
Available online at www.sciencedirect.com

p
t
o
c
⃝

M

K

d
a
t
a

ScienceDirect

Stochastic Processes and their Applications 137 (2021) 167–199
www.elsevier.com/locate/spa

LASSO estimation for spherical autoregressive processes
Alessia Caponeraa,b, Claudio Durastantic,∗, Anna Vidottob,d

a Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Italy
b Dipartimento di Matematica, Università di Roma Tor Vergata, Italy

c Dipartimento SBAI, Sapienza Università di Roma, Italy
d Dipartimento di Economia, Università "G. D’Annunzio", Chieti–Pescara, Italy

Received 3 July 2020; received in revised form 15 February 2021; accepted 15 March 2021
Available online 1 April 2021

Abstract

The purpose of the present paper is to investigate a class of spherical functional autoregressive
rocesses in order to introduce and study LASSO (Least Absolute Shrinkage and Selection Operator)
ype estimators for the corresponding autoregressive kernels, defined in the harmonic domain by means
f their spectral decompositions. Some crucial properties for these estimators are proved, in particular,
onsistency and oracle inequalities.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background and motivations

In recent years, growing attention has been paid to space–time processes built over various
omains as, for example, regular grids, Euclidean spaces, and Riemannian manifolds (see,
mong others, [3,7,16,24,28,37]). In particular, space–time random fields defined over the
wo-dimensional unit sphere S2 find a wide set of applications in Cosmology, Geophysics,
nd Medical Imaging, providing a tool to perform analysis of data evolving with time and
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distributed over the sphere representing, for instance, either the Universe (see [35]), the planet
Earth (see [17]) or the human brain (see [43]). Moreover, statistical techniques dealing with
the analysis of – both purely spatial and depending on time – spherical random fields have
received considerable attention, for example, in [1,22,31,34] and in [15,21], respectively.

In the last two decades, classes of space–time covariance functions has been defined and
xamined in the perspective to build the so-called sphere-cross-time random fields. The reader
s referred to [16,24,29,37,38,41] and the references therein for some neat examples. Another
onstruction involving sphere-cross-time random fields has been presented in [21] (see also [9]),
here quantitative central limit theorems for linear and non-linear statistics based on spherical

ime-dependent Poisson random fields have been established.
A sphere-cross-time random field is denoted by a collection of random variables

{T (x, t) : (x, t) ∈ S2
× Z},

and it can be described in the so-called frequency domain by its harmonic expansion

T (x, t) =

∑
ℓ≥0

ℓ∑
m=−ℓ

aℓ,m (t) Yℓ,m (x) , (x, t) ∈ S2
× Z , (1.1)

where {Yℓ,m : ℓ ≥ 0; m = −ℓ, . . . , ℓ} is the standard orthonormal basis of real spherical
harmonics for L2

(
S2
)

= L2
(
S2, dx

)
, the space of square-integrable functions on the sphere

with respect to the spherical Lebesgue measure dx (see Section 2 and the Refs. [42,48]).
Harmonic analysis has already been proved to be a valid tool to perform statistical analysis on
the sphere (see, for instance, [20,30]) and allows one to describe a random field as the linear
combination of spherical harmonics, weighted by the corresponding time-varying harmonic
coefficients (see [7]). The stochastic information of the random field T is then contained in the
set of harmonic coefficients {aℓ,m (t) : ℓ ≥ 0; m = −ℓ, . . . , ℓ}, given by

aℓ,m (t) = ⟨T (·, t) , Yℓ,m⟩S2 ,

where ⟨·, ·⟩S2 is the standard inner product over the sphere.
In this paper, the object of study is a class of sphere-cross-time random fields, introduced

in the literature by [15], which are functional autoregressive processes defined over L2
(
S2
)

(see also [8] and the references therein). As the name suggests, the spherical autoregressive
model of order p, from now on shortened to SPHAR(p), specifies the output field T (·, t) as
an infinite-dimensional linear transformation of its p previous realizations (p lags) added to
an independent spherical white noise Z (·, t). More formally, the SPHAR(p) equation is given
by

T (x, t) =

p∑
j=1

(
Φ j T (·, t − j)

)
(x) + Z (x, t) , (x, t) ∈ S2

× Z , (1.2)

where, for j = 1, . . . , p, the autoregressive kernel operator Φ j : L2
(
S2
)

→ L2
(
S2
)

is defined
as (

Φ j f
)
(x) =

∫
S2

k j (⟨x, y⟩) f (y) dy, f ∈ L2 (S2), (1.3)

with k j : [−1, 1] → R the corresponding autoregressive kernel, assumed to be continuous.
Then, for j = 1, . . . , p, the estimation of Φ j can be reduced to the one of k j . Note that,
or any j = 1, . . . , p, the kernel k is isotropic, that is, it depends only on z = ⟨x, y⟩, the
j
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standard inner product on R3. As a consequence, the following spectral representation holds
in the L2-sense

k j (z) =

∑
ℓ≥0

φℓ; j
2ℓ + 1

4π
Pℓ (z) , (1.4)

where Pℓ : [−1, 1] → R is the Legendre polynomial of order ℓ, and, for j = 1, . . . , p, the
oefficients {φℓ; j : ℓ ≥ 0} are the eigenvalues of the operator Φ j . The reader is referred to
ection 2 for a detailed discussion. Moreover, the random field Z in (1.2) is defined such that,
or any x, y ∈ S2, the covariance function ΓZ (x, y) = E [Z (x, t) Z (y, t)] is isotropic and
ndependent on the choice of t ∈ Z (see [48]).

As a standard consequence of the so-called duplication property for spherical harmonics,
e can characterize functional spherical autoregressions in the frequency domain as

aℓ,m (t) =

p∑
j=1

φℓ; j aℓ,m (t − j) + aℓ,m;Z (t) . (1.5)

n [15], estimators for the kernels {k j : j = 1, . . . , p} have been defined according to
functional L2-minimization criterion, exploiting their spectral decomposition (1.4); some

symptotic properties, such as consistency, quantitative central limit theorem, and weak
onvergence, have then been established under additional regularity conditions.

In this work, we approach the estimation of the autoregressive kernels under a sparsity
ssumption, that is, for any j = 1, . . . , p, we assume that only a few of the components
f k j in (1.4) are non-zero (see Definition 1.1). Assuming sparsity conditions can lead to
onsiderable advantages in estimation problems (see, for example, [26]). In this case, the
roper identification of the null components allows to perform regularization on the functional
stimates, preserving accuracy; moreover, sparsity enhances computational efficiency. The latter
s a crucial aspect in spatial and space–time statistics, often related to the estimation of
ovariance functions; see for instance [5,6] for recent results.

LASSO – or ℓ1-regularized – regression, introduced in the statistical literature by the
elebrated paper [44], is among the most popular penalization techniques to estimate sparse
odels. In particular, it corrects the L2-loss for sparse models by adding a convex penalty term

nd, then, constraining the estimation process and selecting the most significant variables. In
he framework of independent and identically distributed (i.i.d.) observations, LASSO has been
roved to be extremely efficient both from the point of view of theoretical properties and in
erms of applications (see [25,47] and references therein). The connections between LASSO,
idge regression, best subset selection and other ℓq -based penalization methods, as well as
urther links between LASSO and other nonparametric statistical techniques, such as soft and
ard thresholding, have been widely investigated, for instance, in [11,26].

Applications of LASSO in the framework of time series and stochastic processes represent
much more recent development. A pioneering contribution in this area has been given in [2],
here the authors explore the properties of ℓ1-regularized estimators in the settings of stochastic

egression with serially correlated errors and vector autoregressive (VAR) models (see also
18,40] for related ideas). Their results can be seen as a successful extension of the standard
ASSO technique to the framework of non-i.i.d. observations. More specifically, in [2], under
parsity constraints, ℓ1-regularized estimators have been investigated by introducing a measure
f stability for stationary processes, a very powerful tool to study the correlation structure of
169
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multivariate processes, and crucial to settle some useful deviation bounds for dependent data.
Further details on the stability of autoregressions can be found, among others, in [10,33] as
well as in [8] for the functional case (see also Section 3). In turn, these deviation bounds are
instrumental to establish concentration properties of the estimators, and so-called oracle
nequalities.

The aim of this work is to define and study LASSO-type estimators for spherical autore-
ressive kernels under sparsity assumptions. Our approach does not require any specific
unctional form for the kernel k j ; in this sense, the estimation procedure can be viewed as fully
onparametric, see also [39,45]. It is important to stress that, given the nonparametric nature of
he model (1.2), we are dealing with a functional penalized regression problem, hence differing
rom the framework of VAR(p) processes, where estimators assume a vectorial form (see also
emark 3.2). More specifically, our oracle inequalities will involve functions rather than scalar
r vectorial parameters (see Section 1.2). Exploiting the harmonic expansion for the spherical
utoregressions (1.2) and the isotropy assumption on {k j : j = 1, . . . , p} in (1.4), together with
n extension of the concept of stability measure introduced in [2], we will be able to establish
oncentration properties in functional norms for the autoregressive kernels (see Section 4).
oreover, the sparsity enforcement properties of LASSO procedures will avoid overfitting and
ill select only the most relevant components of each kernel function spectral decomposi-

ion (1.4).

.2. Background and main results

First of all, let us set some standard notation, necessary to state our main findings. For
wo positive sequences {an}n∈N, {bn}n∈N, we write an ⪰ bn if there exists an absolute constant
> 0, which does not depend on the model parameters, such that an ≥ c bn , for all n ∈ N;
hile we use an ≃ bn if there exist M1, M2 > 0, which may depend on the model, such that

M1bn ≤ an ≤ M2bn , for all n ∈ N. For a vector v ∈ Rd , ∥v∥q indicates the ℓq -norm of v,

∥v∥q =

(
d∑

i=1

|vi |
q

) 1
q

; ∥v∥0 =

d∑
i=1

1{vi ̸= 0}; ∥v∥∞ = max
i=1,...,d

|vi | ,

for 0 < q < ∞, q = 0 and q = ∞ respectively. We say that v is a r -sparse vector, 1 ≤ r ≤ d ,
if ∥v∥0 = r . Unless stated otherwise, for the sake of simplicity, ∥·∥ denotes the ℓ2-norm of v.

et f : [−1, 1] → Rp, f ∈ Lq ([−1, 1] , ρ (dz)), where ρ (dz) is the Lebesgue measure over
−1, 1]. Then, for 1 ≤ q < ∞, the Lq -norm of f is given by

∥ f ∥Lq =

(∫ 1

−1
∥ f (z)∥q ρ (dz)

) 1
q

.

nalogously, the L∞-norm of f is given by ∥ f ∥L∞ = supz∈[−1,1] ∥ f (z)∥. The spherical
Lq -norms are defined by

∥ f ∥Lq(S2) =

(∫
S2

| f (x)|q dx
) 1

q

, f ∈ Lq (S2) ,
here dx is the Lebesgue measure over S2. Finally, the Hilbert–Schmidt and the trace class

norms of a compact self-adjoint operator T : H → H, where H is a separable Hilbert space,
170
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are given respectively by

∥T ∥HS =

∑
i≥0

|λi |
2
; ∥T ∥TR =

∑
i≥0

|λi | ,

here {λi }i∈N are the eigenvalues of T (see, for example, [27]).
We provide now the definition of sparsity set, which can be understood as an instrumental

haracterization of sparsity.

efinition 1.1 (Sparsity Set). For any ℓ ≥ 0 and φℓ =
(
φℓ;1, . . . , φℓ;p

)
, we define qℓ =

φℓ


0

he ℓth sparsity index, which satisfies 0 ≤ qℓ ≤ p. We call {qℓ : ℓ ≥ 0} the sparsity set.

emark 1.2. Following [8], to ensure identifiability we assume that there exists at least one
≥ 0 such that φℓ;p ̸= 0, so that P

(
ΦpT (·, t) ̸= 0

)
> 0, for all t ∈ Z. As a consequence, for

ome ℓ ≥ 0, we can have φℓ = 0 and hence
φℓ


0 = qℓ = 0; however, q = maxℓ≥0 qℓ ≥ 1.

ote that, in the simplest case p = 1, the sparsity set gives information about the null
omponents of the single kernel.

