8, 131.1, 129.0, 128.7, 125.2, 123.7, 97.3, 46.1, 45.3, 30.8, 29.6.
Anal. Calcd. for C26H24ClN3O3S (494.01): C, 63.22%; H, 4.90%; N, 8.51%; found C, 63.26%;
H, 4.87%; N, 8.46%.

1g. 1H NMR (400 MHz, DMSO-d6): δ 8.12–8.06 (m, 3H), 7.76 (m, 1H), 7.69 (d, J 8.7
Hz, 2H), 7.27 (d, J 6.9 Hz, 1H), 7.19-7.12 (m, 3H), 6.13 (d, J 7.9 Hz, 1H), 4.58 (d, J 5.3 Hz,
2H), 2.31 (s, 3H). 13C NMR (125 MHz, (CD3)2CO): δ 164.9, 151.9, 141.0, 139.3, 137.5, 137.3,
136.4, 132.0, 131.1, 129.9, 128.5, 126.9, 98.6, 79.2, 43.3, 23.3. Anal. Calcd. for C18H16ClN3O3S
(389.85): C, 55.46%; H, 4.14%; N, 10.78%; found C, 55.44%; H, 4.13%; N, 10.79%.

3g. 1H NMR (400 MHz): δ 8.08 (d, J = 8.7 Hz, 2H), 8.04 (d, J 8.2 Hz, 1H), 7.51 (d, J 8.7
Hz, 2H), 7.25–7.10 (m, 6H), 7.00 (d, J 7.9 Hz, 1H), 6.94 (d, J 6.8 Hz, 1H), 5.84 (d, J 8.2 Hz,
1H), 4.98 (s, 2H), 4.44 (s, 2H), 2.18 (s, 3H), 2.16 (s, 3H). 13C NMR (100 MHz): 162.5, 152.7,
141.4, 139.7, 136.5, 135.0, 134.9, 133.4, 132.3, 131.3, 130.7, 130.5, 129.0, 128.4, 127.7, 127.5,
126.6, 126.1, 124.5, 94.2, 52.4, 48.5, 23.2, 22.7. Anal. Calcd. for C26H24ClN3O3S (494.01): C,
63.22%; H, 4.90%; N, 8.51%; found C, 63.27%; H, 4.93%; N, 8.50%.

1h. 1H NMR (400MHz, DMSO-d6): δ 8.18 (d, J 8.7 Hz, 2H), 8.13 (d, J 7.9 Hz, 1H), 8.09
(d, J 8.6 Hz, 2H), 7.68 (d, J 8.6 Hz, 2H), 7.61 (d, J 8.7 Hz, 2H), 6.16 (d, J 7.9 Hz, 1H), 4.77 (d, J
6.0 Hz, 2H). 13C NMR (100 MHz, DMSO-d6): 164.2, 150.9, 147.1, 145.9, 140.2, 138.7, 136.3,
131.1, 128.9, 128.5, 123.3, 97.5, 43.3. Anal. Calcd. for C17H13ClN4O5S (420.82): C, 48.52%; H,
3.11%; N, 13.31%; found C, 48.53%; H, 3.16%; N, 13.25%.

3h. (4%). 1H NMR (400 MHz, DMSO-d6): δ 8.25–8.09 (m, 7H), 7.70 (d, J 8.7 Hz, 2H),
7.62 (d, J 8.6 Hz, 2H), 7.56 (d, J 8.6 Hz, 2H), 6.38 (d, J 8.2 Hz, 1H), 5.14 (s, 2H), 5.08 (s, 2H).
13C NMR (125 MHz, DMSO-d6): δ 163.6, 156.6, 156.0, 149.7, 147.9, 147.8, 139.9, 139.1, 138.1,
129.8, 129.7, 128.5, 128.4, 126.8, 126.7, 95.2, 58.2, 57.4. Anal. Calcd. for C26H18ClN5O7S
(555.95): C, 51.85%; H, 3.26%; N, 12.60%; found C, 51.90%; H, 3.21%; N, 12.59%.

1i. 1H NMR (400 MHz): δ 8.00 (d, J 8.7 Hz, 2H), 7.74 (d, J 8.6 Hz, 1H), 7.57 (d, J 8.7 Hz,
2H), 6.52 (d, J 8.6 Hz, 1H), 2.98 (bs, 3H). 13C NMR (100 MHz, DMSO-d6): 163.3, 156.1, 140.0,



Reactions 2022, 3 196

138.3, 137.0, 130.0, 128.9, 94.7, 28.1. Anal. Calcd. for C11H10ClN3O3S (299.73): C, 44.08%; H,
3.36%; N, 14.02%; found C, 44.12%; H, 3.33%; N, 14.07%.