Set the sequence of polynomials φℓ : C → C, ℓ ≥ 0, associated with the subprocesses
efined in (1.5), as follows

φℓ(z) = 1 − φℓ;1z − · · · − φℓ;pz p. (1.6)

e must introduce some conditions on the model, essential to achieve our results. Condition 1.3
ill require that the eigenvalues of the covariance operator associated with ΓZ (·, ·) are strictly
ositive the operator is injective (see [27, Section 7.3]). Condition 1.5 will guarantee the
xistence of a unique isotropic and stationary solution for (1.2). For rigorous proofs, the reader
s referred to [8,13,14].

ondition 1.3 (Identifiability). Let Z (x, t) be the spherical white noise used in (1.2) and let
ts covariance function be given by

ΓZ (x, y) = Cov (Z (x, t) , Z (y, t)) , (x, t) , (y, t) ∈ S2
× Z.

t holds that∫
S2×S2

ΓZ (x, y) f (x) f (y) dxdy > 0,

or any f ∈ L2
(
S2
)

such that f (·) ̸= 0.

emark 1.4. Note that, as a consequence of [4, Lemma 4.1], Condition 1.3 is equivalent to
tate that the covariance function ΓZ is strictly positive definite.

ondition 1.5 (Causality/Stationarity). The sequence of polynomials (1.6) is such that

|z| ≤ 1 ⇒ φℓ(z) ̸= 0, for all ℓ ≥ 0.

ore explicitly, there are no roots in the unit disk, uniformly over ℓ.

emark 1.6. Condition 1.5, together with the spectral decomposition (1.4) for the kernels
k j , j = 1, . . . , p}, implies that, if ξℓ;1, . . . , ξℓ;dℓ

are the roots of the dℓ-degree polynomial
1.6), 1 ≤ dℓ ≤ p, then
|ξℓ; j | ≥ ξ∗ > 1,
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uniformly over ℓ. In other words, there exists δ > 0 such that

|z| < 1 + δ ⇒ φℓ(z) ̸= 0, for all ℓ ≥ 0.

Condition 1.7 (Smoothness). For all j = 1, . . . , p, Φ j is a nuclear operator, that is, its trace
norm is finite:

∥Φ j∥TR =

∑
ℓ≥0

(2ℓ + 1)|φℓ; j | < ∞, (1.7)

see again [27].

As experimental setting, for any ℓ ≥ 0, we assume that the harmonic coefficients {aℓ,m (t) :

= −ℓ, . . . , ℓ} can be observed over a finite set of times {1, . . . , n} ⊂ Z. The vector of
unctions

k =
(
k1, . . . , kp

)
ontains all the autoregressive kernels described above. We will focus on the following pena-
ized minimization problem:

k̂lasso
N = argmin

k∈P p
N

1
N

n∑
t=p+1

T (·, t) −

p∑
j=1

Φ j T (·, t − j)


2

L2(S2)

+ λ

p∑
j=1

∥Φ j∥TR, (1.8)

where N = n − p can be read as the effective number of observations, and λ ∈ R+ is the
penalty parameter. The space P p

N is the Cartesian product of p copies of

span{
2ℓ + 1

4π
Pℓ (·) : ℓ = 0, . . . , L N − 1} , (1.9)

here the integer L N > 0 is the truncation level, which corresponds to the frequency of the
ighest component in (1.4) estimated by (1.8), see Section 3.1 for a detailed discussion. Let
s also define

k j,N (z) =

L N −1∑
ℓ=0

φℓ; j
2ℓ + 1

4π
Pℓ(z)

nd, accordingly, kN = (k1,N , . . . , kp,N ).
Our main result is extensively stated in Theorem 4.12 and can be compactly formulated as

ollows.

heorem 1.8. Consider the estimation problem (1.8), assume that Conditions 1.3 and 1.5
old, and suppose that

N ⪰ b1 q log (pL N ) ,

here q = maxℓ≥0 qℓ. Then, for any penalty parameter λ = λN ≥ b2

√
log(pL N )

N , any solution
lasso
N satisfies

P

⎛⎝̂klasso
N − k

2
L2 ≤

18
π2 λ2

N

L N −1∑
ℓ=0

qℓ

α2
ℓ

(2ℓ + 1) +

∑
ℓ≥L N

φℓ

2
2

2ℓ + 1
8π2

⎞⎠
≥ 1 − c e−c2 log(pL N ), (1.10)
1
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where the sequence {αℓ : ℓ = 0, . . . , L N − 1} is defined in (4.11), and c1, c2 > 0 are absolute
constants. Moreover, under the additional Condition 1.7, it holds that

P

⎛⎝̂klasso
N − k


L∞ ≤

3
π

λN

L N −1∑
ℓ=0

√
qℓ

αℓ

(2ℓ + 1) +

∑
ℓ≥L N

φℓ


2

2ℓ + 1
4π

⎞⎠
≥ 1 − c1e−c2 log(pL N ). (1.11)

emark 1.9. The constants b1 and b2 depend on the model. In particular, b1 = max{ω2, 1}

nd b2 = 4F , where F , ω > 0 are tightly connected to the stability measure introduced in
ection 4.1. The reader is referred to Section 4.2 for further details and comments.

Our findings provide upper bounds for the L2- and the L∞-distances between the LASSO-
ype estimator k̂lasso

N and the “true” k. These upper bounds consist of the sum of two terms.
he first summand represents the error due to the approximation of the first L N components
f k with k̂lasso

N . The second one arises because k̂lasso
N provides an estimation of k truncated at

he multipole L N . In this sense, we can draw an analogy with standard nonparametric statistics
nd refer to them as the stochastic and the bias error, respectively (see [39]).

The upper bounds are non-asymptotic and they hold with high-probability, in the sense that,
or a fixed N sufficiently large, the probability on the left side of (1.10) and (1.11) is arbitrarily
lose to 1. An appropriate choice of L N leads both the upper bounds to converge to 0 and their
robabilities to converge to 1, as N → ∞; as a consequence, our result can be also read in
erms of asymptotic consistency.

.3. Plan of the paper

This paper is organized as follows. In Section 3, we present the LASSO estimators for
pherical autoregressive kernels under sparsity assumptions. Section 4 contains the main results
f this work, that is, how the classical LASSO-scheme fits in our setting, using the concept
f stability measure, as well as our oracle inequalities. In Section 5 we briefly show the
erformance of the LASSO estimators under sparsity assumptions. Finally, Section 6 collects
he proofs.

. General setting

.1. Harmonic analysis on the sphere and space–time spherical random fields

This section includes some well-established results concerning harmonic analysis on the
phere and provides the reader with an overview of the construction of space–time spherical
andom fields.

The reader is referred to [31,35,42,46] and the references therein for further details
oncerning harmonic analysis on the sphere and spherical random fields. Sphere-cross-time
andom fields have been discussed, among others, in [24,29,37,41].

Let us start by setting some useful notation and some important concepts related to the
armonic analysis on the sphere. Each point x on the sphere is identified by two angular
oordinates, that is, x = (ϑ, ϕ), where ϑ ∈ [0, π] and ϕ ∈ [0, 2π) are the colatitude and

he longitude, respectively. The spherical Lebesgue measure is labeled by dx = sin ϑdϑdϕ,
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while L2
(
S2
)

= L2
(
S2, dx

)
describes the space of square-integrable functions over the sphere

ith respect to the measure dx .
Following for example [35,42,46], we denote by {Hℓ : ℓ ≥ 0} the set of spaces of

omogeneous harmonic polynomials of degree ℓ restricted to S2. For any ℓ ≥ 0, Hℓ is spanned
y the set of spherical harmonics {Yℓ,m : m = −ℓ, . . . , ℓ}. The index ℓ ∈ N is the so-called
ultipole, while m = −ℓ, . . . , ℓ is the “azimuth” number. The set {Hℓ : ℓ ≥ 0} is dense in

L2
(
S2
)

(see again [35, Proposition 3.33, p.73]), thus the following decomposition holds

L2 (S2)
=

⨁
ℓ≥0

Hℓ

nd spherical harmonics provide an orthonormal basis for L2
(
S2
)
. For the sake of simplicity,

ere we will make use of the so-called real spherical harmonics. For any ℓ ∈ N and
= −ℓ, . . . , ℓ, the spherical harmonic Yℓ,m can be written as the normalized product of the

egendre associated function Pℓ,m : [−1, 1] → R of degree ℓ and order m, which depends only
n the colatitude ϑ , and a trigonometric function depending only on the longitude ϕ, namely,

Yℓ,m (ϑ, ϕ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

(2ℓ+1)

2π

(ℓ−m)!

(ℓ+m)!
Pℓ,m (cos ϑ) cos (mϕ) for m ∈ {1, . . . , ℓ}√

(2ℓ+1)

4π
Pℓ (cos ϑ) for m = 0√

(2ℓ+1)

2π

(ℓ+m)!

(ℓ−m)!
Pℓ,−m (cos ϑ) sin (−mϕ) for m ∈ {−ℓ, . . . ,−1}

,

here

Pℓ,m (u) =
1

2ℓℓ!

(
1 − u2)m

2
dℓ+m

duℓ+m

(
u2

− 1
)ℓ

, u ∈ [−1, 1] .

t is a well-known fact that the following addition formula holds
ℓ∑

m=−ℓ

Yℓ,m (x) Yℓ,m (y) =
2ℓ + 1

4π
Pℓ (⟨x, y⟩) , x, y ∈ S2,

here Pℓ is the Legendre polynomial of order ℓ, given by

Pℓ (u) =
1

2ℓℓ!

dℓ

duℓ

(
u2

− 1
)ℓ

, u ∈ [−1, 1] .

Legendre polynomials are orthogonal on L2([−1, 1]), that is,∫ 1

−1
Pℓ (u) Pℓ′ (u) du =

2
2ℓ + 1

δℓ′

ℓ . (2.1)

ecall that we are considering a sphere-cross-time random fields, which is a real-valued
ollection of random variables

{T (x, t) : (x, t) ∈ S2
× Z}.

Remark 2.1. All the results presented in this paper can be easily extended to the case
of complex-valued spherical random fields, after a proper definition of complex spherical
harmonics (see, for example, [35, Theorem 5.13, p.123]).

From now on, we will consider real-valued, centered, mean-square continuous, Gaussian
random fields. Moreover, T is assumed to be isotropic in the spatial domain and stationary

in the time domain. A spherical random field is said to be isotropic when it is invariant in
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distribution with respect to rotations, while stationarity guarantees that the stochastic properties
of the process do not change over time. In other words

T (R ·, · + τ)
d
= T (·, ·) , (2.2)

where τ ∈ Z, R belongs to the special group of rotations SO (3), and d
= denotes equality in

distribution.
As mentioned in Section 1, under isotropy, for any fixed t ∈ Z, the random field T can be

ewritten in terms of its harmonic expansion, given by Eq. (1.1) and here recalled

T (x, t) =

∑
ℓ≥0

ℓ∑
m=−ℓ

aℓ,m (t) Yℓ,m (x) , (x, t) ∈ S2
× Z .

The set of the harmonic coefficients {aℓ,m : ℓ ≥ 0, m = −ℓ, . . . , ℓ} contains all the stochastic
information related to T and can be computed explicitly by

aℓ,m (t) =

∫
S2

T (x, t) Yℓ,m (x) dx .

Since T is centered, that is, E [T (x, t)] = 0 for all (x, t) ∈ S2
× Z, it follows that

E
[
aℓ,m (t)

]
= 0 for ℓ ∈ N, m = −ℓ, . . . , ℓ, t ∈ Z.

he covariance function of T will be denoted by Γ :
(
S2

× Z
)

×
(
S2

× Z
)

→ R. If the
pace–time spherical random field is isotropic and stationary, then there exists a function
0 : [−1, 1] × Z → R, so that (2.2) yields

Γ (x, t, y, s) = Γ0 (⟨x, y⟩, t − s) , (x, t) , (y, s) ∈ S2
× Z.

urthermore, for any ℓ, ℓ′
∈ N, m = −ℓ, . . . , ℓ, m ′

= −ℓ′, . . . , ℓ′, the elements of the
ovariance matrix constructed over the harmonic coefficients of T are given by

E
[
aℓ,m (t) aℓ′,m′ (s)

]
= Cℓ (t − s) δℓ′

ℓ δm′

m , t, s ∈ Z . (2.3)

Observe that, for t = s, Cℓ (0) in (2.3) corresponds to the so-called angular power spectrum,
the spectral decomposition of the covariance function of a purely spatial spherical random field
(see, for example, [35, Remark 5.15, p.124; Remark 6.16, p.147]). Hence, from now on, we
will use the notation Cℓ (0) = Cℓ.

Covariance functions of isotropic-stationary sphere-cross-time random fields have a spectral
decomposition in terms of Legendre polynomials, namely,

Γ (x, t, y, s) =

∑
ℓ≥0

Cℓ (t − s)
2ℓ + 1

4π
Pℓ (⟨x, y⟩) , (x, t) , (y, s) ∈ S2

× Z,

ee [4].

.2. Spherical autoregressions

This section lists those conditions which, from now on, will characterize the class of sphere-
ross-time random fields studied along this paper. Hence, they will be implicitly assumed in
ll our statements.
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Following [15], we consider isotropic-stationary random fields {T (x, t) (x, t) ∈ S2
×Z} that

atisfy the functional autoregressive equation (see also [8]) given by Eq. (1.2) and here recalled

T (x, t) =

p∑
j=1

(
Φ j T (·, t − j)

)
(x) + Z (x, t) ,

here:

• for j = 0, . . . , p, Φ j : L2
(
S2
)

→ L2
(
S2
)

is a linear and bounded operator defined by
Eq. (1.3), i.e.,(

Φ j f
)
(x) =

∫
S2

K j (x, y) f (y) dy, f ∈ L2 (S2).
• The kernel K j : S2

× S2
→ R is continuous and isotropic, that is, there exists a function

k j : [−1, 1] → R so that K j (x, y) = k j (⟨x, y⟩), for all x, y ∈ S2. Moreover, the
following decomposition holds (in the L2-sense and pointwise under Condition 1.7)

K j (x, y) = k j (⟨x, y⟩) =

∑
ℓ≥0

ℓ∑
m=−ℓ

φℓ; j Yℓ,m (x) Yℓ,m (y)

=

∑
ℓ≥0

φℓ; j
2ℓ + 1

4π
Pℓ (⟨x, y⟩) , (2.4)

where the coefficients {φℓ; j : ℓ ≥ 0} are the eigenvalues of the operator Φ j .
• The field Z is a Gaussian spherical white noise, that is, {Z (·, t) , t ∈ Z} is a sequence of

independent and identically distributed Gaussian isotropic spherical random fields, defined
so that

(i) for every fixed t ∈ Z, Z (·, t) is a Gaussian, zero-mean isotropic random field, with
covariance function given by

ΓZ (x, y) =

∑
ℓ≥0

2ℓ + 1
4π

Cℓ;Z Pℓ (⟨x, y⟩) , such that
∑
ℓ≥0

2ℓ + 1
4π

Cℓ;Z < ∞,

where {Cℓ;Z : ℓ ≥ 0} is the angular power spectrum of Z (·, t) such that Cℓ;Z > 0
for any ℓ ≥ 0 (cf. Condition 1.3);

(ii) for every t ̸= s, the random fields Z (·, t) and Z (·, s) are independent, so that, for
any x, y ∈ S2,

E [Z (x, t) Z (y, s)] = 0.

For any t ∈ Z, (2.4) yields

(
Φ j T (·, t − j)

)
(x) =

∑
ℓ≥0

ℓ∑
m=−ℓ

φℓ; j aℓ,m (t − j) Yℓ,m (x) , x ∈ S2,

amely, the spectral representation of
(
Φ j T (·, t − j)

)
(·) is characterized by the following set

f harmonic coefficients {φℓ; j aℓ,m (t − j) : ℓ ≥ 0; m = −ℓ, . . . , ℓ}. Consequently, from (1.1),
t follows that

aℓ,m (t) =

p∑
φℓ; j aℓ,m (t − j) + aℓ,m;Z (t) , (2.5)
j=1
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that is, that is, the coefficients {aℓ,m (t) : t ∈ Z} follows an autoregressive model of order p,
for any ℓ ≥ 0, m = −ℓ, . . . , ℓ.

Remark 2.2. An alternative formulation can be used to described our setting. It is well
known that real-valued autoregressive models of order p can be represented as order 1 vector
autoregressive models, thus defined in Rp. In a functional framework, our SPHAR(p) can be
rewritten as a process defined in the Cartesian product of p copies of L2(S2) (see [8, Section

.1]).

Before concluding this section, let us fix the so-called truncation frequency L ∈ N. Then,
he truncated random field is defined by

TL (x, t) =

L−1∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,m (t) Yℓ,m (x) .

Remark 2.3. The truncated random field TL (x, t) describes exactly a band-limited random
eld, with band-width L0 < L . Moreover, as mentioned for example in [36], it provides a very
ood approximation of a smooth random field, in the sense that its covariance decays fast as
grows to infinity.

. LASSO estimation on the sphere

Here we present LASSO-type estimators for spherical autoregressive kernels under sparsity
ssumptions. More specifically, merging the techniques based on the stability measure presented
n [2] with the properties of SPHAR(p) processes enables the construction of functional
stimators for the kernels {k j : j = 1, . . . , p}.

3.1. The estimator construction

As introduced in Section 1, the spectral decomposition on the sphere allows to reduce the
functional penalized minimization problem to the equivalent ℓ1-penalized problems in the space

f the harmonic coefficients, see (3.1). Let us recall the definition of our LASSO estimator.

efinition 3.1 (LASSO Estimator). The functional LASSO estimator for the vector of kernels
= (k1, . . . , kp) is defined by Eq. (1.8), that is,

k̂lasso
N = argmin

k∈P p
N

1
N

n∑
t=p+1

T (·, t) −

p∑
j=1

Φ j T (·, t − j)


2

L2(S2)

+ λ

p∑
j=1

∥Φ j∥TR ,

where P p
N is given by (1.9).

More in details, the first part of (1.8) can be interpreted as a functional residual sum of
squares, where each term has spectral decomposition

T (·, t) −

p∑(
Φ j T (·, t − j)

)
=

∑ ℓ∑ ⎛⎝aℓ,m (t) −

p∑
φℓ; j aℓ,m (t − j)

⎞⎠ Yℓ,m .
j=1 ℓ≥0 m=−ℓ j=1
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As a consequence,

n∑
t=p+1

T (·, t) −

p∑
j=1

Φ j (T (·, t − j))


2

L2(S2)

=

n∑
t=p+1

∑
ℓ≥0

ℓ∑
m=−ℓ

⏐⏐⏐⏐⏐⏐aℓ,m (t) −

p∑
j=1

φℓ; j aℓ,m (t − j)

⏐⏐⏐⏐⏐⏐
2

.

ecalling that the truncation level induced by P p
N is L = L N , which depends on the number

of observations N , the functional minimization problem can be reformulated as

k̂lasso
N =

L N −1∑
ℓ=0

φ̂
lasso
ℓ,N

2ℓ + 1
4π

Pℓ,

ith

φ̂
lasso
ℓ,N = argmin

φℓ∈Rp

1
N

n∑
t=p+1

⏐⏐⏐⏐⏐⏐aℓ,m (t) −

p∑
j=1

φℓ; j aℓ,m (t − j)

⏐⏐⏐⏐⏐⏐
2

+ λ(2ℓ + 1)
φℓ


1

= argmin
φℓ∈Rp

1
N (2ℓ + 1)

n∑
t=p+1

⏐⏐⏐⏐⏐⏐aℓ,m (t) −

p∑
j=1

φℓ; j aℓ,m (t − j)

⏐⏐⏐⏐⏐⏐
2

+ λ
φℓ


1 . (3.1)

emark 3.2 (Important Remark on the High Dimensional Nature of the Procedure). The
ormula (3.1) could lead to a misleading interpretation of the minimization problem. Although
rom a computational point of view the procedure is separable, i.e. it can be solved separately
or each ℓ, the problem still has a high-dimensional nature. First of all, the penalty parameter λ

oes not depend on ℓ. Moreover, our penalization problem applies also to SPHAR(1) processes,
hich means that it can be used as a penalization procedure only on the first L N multipoles

nd not on the lags. This fact is made very clear by Figs. 1–4 in Section 5 where it shows up
hat, also with very small lag dimension (p = 2), the LASSO has the effect to regularize the
ernel estimates. To better understand our point, take p = 1 and

φ̂lasso
ℓ = argmin

φℓ∈R

1
N (2ℓ + 1)

n∑
t=2

ℓ∑
m=−ℓ

⏐⏐aℓ,m (t) − φℓaℓ,m (t − 1)
⏐⏐2 + λ |φℓ| ;

hen the solution can be computed as follows

φ̂lasso
ℓ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φ̂ols

ℓ +
λ

2Ĉℓ

for φ̂ols
ℓ Ĉℓ < −

λ

2

0 for
⏐⏐φ̂ols

ℓ Ĉℓ

⏐⏐ ≤
λ

2
φ̂ols

ℓ −
λ

2Ĉℓ

for φ̂ols
ℓ Ĉℓ >

λ

2

.

ote that the procedure shrinks the estimate towards zero not only if the true value φℓ is close
o zero, but also if the variance Cℓ is very small, which clearly happens at high frequencies,
ecause of the summability of the Cℓ’s. On the contrary, for classical LASSO problems, one
ssumes that the regressors are standardized, which surely cannot happen in our case at fixed
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ℓ. Indeed, since here we start our penalization procedure from Eq. (1.8), we can at most rescale
by the total variance of the spherical process.