3. Results and Discussion

We started with the synthesis of the suitable precursor of our target, namely the
cytosine sulfonylate derivate 2, obtained by exploiting the well-known good reactivity
of the N-1 site [31,32,40–42]. Indeed, as shown in Scheme 1, the commercially available
cytosine was selectively sulfonylated with 4-chlorobenzene-1-sulfonyl chloride in DMF,
the solvent required to overcome the known low solubility of the starting material. It is
noteworthy that a temperature of 0 ◦C was mandatory to avoid a competitive reaction in
favor of the exocyclic amine group. Under these conditions, compound 2 was obtained
with 78% yield, as confirmed by NMR.
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Scheme 1. N-4 alkyl model reaction.

Then, in our exploratory studies, we experimented with the representative N-4 alkyla-
tion (Scheme 1) with benzyl bromide as an electrophile under different conditions in terms
of base, time, solvent, and temperature.

Firstly, the mixture of 2 and benzyl bromide was dissolved in DMSO and left at 25 ◦C
for 4 h, then it was allowed to reach 80 ◦C and was kept under these conditions for a
further 20 h, but no reaction took place and the starting materials remained completely
unconsumed (Table 1, entry 1). Next, the exploitation of non-nucleophilic bases was
investigated. In detail, pyridine (Pyr) and triethylamine (TEA) were found to be ineffective
(Table 1, entries 2–4) and only a trace of the desired product was achieved when bicyclic
amide (1,8-diazabiciclo(5.4.0)undec-7ene, (DBU)) [43,44]—which is able to form a charge
transfer complex—was employed. The low nucleophilicity of the nitrogen atom, as well as
the steric hindrance on the same nitrogen, resulting in a stalled reaction, could be clarified
by the supposed complex reported in Figure 3.

Table 1. Reaction condition screening.

Entry Base 1 Solvent T (◦C) 1a (%) 3a (%) Time (h) 2

1 DMSO 25→80 ND ND 24
2 Pyr DMSO 25→80 <1 ND 24
3 Pyr DMF 25→80 <1 ND 24
4 TEA DMF 25→80 <1 ND 24
5 DBU DMF 25 <1 Trace 24
6 LDA DMF −40 5 3 24
7 LiHMDS DMF −40 3.5 2.5 4
8 KHMDS DMF 0 16 9 4
9 KHMDS DMF −23 30 18 4

10 KHMDS DMF −40 40 30 4
11 KHMDS DMF −60 20 15 4

1 Reactions were performed using cytosine sulfonylate 2 (1 eq), bases (1.5 eq), and benzyl bromide (1.2 eq). 2 TLC
monitored the progress of the reaction.
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Figure 3. DBU Complex.

When the concept of strongest base (lithium diisopropylamide (LDA), hexamethyldis-
ilazane lithium (LiHMDS), and hexamethyldisilazane potassium (KHMDS)) was explored,
positive results were produced.

Remarkably, the N-1 substituted cytosines that participated as an acidic compound
(with pKa lower than that of KHMDS) reacted with the base. Thus, the formed anion
of the substrate could act as a nucleophile in reaction with benzyl halides. In fact, as
reported in Table 1, when using KHMDS in DMF at −40 ◦C (entry 10) the reaction was
completed within 4 h and workup afforded the expected monobenzylated product 1a as
the major compound with 40% yield, together with a minor side-product 3a (with 30%
yield, Scheme 1). As is well known for enolates, our products increased the separation of
the metal cation from the anion with the larger alkali metals, which leads to a more reactive
but less stable anionic intermediate.

Attempts to optimize the reaction through modification of the ratio between 2 and
BnBr proved unsuccessful, and we did not find any effects of the ratio between 2 and bases
on the reaction in terms of yield.

Therefore, the promising approach of the protocol prompted us to evaluate the sub-
strate scope. As shown in Table 2 (entries b–h), a wide range of benzyl bromides containing
both electron-donating (EDG) and electron-withdrawing (EWG) substituents were well tol-
erated with good conversion. However, at this stage, the results are difficult to rationalize.
In relation to entry i, the reactivity of bromomethane is definitely higher compared to that
of primary alkyl bromides, and the fact that there is more than one nucleophilic center on
the cytosine substrate results in byproduct formation that is not valuable.