Remark 3.3. In our functional minimization problem, the penalization term implicitly assigns
a uniform weight to all the p linear operators. Indeed, all the kernels k j , j ∈ {1, . . . , p}, are
assumed to be sparsely decomposable. To take into account different structures for the k j ’s and
capture the potential complexity of the model, several strategies can be hinted, such as adaptive
LASSO, elastic-net or group-Lasso variants; see also [2, Section 5.3] for a similar discussion
related to VAR processes.

Remark 3.4. Note that the penalization procedure given by Definition 3.1 preserves isotropy.
This is a consequence of the fact that we are considering a block-sparsity model; indeed,
given the structure of the predictor Φ j T (·, t − j), where all the aℓ· share the same φℓ; j , the
procedure will automatically select only the relevant multipoles ℓ. As a result, a multipole is
either removed entirely or not removed at all from the j th component of k̂lasso

N . The reader is
referred for further discussions to [12], where it is shown that not all the ℓ1-penalized problems

ave solutions which are isotropic, and to [23] for sparsity enforcing procedures for isotropic
pherical random fields.

.2. Matrix notation

An alternative form for the minimization problem given by Definition 3.1 can be introduced
s follows. First, we define the following N (2ℓ + 1)-dimensional vectors,

Yℓ,N =
(
aℓ,−ℓ (n) , . . . , aℓ,−ℓ (p + 1) , . . . , aℓ,ℓ (p + 1)

)′
,

Yℓ,N (h) =
(
aℓ,−ℓ (n − h) , . . . , aℓ,−ℓ (p + 1 − h) , . . . , aℓ,ℓ (p + 1 − h)

)′
,

h = 1, . . . , p,

Eℓ,N =
(
aℓ,−ℓ;Z (n) , . . . , aℓ,−ℓ;Z (p + 1) , . . . , aℓ,ℓ;Z (p + 1)

)
,

here we recall that N = n − p. We can thus define the (N (2ℓ + 1) × p) matrix

Xℓ,N = {Yℓ,N (1) : · · · : Yℓ,N (p)}, (3.2)

o that the LASSO problem (1.8) reduces to

k̂lasso
N =

L N −1∑
ℓ=0

φ̂
lasso
ℓ,N

2ℓ + 1
4π

Pℓ,

ith

φ̂
lasso
ℓ,N = argmin

φℓ∈Rp

1
N (2ℓ + 1)

Yℓ,N − Xℓ,N φℓ

2
2 + λ

φℓ


1 . (3.3)

ixed ℓ = 0, . . . , L N − 1, we define the covariance matrix Γℓ, that is, the p × p matrix with
eneric i j th element Cℓ (i − j). We can use (3.2) to define its unbiased estimator

Γ̂ℓ,N =
X ′

ℓ,N Xℓ,N

N (2ℓ + 1)
.

Let us now consider the product X ′

ℓ,N Eℓ,N /N (2ℓ + 1). Observe that Eℓ,N is related to the
rror random field Z , so that we can read this random object as the process obtained from
179
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the product of the stochastic data matrix Xℓ,N and the noise vector. Indeed, it represents the
so-called empirical process (see [11] and the references therein), associated with the multipole
ℓ. Furthermore, observe that the ℓth empirical process corresponds to the following sum

X ′

ℓ,N Eℓ,N

N (2ℓ + 1)
=

X ′

ℓ,N Yℓ,N

N (2ℓ + 1)
−

X ′

ℓ,N Xℓ,N

N (2ℓ + 1)
φℓ = γ̂ℓ,N − Γ̂ℓ,N φℓ , (3.4)

here

γ̂ℓ,N =
X ′

ℓ,N Yℓ,N

N (2ℓ + 1)
.

stablishing an upper bound for the empirical processes will be crucial for the proof of the
onsistency property for the LASSO estimators.

. Main results

In this section, we present the main results of this paper, which consist of properties for the
ASSO-type estimator of k given in (1.8). First of all, in Section 4.1, we introduce the concept
f stability measure, a powerful tool firstly proposed in the LASSO framework in [2], to obtain
ome bounds on the concentration of the sample covariances and the empirical processes around
heir expected values. Then, in Section 4.2, we will follow the standard scheme of LASSO-
echniques, see [11,26], to establish a basic inequality, a deviation condition and a compatibility
ondition. Finally, in Section 4.3, we present our main theorem, that is, the so-called oracle
nequalities for k̂lasso

N .

.1. Stability measure on the sphere and deviation bounds

Here, we discuss the stability measure for SPHAR(p) random fields. Intuitively, a stability
easure quantifies the dependencies between the variables of the process and, hence, how stable

he autocovariance matrix is. The more intricate the dependencies between the variables are,
he less stable should the process result. Several proposals aiming to represent and measure
he stability of a given process have been suggested in the literature over the years, mostly
nvolving set of mixing conditions, in order to establish for how long in time the dependence
etween the components is effective (see Appendix E in the supplementary file of [2]). The
tability measure considered here is in line with the one defined by [2].

Recall that {aℓ,m (t) , t ∈ Z} can be read as a real-valued autoregressive process of order
p (see (2.5)). Under standard stationarity assumptions (see [10, page 123]), we can define its
spectral density as

fℓ(ν) =
1

2π

∞∑
τ=−∞

Cℓ (τ ) e−iντ
=

1
2π

Cℓ;Z⏐⏐φℓ(e−iν)
⏐⏐2 , ν ∈ [−π, π] ,

hich is bounded and continuous. Upper and lower extrema of the spectral density over the
nit circle are hence given by

M( fℓ) = max
ν∈[−π,π ]

fℓ(ν),

m( fℓ) = min
ν∈[−π,π ]

fℓ(ν).

n what follows, we adopt M( fℓ) as a measure of the stability of the process {aℓ,m (t) , t ∈ Z}.
Generalizing [2], we can consider this as a band limited stability measure, in the sense that it
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refers only to the subprocesses belonging to the multipole ℓ. A global stability measure can
e obtained by considering jointly all the multipoles ℓ ≥ 0 via the following definition

M = M (T ) = max
ℓ≥0

M( fℓ);

hereas we can refer to MN = maxℓ<L N M( fℓ) as the observed stability measure. Let us now
efine the following p-dimensional process

ãℓ,m (t) =
(
aℓ,m (t) , . . . , aℓ,m (t − p + 1)

)′
,

ith spectral density and corresponding stability measure given by

f̃ℓ (ν) =
1

2π

∞∑
τ=−∞

Γℓ (τ ) e−iτν and M
(

f̃ℓ
)

= max
ν∈[−π,π ]

Λmax( f̃ℓ(ν)),

here

Γℓ (τ ) = E
[
ãℓ,m (t + τ) ã′

ℓ,m (t)
]

nd Γℓ = Γℓ (0). We can therefore construct r -dimensional subprocesses of {ãℓ,m (t) : t ∈ Z}

s follows. We fix a r -dimensional index J = ( j1, . . . , jr ), so that J ∈ {1, . . . , p}
r , and

j1 < · · · < jr . Then, we define

ã J
ℓ,m (t) =

((
ãℓ,m (t)

)
j1

, . . . ,
(
ãℓ,m (t)

)
jr

)′

,

here
(
ãℓ,m (t)

)
i is the i th component of {ãℓ,m (t) : t ∈ Z}. This subprocess has spectral density

f̃ J
ℓ (ν). We can finally introduce

M
(

f̃ℓ, r
)

= max
J⊂{1,...,p},|J |≤r

M
(

f̃ J
ℓ

)
,

M̃(r ) = max
ℓ≥0

M
(

f̃ℓ, r
)

,

M̃N (r ) = max
ℓ<L N

M
(

f̃ℓ, r
)

,

espectively, the band-limited, the global and the observed stability measures of the subprocess

ãr
ℓ,m (t) : t ∈ Z}. Notice that M

(
f̃ℓ
)

= M
(

f̃ℓ, p
)

, while, for the sake of completeness, we

efine M
(

f̃ℓ, r
)

= M( f̃ℓ), for all r > p. Moreover, it can be shown that

M
(

f̃ℓ, 1
)

≤ M
(

f̃ℓ, 2
)

≤ · · · ≤ M
(

f̃ℓ, p
)

= M
(

f̃ℓ
)

.

he following quantities are also well-defined

µmin;ℓ = min
z∈C:|z|=1

|φℓ(z)|2, µmax;ℓ = max
z∈C:|z|=1

|φℓ(z)|2, for ℓ ≥ 0 . (4.1)

emark 4.1. Note that, in line with Remark 1.6, there exists a positive constant c such that

max
ℓ≥0

µmax;ℓ = max
ℓ≥0

max
z∈C:|z|=1

⏐⏐⏐⏐⏐⏐1 −

p∑
φℓ; j z j

⏐⏐⏐⏐⏐⏐
2

≤

⎛⎝1 +

p∑
max
ℓ≥0

⏐⏐φℓ; j
⏐⏐⎞⎠2

≤ c,

j=1 j=1
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and

min
ℓ≥0

µmin;ℓ = min
ℓ≥0

min
z∈C:|z|=1

⏐⏐⏐⏐⏐⏐1 −

p∑
j=1

φℓ; j z j

⏐⏐⏐⏐⏐⏐
2

= min
ℓ≥0

min
z∈C:|z|=1

dℓ∏
j=1

|1 − ξ−1
ℓ; j z|

2
≥ (1 − ξ−1

∗
)2p

> 0,

ecalling that ξ∗ = minℓ≥0 min j=1,...,dℓ
|ξℓ; j |. These bounds represent the moral counterpart

f Proposition 2.2 in [2] and show how the global stability M behaves for SPHAR models.
ndeed, for a SPHAR(1) process, the operator Φ1 plays the same role of the matrix A1 in [2]
nd ξ−1

∗
= maxℓ≥0 |φℓ| = ∥Φ1∥op. As a consequence M is bounded as long as the operator

orm of Φ1 (the counterpart of the spectral radius of A1) is bounded away from 1.

We apply now the idea of stability measure to establish some relevant deviation bounds on
he covariance estimators and the empirical processes, which will be pivotal to analyze our
egression problem. Note that, {aℓ,m (t) : t ∈ Z}, m = −ℓ, . . . , ℓ, can be seen as a tool to
rovide an alternative notation for the empirical process (3.4). Indeed the hth component of

X ′

ℓ,N Eℓ,N /N (2ℓ + 1) is given by

Yℓ,N (h)′ Eℓ,N

N (2ℓ + 1)
=

1
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m (t − h) aℓ,m;Z (t) . (4.2)

roposition 4.2 (Deviation Bounds). Assume that Conditions 1.3 and 1.5 hold. Then, there
xists a constant c > 0 such that for any ℓ ∈ N0, any r-sparse vectors u, v ∈ Rp with
u∥ , ∥v∥ ≤ 1, r ≥ 1 and any η ≥ 0, it holds that

P
(⏐⏐v′

(
Γ̂ℓ,N − Γℓ

)
v
⏐⏐ > 2πM

(
f̃ℓ, r

)
η
)

≤ 2e−c N (2ℓ+1) min{η2,η}, (4.3)

P
(⏐⏐u′

(
Γ̂ℓ,N − Γℓ

)
v
⏐⏐ > 6πM

(
f̃ℓ, 2r

)
η
)

≤ 6e−cN (2ℓ+1) min{η2,η}. (4.4)

n particular, for any i, j ∈ {1, . . . , p}, it holds that

P
(⏐⏐⏐(Γ̂ℓ,N − Γℓ

)
i j

⏐⏐⏐ > 6πM( f̃ℓ, 2)η
)

≤ 6e−c N (2ℓ+1) min{η2,η} . (4.5)

oreover, for all 1 ≤ h ≤ p, it holds that

P
(⏐⏐⏐⏐Y′

ℓ,N (h) Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ > 2π Cℓ;Z

(
1 +

1 + µmax;ℓ

µmin;ℓ

)
η

)
≤ 6e−cN (2ℓ+1) min{η2,η}, (4.6)

where µmax;ℓ and µmin;ℓ are defined by (4.1).

Remark 4.3. Note that the deviation bounds can be also stated in terms of the global or
observed stability measure M̃(r ) or M̃N (r ).

The analogous result presented in [2] is very general, since it deals with stationary Gaussian
random processes on Rd , while here we focus on deviation bounds for our specific empirical
covariance matrices and empirical processes. The main technical difference between our results
and the ones in [2] is that, in our framework, we use observations from a group of 2ℓ + 1
stationary processes, namely, {aℓ,m(t) : t ∈ Z}, m = −ℓ, . . . , ℓ, to estimate the same covariance
matrix Γℓ, exploiting the isotropy of the random field.

Similarly to the work [2], (4.3) and (4.6) quantify how the underlying estimators concentrate

around their expected values. In particular, (4.3) will be used to verify the compatibility
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condition (see Proposition 4.6), while (4.6) will be used to prove the deviation condition (see
Proposition 4.8). In the i.i.d. case, bounds on the empirical process can be easily established,
since the data matrix is deterministic and the randomness comes only from the noise vector. In
our case, similarly to [2], the ℓth empirical process is the product of a dependent noise vector
nd a stochastic data matrix. Therefore, proving consistency requires a bound on both these
wo random objects.

.2. Bounds for LASSO techniques

We are now in the position to present the classical path of LASSO in our setting.
The very first result concerns the so-called basic inequality, an elementary yet essential

esult, which does not require any condition or assumption, except the existence of a linear
nderlying model, and it is simply based on the definition of the LASSO estimator.

roposition 4.4 (Basic Inequality). Consider the estimation problem in Definition 3.1. For any
= 0, . . . , L N − 1, set vℓ = φ̂

lasso
ℓ,N − φℓ. Then, the following basic inequality holds

v′

ℓΓ̂ℓ,N vℓ ≤
2v′

ℓ X ′

ℓ,N Eℓ,N

N (2ℓ + 1)
+ λ

[φℓ


1 −

φℓ + vℓ


1

]
a.s. (4.7)

This simple result implies that the prediction error v′

ℓΓ̂ℓ,N vℓ is bounded by the sum of two
actors. The first one is random and it depends on the empirical process X ′

ℓ,N Eℓ,N /N (2ℓ + 1).
he second one is deterministic and its value depends on the penalty parameter λ, on N and
n the chosen linear model itself.

The second step consists in defining an event SN such that the fluctuations of the random
actors

2v′

ℓ X ′

ℓ,N Eℓ,N

N (2ℓ + 1)
, ℓ = 0, . . . , L N − 1,

hen conditioned to SN , are all controlled by the same deterministic quantity. Moreover, we
eed to prove that this event has a high probability, implying that a bound on the prediction
rrors can be obtained in most cases. The event SN is defined as follows.

Definition 4.5. In the setting previously described, let

SN =

L N −1⋂
ℓ=0

{
γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

≤ FN

√
log pL N

N
},

where FN is a deterministic function depending only on the parameters
(
φ0, . . . ,φL N −1

)
and

oise variances
(
C0;Z , . . . , CL N −1;Z

)
. The deviation condition is said to hold if the event SN

appens.

The following theorem shows that, for an appropriate choice of FN and L N , the event SN
as high probability to occur.

roposition 4.6 (Deviation Condition). Consider the estimation problem in Definition 3.1 and
assume that Conditions 1.3 and 1.5 hold. There exist some constants c0, c1, c2 > 0 such that,
f we define

F
(
φℓ, Cℓ;Z

)
= c0

[
Cℓ;Z

(
1 +

1 + µmax;ℓ

)]
, FN = max F

(
φℓ, Cℓ;Z

)
,

µmin;ℓ ℓ<L N
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and if N ⪰ log pL N , then

P

(L N −1⋂
ℓ=0

γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

≤ FN

√
log pL N

N

)
≥ 1 − c1e−c2 log(pL N ).

emark 4.7. Observe that:

(i) the results presented in Proposition 4.6 also hold for a different choice of FN , that is,

FN = c0

[(
max
ℓ<L N

Cℓ;Z

)(
1 +

1 + maxℓ<L N µmax;ℓ

minℓ<L N µmin;ℓ

)]
,

which corresponds to the one used in [2];
(ii) in order for this bound to make sense, we need that

log (pL N ) = o (N ) .

The third and final step is to establish a compatibility condition that, whenever verified on

he event SN , will allow us to bound both the prediction errors {

Xℓ,N

(
φ̂

lasso
ℓ,N − φℓ

)2

2
} and

he estimation errors {

φ̂lasso
ℓ,N − φℓ

2

2
} by the same quantity. In this sense, it makes the errors

ompatible.
A symmetric d × d matrix A satisfies the compatibility condition, also called restricted

igenvalue (RE) condition, with curvature α > 0 and tolerance τ > 0 (A ∼ RE(α, τ )), if, for
ny ϑ ∈ Rd ,

ϑ ′ Aϑ ≥ α ∥ϑ∥
2
2 − τ ∥ϑ∥

2
1 . (4.8)

he next result gives some sufficient conditions in order to have
L N −1⋂
ℓ=0

{Γ̂ℓ,N ∼ RE(αℓ, τℓ)},

or some αℓ’s and τℓ’s, with high probability.

roposition 4.8 (Compatibility Condition). Consider the estimation problem in Definition 3.1
nd assume that Conditions 1.3 and 1.5 hold. Define qN = maxℓ<L N qℓ. There exist some
onstants c1, c2, c3 > 0 such that, if

N ⪰ max{ω2
N , 1}qN log (pL N ) , with ωN = c3 max

ℓ<L N

µmax;ℓ

µmin;ℓ

, (4.9)

then

P

(L N −1⋂
ℓ=0

{Γ̂ℓ,N ∼ RE(αℓ, τℓ)}

)
≥ 1 − c1 e−c2 N min{ω−2

N ,1}, (4.10)

ith

αℓ =
Cℓ;Z

2 µmax
, and τℓ = αℓ max{ω2

N , 1}
log (pL N )

N
. (4.11)

Remark 4.9. The results presented in Proposition 4.8 also hold for

ωN = c3
maxℓ<L N µmax;ℓ

,

minℓ<L N µmin;ℓ
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analogously to the findings in [2].

Remark 4.10. The compatibility condition on Γ̂ℓ,N is a requirement on its smallest eigenvalue,
which can be seen as a measure of the dependence of the random matrix columns. The sufficient
condition (4.9) ensures that, with high probability, the (sample) minimum eigenvalue of the
matrix Γ̂ℓ,N is bounded away from zero.

Remark 4.11. Note that 0 ≤ FN ≤ F , where F = maxℓ≥0 F
(
φℓ, Cℓ;Z

)
exists finite. Indeed,

F
(
φℓ, Cℓ;Z

)
= c0

[
Cℓ;Z

(
1 +

1 + µmax;ℓ

µmin;ℓ

)]
−→ 0, as ℓ −→ ∞,

ince Cℓ;Z converges to zero as ℓ goes to infinity and a ≤ µmin;ℓ ≤ µmax;ℓ ≤ b, with a, b
ositive constants (independent of ℓ), see Remark 4.1. Similarly, it holds that 0 ≤ ωN ≤ ω,
here

ω = c3 max
ℓ≥0

µmax;ℓ

µmin;ℓ

,

and qN ≤ q = maxℓ≥0 qℓ. In particular, all the results presented in this paper can be stated
sing F , ω, q instead of FN , ωN , qN . Without loss of generality, we can assume qN ≥ 1.