However, as in the model reaction, a mixture of two different N-alkylated products,
namely 1 and 3, were obtained. The mono/di-alkylation ratio ranged from 6:4 to 7:3, as
determined by the integration of characteristic protons for each product in the 1HNMR
spectra of the concentrated reaction mixtures.

A combination of homo- and heteronuclear 2D NMR experiments (DQF-COSY, 13C-1H
HSQC, and HMBC, NOESY) were used to assign all the spin systems of 1a and 3a. In detail,
the proton resonances of all systems were obtained by the COSY technique and were used
to assign the carbon resonance in the HSQC spectra. The 13C-1H HMBC spectrum of 3a
(see Supplementary Materials) shows a correlation between CH2 at δ = 4.54 ppm and the
nitrogen-bearing carbon C4 signal at δ = 164.1 ppm, as well as a comparable correlation
between CH2 at δ = 4.96 ppm and the same C4. However, the first CH2 is also correlated to
carbons at δ = 126.2 ppm and at δ = 135.0 ppm, whereas the second CH2 shows a correlation
to carbons at δ = 128.7 ppm and δ = 136.0 ppm. These values, together with the NOE
contact, are diagnostic of benzyl groups on different nitrogen atoms, as depicted in the
structure of 3a.

Based on the entire experimental outcome and the reported literature [45–47], we
postulated that the undesired dibenzylated byproduct 3a might be due to the competitive
pathway illustrated [47] in Scheme 2, where the nucleophilic substitution of benzyl bromide
first occurs by the NH2(N4) group and then by the cytosine N3 site of the bidentate
nucleophile.
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Table 2. Substrate scope.

Entry Electrophile 1 Product 1 (%) Product 3 (%) Ratio 1:3

b
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13 5 7:3

i CH3Br 20 ND —
1 Reactions were performed using cytosine sulfonylate 2 (1 eq), 0.5 M KHMDS in THF (1.5 eq), and electrophile
(1.2 eq) in DMF at −40 ◦C for 4 h.

DMSO and DMF have large dielectric constants (47.24 and 38.25, respectively), large
dipole moments (3.96 and 3.82 D, respectively), and they do not participate in hydrogen
bonding. Their high polarity allows them to dissolve charged species such as various
anions used as nucleophiles. The lack of hydrogen bonding in the solvent means that the
latter is relatively “free” in the solution, making it more reactive.

Moreover, THF and CH2Cl2 as borderline polar aprotic solvents have moderately
higher dielectric constants (7.52 and 8.93, respectively) and small dipole moments (1.75
and 1.60 D, respectively). The intermediate polarity makes them good “general purpose”
solvents for a wide range of reactions where they serve only as the medium (for example,
in the Grignard reaction and for enolate formation).

Thus, to reduce the reactivity of the nitrogen ring in an attempt to increase the efficiency
of the behavior, the model reaction was carried out using DMF in a 1:1 mixture with THF
as co-solvent [48,49]; we obtained an interesting result, which drove us to perform the
reaction in a new 1:1 mixture of CH2Cl2/THF. As we postulated, these conditions led to
very efficient results (Table 3, entry 4).
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Scheme 2. Postulated mechanism.

Table 3. Solvent effects.

Entry Base 1 Solvent (1:1) T (◦C) 1a (%) 3a (%) Time (h)

1 KHMDS DMF/THF −40 39 26 4
2 KHMDS CH2Cl2/THF −40 4 1 4
3 KHMDS CH2Cl2/THF −40→5 9 2 4
4 KHMDS CH2Cl2/THF −40→5 77 17 24

1 Reactions were performed using cytosine sulfonylate 2 (1 eq), bases (1.5 eq), and benzyl bromide (1.2 eq).

In our mind, the CH2Cl2-THF mixture could synergistically ensure the solubility of
our polar substrate, resulting in the best interaction of the latter with the base as well as the
electrophile.

CH2Cl2 did not change the regiochemical outcome (N-enamine type versus N-imine
type) of mono-alkylation.

Under the optimized reaction conditions, the scope of various para-substituted benzyl
bromides was again investigated, and the results are summarized in Table 4.
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Table 4. Optimized reaction conditions on different substituted benzyl bromides.

Entry Electrophile 1 Product 1 (%) Product 3 (%) Ratio 1:3

1
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