.3. Oracle inequalities

Oracle inequalities are used to estimate the accuracy of the k̂lasso
N . In general, k̂lasso

N depends
n the penalty parameter λ, according to (1.8). As a consequence, given a proper choice of

λ, our oracle inequalities produce upper bounds for the estimation error in the L2- and the
L∞-norms, resulting in the sum of two terms. The first summand describes the stochastic
rror due to the approximation of the first L N components of k with k̂lasso

N ; the second term
s a deterministic error, related to the not estimated components of k, with ℓ ≥ L N . It is
orth noting that, just like in the multivariate (i.e. non-functional) case, such upper bounds are

haracterized by a multiplicative factor log(pL N ); roughly speaking, this factor is the cost of
ot knowing explicitly the set of non-zero coefficients.

heorem 4.12. Consider the estimation problem in Definition 3.1 and assume that
onditions 1.3 and 1.5 hold. Moreover, suppose that,

L N −1⋂
ℓ=0

{Γ̂ℓ ∼ RE(αℓ, τℓ)} a.s. , wi th qℓτℓ ≤ αℓ/32,

nd the deviation condition is satisfied almost surely, that is,
L N −1⋂
ℓ=0

{
γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

≤ FN

√
log (pL N )

N
} a.s. (4.12)

hen, for any penalty parameter λ = λN ≥ 4FN
√

log(pL N )/N, any solution k̂lasso
N satisfies

̂klasso
N − k

2
L2 ≤

18
π2 λ2

N

L N −1∑ qℓ

α2 (2ℓ + 1) +

∑ φℓ

2
2

2ℓ + 1
8π2 a.s. ; (4.13)
ℓ=0 ℓ ℓ≥L N
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moreover, under the additional Condition 1.7, it holds that̂klasso
N − k


L∞ ≤

3
π

λN

L N −1∑
ℓ=0

√
qℓ

αℓ

(2ℓ + 1) +

∑
ℓ≥L N

φℓ


2

2ℓ + 1
4π

a.s. (4.14)

To discuss the possible rates of convergence in (4.13)–(4.14), let us choose λN = 4FN√
log(pL N )/N and L N ≃ N d . Moreover, we impose some semiparametric structure to the set

φℓ; j : ℓ ≥ 0}, that is,⏐⏐φℓ; j
⏐⏐ ≤ G jℓ

−β j ,

here β j > 1 and G j > 0; see also [31] for an interpretation in terms of regularity of the
ernels. Note that, since we are looking at the asymptotic behavior as N → ∞, the sufficient
ondition (4.9) automatically holds and the curvature αℓ ≃ Cℓ;Z . In particular, a standard
ssumption for the behavior of the power spectrum of a spherical white noise is Cℓ;Z ≃ ℓ−α ,

with α > 2, see [35]. As a consequence, in this framework, we have

̂klasso
N − k

2
L2 ≤

18
π2 λ2

N

L N −1∑
ℓ=0

qℓ

α2
ℓ

(2ℓ + 1) +

∑
ℓ≥L N

φℓ

2
2

2ℓ + 1
8π2

= O

⎛⎝ log pL N

N

L N −1∑
ℓ=0

ℓ2α (2ℓ + 1) +

∑
ℓ≥L N

ℓ−2β(2ℓ + 1)

⎞⎠
= O

(
log N N 2d(α+1)−1

+ N 2d(1−β)) ,
here β = min j=1,...,p β j , and, in order to ensure consistency, we can choose

0 < d <
1

2(α + 1)
.

Analogously, imposing this time β j > 2, one has that

̂klasso
N − k


L∞ ≤

3
π

λN

L N −1∑
ℓ=0

√
qℓ

αℓ

(2ℓ + 1) +

∑
ℓ≥L N

φℓ


2

2ℓ + 1
4π

= O
(
(log N )1/2 N d(α+2)− 1

2 + N d(2−β)
)

nd in this case the consistency in the supremum norm is reached for any

0 < d <
1

2(α + 2)
.

Moreover, we stress that the parameter α can be estimated via a Whittle-like procedure, see
[19,20], which could be useful to choose a suitable rate for L N .

5. Some numerical results

In this section we illustrate the finite sample performance of the LASSO estimator k̂lasso
N

under various degrees of sparsity. In particular, fixed N = 300 and L N = L = 50, we are
concerned with the empirical evaluation of the L2-risk and L∞-risk of k̂lasso

N for the penalty
parameters

λ = 10i−5 and λ = 5 × 10i−5, for i = 1, . . . , 4,
2i−1 2i
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in comparison with the one of the non-penalized estimator described in [15], corresponding to
the case λ0 = 0. We remark that our simulations can be considered as a hint, in view of future
applications on real data.

In what follows, we consider seven different case studies, all belonging to the class of
PHAR(2) processes, so that (1.2) becomes

T (x, t) = Φ1 (T (·, t − 1)) (x) + Φ2 (T (·, t − 2)) (x) + Z (x, t) .

he noise structure is kept fixed, with Cℓ;Z ∝ ℓ−2, and the operators Φ1 and Φ2 are selected to
nsure that the process satisfy Condition 1.5 with a signal-to-noise ratio maxℓ≥0 Cℓ/Cℓ;Z not
xceeded 2.

In the first case, the random field T1 is strongly sparse, in the sense that the only non-null
igenvalues are

φ2;1 = −0.7, φ3;2 = 0.5.

n the fourth case, the random field T4 is characterized by less sparsity and homogeneity
etween the two kernels; in particular, the non-null coefficients are

φ18;1 = −0.5, φ19;1 = 0.3, φ20;1 = 0.65, φ2;2 = 0.25,

φ3;2 = −0.67, φ5;2 = −0.7.

The remaining fields are defined as follows:

• T2: φℓ; j ̸= 0 for ℓ < 10 and 0 otherwise, j = 1, 2;
• T3: non-sparse version of T2 with φℓ, j ∝ ℓ−3 for ℓ ≥ 10, j = 1, 2;
• T5: φℓ; j ̸= 0 for ℓ < 20 and 0 otherwise, j = 1, 2;
• T6: non-sparse version of T5 with φℓ, j ∝ ℓ−3 for ℓ ≥ 20, j = 1, 2;
• T7: φℓ; j ̸= 0 for ℓ < 50 and φℓ, j ∝ ℓ−3 for ℓ ≥ 50, j = 1, 2.

ote that, although T3 and T6 are non-sparse, they are very similar to T2 and T5, respectively,
ince their φℓ’s at higher multipoles are non-null, but small.

For each scenario, we run B = 1000 replications and we compute the following quantities

MSE
(̂
klasso

N , k
)

=
1
B

B∑
b=1

{
1
G

G∑
g=1

2∑
j=1

(̂
k lasso

j,b (zg) − k j (zg)
)2

} ,

SUP
(̂
klasso

N , k
)

=
1
B

B∑
b=1

{ sup
g∈{1,...,G}

√ 2∑
j=1

(̂
k lasso

j,b (zg) − k j (zg)
)2

} ,

here {z1, . . . , zG}, G = 2000, is an equally spaced grid over [−1, 1]. As usually, the MSE
an be decomposed into the sum of

VAR
(̂
klasso

N , k
)

=
1
B

B∑
b=1

{
1
G

G∑
g=1

2∑
j=1

(̂
k lasso

j,b (zg) − k̄ lasso
j (zg)

)2
} ,

BIAS2 (̂klasso
N , k

)
=

1
G

G∑
g=1

2∑
j=1

(
k̄ lasso

j (zg) − k j (zg)
)2

,

here k̄ lasso
j (zg) is the average over the B replicates of k̂ lasso

j,b (zg).
Table 1 collects the values of the empirical L2-error (MSE) and L∞-error (SUP) associated

ith the seven models of interest; the bold entries correspond to their minima over λ, which
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Table 1
Values of the L2-error (MSE) and L∞-error (SUP) for the case studies T1, . . . , T7, by varying the penalty parame-
er λ.

MSE T1 T2 T3 T4 T5 T6 T7

λ0 0.00209 0.00200 0.00202 0.00205 0.00195 0.00195 0.00179
λ1 0.00173 0.00166 0.00167 0.00171 0.00161 0.00162 0.00185
λ2 0.00107 0.00101 0.00103 0.00106 0.00102 0.00102 0.00334
λ3 0.00081 0.00076 0.00077 0.00082 0.00083 0.00084 0.00791
λ4 0.00043 0.00042 0.00044 0.00061 0.00119 0.00119 0.14259
λ5 0.00033 0.00037 0.00039 0.00095 0.00273 0.00272 0.40857
λ6 0.00018 0.00090 0.00091 0.01518 0.04605 0.04597 2.93066
λ7 0.00015 0.00223 0.00224 0.05287 0.11930 0.11931 3.63458
λ8 0.00021 0.00964 0.00961 0.19060 0.42671 0.42670 4.32159

SUP T1 T2 T3 T4 T5 T6 T7

λ0 0.22810 0.22510 0.22724 0.22756 0.22454 0.22316 0.21326
λ1 0.20965 0.20698 0.20896 0.21022 0.20693 0.20551 0.21841
λ2 0.16302 0.16163 0.16294 0.16629 0.16529 0.16314 0.34847
λ3 0.13592 0.13364 0.13559 0.13906 0.14416 0.14526 0.60061
λ4 0.07845 0.08183 0.09875 0.10212 0.18168 0.19659 2.78143
λ5 0.06127 0.07211 0.10213 0.12481 0.29815 0.31749 4.81152
λ6 0.03384 0.11782 0.14852 0.46755 1.56045 1.58153 11.5330
λ7 0.02824 0.18457 0.20981 0.79587 2.54149 2.56116 12.7524
λ8 0.03475 0.39983 0.40388 1.23177 4.06218 4.06166 13.9386
λ9 0.05762 0.67875 0.66424 1.23839 4.02005 4.02358 13.8951

Fig. 1. Model T1. 95% confidence bands (gray lines) for least squares (left panel) and LASSO with λ = λ7 (right
anel), based on B = 1000 replicates. The blue dashed line is the true k2, while the orange straight one corresponds
o one estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

ecrease as the level of sparsity grows. As expected, LASSO-type estimators outperform least

quares uniformly in all the cases, except in the last one (highly non-sparse). Even for the

on-sparse models T3 and T6, LASSO achieves good performance, as for T2 and T5, due to its

moothing effect on the higher multipoles.
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Fig. 2. Model T2. 95% confidence bands (gray lines) for least squares (left panel) and LASSO with λ = λ5 (right
anel), based on B = 1000 replicates. The blue dashed line is the true k2, while the orange straight one corresponds
o one estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 3. Model T4. 95% confidence bands (gray lines) for least squares (left panel) and LASSO with λ = λ4 (right
anel), based on B = 1000 replicates. The blue dashed line is the true k2, while the orange straight one corresponds
o one estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

Fig. 4. Model T5. 95% confidence bands (gray lines) for least squares (left panel) and LASSO with λ = λ3 (right
anel), based on B = 1000 replicates. The blue dashed line is the true k2, while the orange straight one corresponds
o one estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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Table 2
Values of the variance (VAR) and squared bias (BIAS2) for the case studies T1, . . . , T7, by varying the penalty

arameter λ.

VAR T1 T2 T3 T4 T5 T6 T7

λ0 0.00208 0.00200 0.00201 0.00205 0.00194 0.00195 0.00178
λ1 0.00173 0.00166 0.00167 0.00170 0.00161 0.00162 0.00178
λ2 0.00107 0.00101 0.00102 0.00106 0.00101 0.00102 0.00177
λ3 0.00081 0.00075 0.00077 0.00081 0.00081 0.00081 0.00176
λ4 0.00043 0.00041 0.00042 0.00045 0.00067 0.00068 0.00165
λ5 0.00033 0.00034 0.00035 0.00035 0.00067 0.00067 0.00160
λ6 0.00018 0.00030 0.00029 0.00025 0.00067 0.00068 0.00106
λ7 0.00015 0.00027 0.00027 0.00021 0.00060 0.00060 0.00095
λ8 0.00010 0.00025 0.00025 0.00012 0.00052 0.00052 0.00052

BIAS2 T1 T2 T3 T4 T5 T6 T7

λ0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
λ1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00006
λ2 0.00000 0.00000 0.00000 0.00000 0.00001 0.00001 0.00157
λ3 0.00000 0.00000 0.00000 0.00001 0.00002 0.00002 0.00615
λ4 0.00000 0.00001 0.00001 0.00016 0.00052 0.00051 0.14094
λ5 0.00000 0.00003 0.00004 0.00060 0.00206 0.00205 0.40697
λ6 0.00000 0.00060 0.00062 0.01494 0.04538 0.04529 2.92960
λ7 0.00001 0.00196 0.00197 0.05265 0.11870 0.11870 3.63364
λ8 0.00011 0.00938 0.00936 0.19048 0.42618 0.42618 4.32107

Table 3
Values of the area under the ROC curve (AUROC) for the sparse
models T1, T2, T4, T5, computed in correspondence of the best λ.

AUROC

T1 0.96874
T2 0.97728
T4 0.88277
T5 0.90257

Figs. 1–4 illustrate the functional forms of the estimated kernel, compared to the real one,
nd the 95% confidence bands based on the B = 1000 replicates. The left panels present the
on-penalized estimates of k2 while the right panels contain the corresponding penalized ones.
euristically, the (best) penalized estimates reconstruct the true kernel function better than the
on-penalized ones, which show an oscillatory behavior (undersmoothing) due to the lack of
election of the relevant multipoles. Indeed, as usual for LASSO estimators, the variance is
educed by paying the price of a slightly larger bias, see also Table 2, leading anyway to an
mprovement in terms of MSE. This also suggests that, in the non-penalized case, the value of
L N must be tuned more carefully.

Moreover, also in terms of model selection, the values of the area under the ROC curve
AUROC), averaged over the B = 1000 replicates and reported in Table 3, reflect that the
best) penalized estimates perform pretty well.
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Remark 5.1 (Penalty Parameter Selection). Looking at Table 1 it is clear that the role of
he penalty parameter is crucial. Our theoretical results suggest possible rates of the penalty
arameter that imply consistency of the kernel estimator. However, we cannot directly compute
he optimal value of λ due to the presence of unknown constants. As a consequence, a careful

selection of the penalty parameter using data driven methods needs to be conducted in order
to make our procedure applicable in practice. The idea could be to implement a functional
ross-validation, which takes into account all the frequencies simultaneously; this is not the
ocus of our work but it can be addressed in future more applied works.

. Proofs

In the present section we prove the bounds showed in Section 4.2 as well as our main
heorem. Many of the proofs have arguments which are broadly similar to those given for
elated results in [2].

roof of Proposition 4.2. Let us define J = supp(v) = { j1, . . . , jr } ⊂ {1, . . . , p}, r ≥ 1, and

Wℓ,J = Xℓ,N v =

∑
j∈J

v j Yℓ,N ( j).

hen, Qℓ,J = E
[
Wℓ,J W ′

ℓ,J

]
= Bℓ,J ⊗ I2ℓ+1, where Bℓ,J is the covariance matrix of the random

ector

∑
j∈J

v j

⎡⎢⎣ aℓ,m(n − j)
...

aℓ,m(p + 1 − j)

⎤⎥⎦ for any m = −ℓ, . . . , ℓ.

s a consequence,
Qℓ,J


op =

Bℓ,J


op ≤ 2πM( f̃ℓ, r ) (see [2, Proposition 2.4]) and (4.3) is
roved. To prove (4.4), note that

2
⏐⏐u′
(
Γ̂ℓ,N − Γℓ

)
v
⏐⏐ ≤

⏐⏐u′
(
Γ̂ℓ,N − Γℓ

)
u
⏐⏐

+
⏐⏐v′
(
Γ̂ℓ,N − Γℓ

)
v
⏐⏐+ ⏐⏐(u + v)′

(
Γ̂ℓ,N − Γℓ

)
(u + v)

⏐⏐ ,
nd u + v is 2r -sparse with |u + v| ≤ 2. The result follows by applying (4.3) separately on
ach of the three terms on the right. The element-wise deviation bound (4.5) is obtained by
hoosing u = ei , v = e j .

Let us now prove (4.6). Recall (4.2); the following decomposition holds

2
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m(t − h)aℓ,m;Z (t)

=

⎡⎣ 1
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

(
aℓ,m(t − h) + aℓ,m;Z (t)

)2
− (Cℓ + Cℓ;Z )

⎤⎦
−

[
1

N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m(t − h)2
− Cℓ

]

−

[
1

N (2ℓ + 1)

ℓ∑
m=−ℓ

T∑
t=p

aℓ,m;Z (t)2
− Cℓ;Z

]
.
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Implementing (4.3) for v = eh , we have

P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m(t − h)2
− Cℓ

⏐⏐⏐⏐⏐⏐ > 2πM( f̃ℓ, 1)η

⎞⎠ ≤ 2e−c N (2ℓ+1) min{η2,η} ,

hich implies

P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m(t − h)2
− Cℓ

⏐⏐⏐⏐⏐⏐ > 2πM( fℓ)η

⎞⎠ ≤ 2e−c N (2ℓ+1) min{η2,η},

here we used the fact that M( f̃ℓ, 1) = M( fℓ). Following steps that are analogous to the ones
hat led to (4.3) (setting v ∈ R, v = 1, and obviously r = 1), one can show that

P

(⏐⏐⏐⏐⏐ 1
N (2ℓ + 1)

ℓ∑
m=−ℓ

T∑
t=p

aℓ,m;Z (t)2
− Cℓ;Z

⏐⏐⏐⏐⏐ > 2πM( fℓ;Z )η

)
≤ 2e−c N (2ℓ+1) min{η2,η} ,

nd that, for any fixed h = 1, . . . , p,

P

⎛⎝⏐⏐⏐⏐⏐⏐ 1
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

(
aℓ,m (t − h) + aℓ,m;Z (t)

)2
− (Cℓ + Cℓ;Z )

⏐⏐⏐⏐⏐⏐ > 2πM( fℓ;T +Z )η

⎞⎠
≤ 2e−c N (2ℓ+1) min{η2,η} ,

Moreover,

fℓ;T +Z (λ) = fℓ(λ) + fℓ;Z (λ) + 2 fℓ;(T,Z )(λ),

which implies, M( fℓ;T +Z ) ≤ M( fℓ)+M( fℓ;Z )+M( fℓ;(T,Z )), where fℓ;T +Z (λ) is the spectral
ensity of the process {aℓ,m(t − h) + aℓ,m;Z (t), t ∈ Z} and fℓ;(T,Z ) is the spectral density of the
oint process {

(
aℓ,m(t − h), aℓ,m;Z (t)

)
, t ∈ Z}.

Now, using the obvious implications

{|X1 + X2 + X3| > a} ⊂ {|X1| + |X2| + |X3| > a} ⊂

3⋃
i=1

{|X i | >
a
3
},

we have

P

⎛⎝⏐⏐⏐⏐⏐⏐ 2
N (2ℓ + 1)

ℓ∑
m=−ℓ

n∑
t=p+1

aℓ,m (t − h)aℓ,m;Z (t)

⏐⏐⏐⏐⏐⏐ > 2π
(
M( fℓ) + M( fℓ;Z ) + M( fℓ;(T,Z ))

)
η

⎞⎠
≤ 6e−c N (2ℓ+1) min{η2,η} ,

ollowing the last steps of the proof of Proposition 2.4 in [2], we obtain

2πM( fℓ) ≤
Cℓ;Z

µmin;ℓ

, 2πM( fℓ;Z ) = Cℓ;Z and 2πM
(

fℓ;(T,Z )
)

≤
Cℓ;Z µmax;ℓ

µmin;ℓ

,

which finally implies (4.6). □

Proof of Proposition 4.4. Since φ̂
lasso
ℓ,N is the solution of the minimization problem (3.3), it

follows thatYℓ,N − Xℓ,N φ̂
lasso
ℓ,N

2

2
+ λ

φ̂lasso
ℓ,N

 ≤

Yℓ,N − Xℓ,N φℓ

2
2

+ λ
φℓ


1 ,
N (2ℓ + 1) 1 N (2ℓ + 1)
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which, using the definition of Yℓ,N , becomesXℓ,N φℓ + Eℓ,N − Xℓ,N φ̂
lasso
ℓ,N

2

2

N (2ℓ + 1)
+ λ

φ̂lasso
ℓ,N


1

≤

Eℓ,N
2

2

N (2ℓ + 1)
+ λ

φℓ


1 .

ow, we haveXℓ,N φℓ − Xℓ,N φ̂
lasso
ℓ,N

2

2

N (2ℓ + 1)
+

Eℓ,N
2

2

N (2ℓ + 1)
− 2

(
φ̂

lasso
ℓ,N − φℓ

)′

X ′

ℓ,N Eℓ,N

N (2ℓ + 1)
+ λ

φ̂lasso
ℓ,N


1

≤

Eℓ,N
2

2

N (2ℓ + 1)
+ λ

φℓ


1 ,

nd finally, using the notation vℓ, it holds that

v′

ℓ X ′

ℓ,N Xℓ,N vℓ

N (2ℓ + 1)
− 2

v′

ℓ X ′

ℓ,N Eℓ,N

N (2ℓ + 1)
+ λ

φ̂lasso
ℓ,N


1

≤ λ
φℓ


1 . □

roof of Proposition 4.6. First of all, we have

γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

=
1

N (2ℓ + 1)

X ′

ℓ,N Eℓ,N


∞
= max

1≤h≤p

⏐⏐⏐⏐Y′

ℓ,N (h)Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ .
Now, using (4.6), we obtain that, for any η ≥ 0 and c > 0,

P
(⏐⏐⏐⏐Y′

ℓ,N (h)Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ > Cℓ;Z

(
1 +

1 + µmax;ℓ

µmin;ℓ

)
η

)
≤ 6 exp

(
−c N (2ℓ + 1) min{η, η2

}
)
.

hus it follows that

P
(

max
1≤h≤p

⏐⏐⏐⏐Y′

ℓ,N (h)Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ > Cℓ;Z

(
1 +

1 + µmax;ℓ

µmin;ℓ

)
η

)
≤ 6 p exp

(
−c N (2ℓ + 1) min{η, η2

}
)
.

ince, for every ℓ < L N ,

c0Cℓ;Z

(
1 +

1 + µmax;ℓ

µmin;ℓ

)
≤ FN ,

we have

P
(

max
ℓ<L N

max
1≤h≤p

⏐⏐⏐⏐Y′

ℓ,N (h)Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ >
1
c0
FN η

)
≤ 6 p L N exp

(
−c N min{η, η2

}
)
.
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Hence, for η = c0

√
log pL N

N

P

(L N −1⋂
ℓ=0

γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

≤ FN

√
log pL N

N

)

= P

(
max
ℓ<L N

γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

≤ FN

√
log pL N

N

)

= P

(
max
ℓ<L N

max
1≤h≤p

⏐⏐⏐⏐Yℓ,N (h)′Eℓ,N

N (2ℓ + 1)

⏐⏐⏐⏐ ≤ FN

√
log pL N

N

)

≥ 1 − 6 p L N exp
(

−c N min{c0, c2
0}

log pL N

N

)
= 1 − 6 p L N e−c min{c0,c2

0} log pL N

= 1 − 6 e−

(
c min{c0,c2

0}−1
)

log pL N ,

nd the statement is proved with c1 = 6, c2 = c min{c0, c2
0} − 1, where c0 is any positive

onstant that satisfies c2 > 0. □

roof of Proposition 4.8. Our goal is to prove (4.10), which can be rewritten as follows

P

(L N −1⋂
ℓ=0

Aℓ

)
≥ 1 − c1 e−c2 N min{ω−2,1},

here Aℓ = {v′

ℓΓ̂ℓ,N vℓ ≥ αℓ ∥vℓ∥
2
2 − τℓ ∥vℓ∥

2
1 , ∀ vℓ ∈ Rp

}.
We start from Eq. (4.3), and considering that

2πM( f̃ℓ, r ) ≤ 2πM( f̃ℓ) ≤ p 2πM( fℓ) ≤ p
Cℓ;Z

µmin;ℓ

, r ≥ 1,

e have

P
(⏐⏐v′

ℓ

(
Γ̂ℓ,N − Γℓ

)
vℓ

⏐⏐ >
p Cℓ;Z

µmin;ℓ

η

)
≤ 2e−c N (2ℓ+1) min{η2,η}.

sing Lemma F.2 in the supplementary material of [2] yields

P

(
sup

vℓ∈K (2s)

⏐⏐v′

ℓ

(
Γ̂ℓ,N − Γℓ

)
vℓ

⏐⏐ > η
p Cℓ;Z

µmin;ℓ

)
≤ 2e−cN (2ℓ+1) min{η2,η}+2s min{log p,log

(
21 e p

2s

)
}
,

where K (2s) = {v ∈ Rp
: ∥v∥2 ≤ 1, ∥v∥0 ≤ 2s}, for an integer s ≥ 1. Now we set

c3 = 54 η = ω−1
ℓ =

1
54 p

µmin;ℓ

µmax;ℓ

,

to obtain

P

(
sup

vℓ∈K (2s)

⏐⏐v′

ℓ

(
Γ̂ℓ,N − Γℓ

)
vℓ

⏐⏐ ≤
1

54
Cℓ;Z

µmax;ℓ

)
≥ 1 − 2e−cN (2ℓ+1) min{1,ω−2

ℓ
}+2s min{log p,log

(
21 e p

2s

)
}
,
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P
c

N
and apply Lemma 12 of the supplementary material of [32] to get

P
(⏐⏐v′

ℓ

(
Γ̂ℓ,N − Γℓ

)
vℓ

⏐⏐ ≤
1
2

Cℓ;Z

µmax;ℓ

{∥vℓ∥
2
2 +

1
s

∥vℓ∥
2
1}, ∀ vℓ ∈ Rp

)
≥ 1 − 2e−cN (2ℓ+1) min{1,ω−2

ℓ
}+2s min{log p, log

(
21 e p

2s

)
}
.

Moreover, it holds that⏐⏐v′

ℓ

(
Γ̂ℓ,N − Γℓ

)
vℓ

⏐⏐ =
⏐⏐v′

ℓΓ̂ℓ,N vℓ − v′

ℓΓℓvℓ

⏐⏐ =
⏐⏐v′

ℓΓℓvℓ − v′

ℓΓ̂ℓ,N vℓ

⏐⏐ ≥
⏐⏐v′

ℓΓℓvℓ

⏐⏐
−
⏐⏐v′

ℓΓ̂ℓ,N vℓ

⏐⏐
≥ Λmin (Γℓ) ∥vℓ∥

2
2 −

⏐⏐v′

ℓΓ̂ℓ,N vℓ

⏐⏐ ≥
Cℓ;Z

µmax;ℓ

∥vℓ∥
2
2 −

⏐⏐v′

ℓΓ̂ℓ,N vℓ

⏐⏐
=

Cℓ;Z

µmax;ℓ

∥vℓ∥
2
2 − v′

ℓΓ̂ℓ,N vℓ ,

which implies that

P
(

Cℓ;Z

µmax;ℓ

∥vℓ∥
2
2 − v′

ℓΓ̂ℓ,N vℓ ≤
1
2

Cℓ;Z

µmax;ℓ

{∥vℓ∥
2
2 +

1
s

∥vℓ∥
2
1}, ∀ vℓ ∈ Rp

)
≥ 1 − 2e−cN (2ℓ+1) min{1,ω−2

ℓ
}+2s min{log p, log

(
21 e p

2s

)
}
.

Hence, we can rearrange the terms in the previous relation to have

P
(

v′

ℓΓ̂ℓ,N vℓ ≥
1
2

Cℓ;Z

µmax;ℓ

∥vℓ∥
2
2 −

1
2s

Cℓ;Z

µmax;ℓ

∥vℓ∥
2
1 , ∀ vℓ ∈ Rp

)
≥ 1 − 2e−cN (2ℓ+1) min{1,ω−2

ℓ
}+2s min{log p, log

(
21 e p

2s

)
}
.

Now, taking ωN = maxℓ<L N ωℓ, we obtain

P

(L N −1⋃
ℓ=0

Aℓ

)
≤

L N −1∑
ℓ=0

[1 − P (Aℓ)]

≤ 2e−cN min{1,ω−2
N }+2s min{log pL N , log

( 21 e pL N
2s

)
}
,

which is the desired conclusion, once we set

s =
c N min{ω−2

N , 1}

4 log pL N
. □

roof of Theorem 4.12. Set vℓ = φ̂
lasso
ℓ,N −φℓ. Using the basic inequality (4.7) and the deviation

ondition (4.12), we obtain that, almost surely,

v′

ℓΓ̂ℓ,N vℓ ≤ 2v′

ℓ

(
γ̂ℓ,N − Γ̂ℓ,N φℓ

)
+ λN

(φℓ


1 −

φℓ + vℓ


1

)
≤ 2 ∥vℓ∥1

γ̂ℓ,N − Γ̂ℓ,N φℓ


∞

+ λN
(φℓ


1 −

φℓ + vℓ


1

)
≤ 2 ∥vℓ∥1 FN

√
log(pL N )

N
+ λN

(φℓ


1 −

φℓ + vℓ


1

)
. (6.1)

ow, let J = supp(φℓ) = { j1, . . . , jqℓ
} be such that |J | = qℓ, then J c

= {1, . . . , p} \ J ,
φℓ,J


1 =

φℓ


1 and

φℓ,J c


1 = 0. Consequently, it holds thatφℓ + vℓ


1 =

φℓ,J + vℓ,J


1 +
vℓ,J c


1

≥
φ  −

v  +
v c

 ,
ℓ,J 1 ℓ,J 1 ℓ,J 1
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which implies

λN
(φℓ


1 −

φℓ + vℓ


1

)
≤ λN

(φℓ,J


1 −

φℓ,J


1 +

vℓ,J


1 −
vℓ,J c


1

)
≤ λN

(vℓ,J


1 −
vℓ,J c


1

)
.

aving explicitly required that λN ≥ 4FN
√

log(pL N )/N , Eq. (6.1) becomes

0 ≤ v′

ℓΓ̂ℓ,N vℓ ≤
λN

2
∥vℓ∥1 + λN

(vℓ,J


1 −
vℓ,J c


1

)
=

λN

2

(vℓ,J


1 +
vℓ,J c


1

)
+ λN

(vℓ,J


1 −
vℓ,J c


1

)
=

3λN

2

vℓ,J


1 −
λN

2

vℓ,J c


1 ≤
3
2
λN ∥vℓ∥1 . (6.2)

his ensures that
vℓ,J c


1 ≤ 3

vℓ,J


1 and hence, adding
vℓ,J


1 on both sides, that ∥vℓ∥1 ≤vℓ,J


1, which implies that

∥vℓ∥1 ≤ 4
√

qℓ ∥vℓ∥2 ,

from Cauchy–Schwarz inequality.
Now we use this property into the (RE) inequality (4.8), keeping in mind that we specifically

required that qℓτℓ ≤ αℓ/32, and we obtain

v′

ℓΓ̂ℓ,N vℓ ≥ αℓ ∥vℓ∥
2
2 − τℓ ∥vℓ∥

2
1 ≥ αℓ ∥vℓ∥

2
2 − 16qℓτℓ ∥vℓ∥

2
2

≥ αℓ ∥vℓ∥
2
2 −

αℓ

2
∥vℓ∥

2
2 ≥

αℓ

2
∥vℓ∥

2
2 . (6.3)

Hence, combining Eqs. (6.2) and (6.3), we get
αℓ

2
∥vℓ∥

2
2 ≤ v′

ℓΓ̂ℓ,N vℓ ≤
3
2
λN ∥vℓ∥1 ≤ 6

√
qℓ λN ∥vℓ∥2 ,

hich results in the following estimate for the norm of the error
αℓ

3
∥vℓ∥

2
2 ≤ λN ∥vℓ∥1 ≤ λN 4

√
qℓ ∥vℓ∥2 .

As a consequence,

∥vℓ∥2 ≤ 12
√

qℓ

λN

αℓ

, (6.4)

∥vℓ∥1 ≤ 4
√

qℓ ∥vℓ∥2 ≤ 48 qℓ

λN

αℓ

,

v′

ℓΓ̂ℓ,N vℓ ≤
3
2
λN ∥vℓ∥1 ≤ 72

λ2
N

αℓ

.

It is readily seen that̂klasso
N − k

2
L2 =

̂klasso
N − kN

2
L2 +

k − kN

2
L2

=

L N −1∑ L N −1∑ ⟨
φ̂

lasso
ℓ,N − φℓ, φ̂

lasso
ℓ′,N − φℓ′

⟩ ∫ 1 2ℓ + 1
4π

Pℓ(z)
2ℓ′

+ 1
4π

Pℓ′ (z)dz

ℓ=0 ℓ′=0 −1

196



A. Caponera, C. Durastanti and A. Vidotto Stochastic Processes and their Applications 137 (2021) 167–199

s

R

D

r

A

s
D
C
i

R

+

∑
ℓ≥L N

∑
ℓ′≥L N

⟨
φℓ, φℓ′

⟩ ∫ 1

−1

2ℓ + 1
4π

Pℓ(z)
2ℓ′

+ 1
4π

Pℓ′ (z)dz

=

L N −1∑
ℓ=0

φ̂lasso
ℓ,N − φℓ

2

2

2ℓ + 1
8π2 +

∑
ℓ≥L N

φℓ

2
2

2ℓ + 1
8π2 ,

by the orthonormality of Legendre polynomials (see (2.1)). Moreover, under the additional
Condition 1.7,k − kN


L∞

≤ sup
u∈[−1,1]

∑
ℓ≥L N

∥φℓ∥2
2ℓ + 1

4π
|Pℓ(u)| ≤

∑
ℓ≥L N

∥φℓ∥2
2ℓ + 1

4π
< ∞,

ince |Pℓ(u)| ≤ 1, for all u ∈ [−1, 1]. Then, using triangle inequality,̂klasso
N − k


L∞ ≤

L N −1∑
ℓ=0

φ̂lasso
ℓ,N − φℓ


2

2ℓ + 1
4π

+

∑
ℓ≥L N

∥φℓ∥2
2ℓ + 1

4π
.

ecalling that φ̂
lasso
ℓ,N − φℓ = vℓ, by (6.4), the proof is concluded. □
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