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Abstract

The purpose of the present paper is to investigate a class of spherical functional autoregressive
processes in order to introduce and study LASSO (Least Absolute Shrinkage and Selection Operator)
type estimators for the corresponding autoregressive kernels, defined in the harmonic domain by means
of their spectral decompositions. Some crucial properties for these estimators are proved, in particular,
consistency and oracle inequalities.
© 2021 Elsevier B.V. Allrights reserved.
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1. Introduction

1.1. Background and motivations

In recent years, growing attention has been paid to space—time processes built over various
domains as, for example, regular grids, Euclidean spaces, and Riemannian manifolds (see,
among others, [3,7,16,24,28,37]). In particular, space—time random fields defined over the
two-dimensional unit sphere S? find a wide set of applications in Cosmology, Geophysics,
and Medical Imaging, providing a tool to perform analysis of data evolving with time and

* Corresponding author.
E-mail addresses: alessia.caponera@uniromal.it (A. Caponera), claudio.durastanti@uniromal.it
(C. Durastanti), anna.vidotto@unich.it (A. Vidotto).

https://doi.org/10.1016/j.spa.2021.03.009
0304-4149/© 2021 Elsevier B.V. All rights reserved.


http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2021.03.009
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2021.03.009&domain=pdf
mailto:alessia.caponera@uniroma1.it
mailto:claudio.durastanti@uniroma1.it
mailto:anna.vidotto@unich.it
https://doi.org/10.1016/j.spa.2021.03.009

A. Caponera, C. Durastanti and A. Vidotto Stochastic Processes and their Applications 137 (2021) 167-199

distributed over the sphere representing, for instance, either the Universe (see [35]), the planet
Earth (see [17]) or the human brain (see [43]). Moreover, statistical techniques dealing with
the analysis of — both purely spatial and depending on time — spherical random fields have
received considerable attention, for example, in [1,22,31,34] and in [15,21], respectively.

In the last two decades, classes of space—time covariance functions has been defined and
examined in the perspective to build the so-called sphere-cross-time random fields. The reader
is referred to [16,24,29,37,38,41] and the references therein for some neat examples. Another
construction involving sphere-cross-time random fields has been presented in [21] (see also [9]),
where quantitative central limit theorems for linear and non-linear statistics based on spherical
time-dependent Poisson random fields have been established.

A sphere-cross-time random field is denoted by a collection of random variables

(T (x,1): (x,1) € S* x Z},

and it can be described in the so-called frequency domain by its harmonic expansion

¢
T@=Y Y am®Ynx), (x.1)eSxZ, (1.1)
£>0 m=—t
where {Y;,, : £ > O;m = —{,..., £} is the standard orthonormal basis of real spherical

harmonics for L* (S*) = L2 (S?, dx), the space of square-integrable functions on the sphere
with respect to the spherical Lebesgue measure dx (see Section 2 and the Refs. [42,48]).
Harmonic analysis has already been proved to be a valid tool to perform statistical analysis on
the sphere (see, for instance, [20,30]) and allows one to describe a random field as the linear
combination of spherical harmonics, weighted by the corresponding time-varying harmonic
coefficients (see [7]). The stochastic information of the random field 7T is then contained in the
set of harmonic coefficients {a,,, (t) : € > 0;m = —£, ..., £}, given by

agm @) =(T (-, 1), YZ,WL)SQv

where (-, -)s2 is the standard inner product over the sphere.

In this paper, the object of study is a class of sphere-cross-time random fields, introduced
in the literature by [15], which are functional autoregressive processes defined over L? (S?)
(see also [8] and the references therein). As the name suggests, the spherical autoregressive
model of order p, from now on shortened to SPHAR(p), specifies the output field 7'(-, ) as
an infinite-dimensional linear transformation of its p previous realizations (p lags) added to
an independent spherical white noise Z (-, t). More formally, the SPHAR(p) equation is given
by

P
T.=Y (BTCt—-PD)W+Z@n, (1)eSxZ, (1.2)
j=1

where, for j =1, ..., p, the autoregressive kernel operator ®; : L (S*) — L? (S?) is defined
as

(#0) 0 = [ ke 0y, fe1?(3), (13

with k; : [-1,1] — R the corresponding autoregressive kernel, assumed to be continuous.
Then, for j = 1,..., p, the estimation of &; can be reduced to the one of k;. Note that,
for any j = 1,..., p, the kernel k; is isotropic, that is, it depends only on z = (x, y), the
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standard inner product on R3. As a consequence, the following spectral representation holds
in the L2-sense

ki (z) = Zm, Lp@), (14)
£>0
where P, : [—1,1] — R is the Legendre polynomial of order ¢, and, for j = 1, ..., p, the
coefficients {¢,,; : £ > 0} are the eigenvalues of the operator @;. The reader is referred to
Section 2 for a detailed discussion. Moreover, the random field Z in (1.2) is defined such that,
for any x,y € S2, the covariance function I', (x,y) = E[Z(x,t) Z (y,1)] is isotropic and
independent on the choice of ¢ € Z (see [48]).
As a standard consequence of the so-called duplication property for spherical harmonics,
we can characterize functional spherical autoregressions in the frequency domain as

P
agm (1) = Z¢z;jae,m t—j)+agmz@). (1.5)
j=1
In [15], estimators for the kernels {k; : j = 1,..., p} have been defined according to
a functional L>-minimization criterion, exploiting their spectral decomposition (1.4); some
asymptotic properties, such as consistency, quantitative central limit theorem, and weak
convergence, have then been established under additional regularity conditions.

In this work, we approach the estimation of the autoregressive kernels under a sparsity
assumption, that is, for any j = 1,..., p, we assume that only a few of the components
of k; in (1.4) are non-zero (see Definition 1.1). Assuming sparsity conditions can lead to
considerable advantages in estimation problems (see, for example, [26]). In this case, the
proper identification of the null components allows to perform regularization on the functional
estimates, preserving accuracy; moreover, sparsity enhances computational efficiency. The latter
is a crucial aspect in spatial and space-time statistics, often related to the estimation of
covariance functions; see for instance [5,6] for recent results.

LASSO - or {,-regularized — regression, introduced in the statistical literature by the
celebrated paper [44], is among the most popular penalization techniques to estimate sparse
models. In particular, it corrects the L>-loss for sparse models by adding a convex penalty term
and, then, constraining the estimation process and selecting the most significant variables. In
the framework of independent and identically distributed (i.i.d.) observations, LASSO has been
proved to be extremely efficient both from the point of view of theoretical properties and in
terms of applications (see [25,47] and references therein). The connections between LASSO,
ridge regression, best subset selection and other {,-based penalization methods, as well as
further links between LASSO and other nonparametric statistical techniques, such as soft and
hard thresholding, have been widely investigated, for instance, in [11,26].

Applications of LASSO in the framework of time series and stochastic processes represent
a much more recent development. A pioneering contribution in this area has been given in [2],
where the authors explore the properties of £;-regularized estimators in the settings of stochastic
regression with serially correlated errors and vector autoregressive (VAR) models (see also
[18,40] for related ideas). Their results can be seen as a successful extension of the standard
LASSO technique to the framework of non-i.i.d. observations. More specifically, in [2], under
sparsity constraints, £;-regularized estimators have been investigated by introducing a measure
of stability for stationary processes, a very powerful tool to study the correlation structure of
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multivariate processes, and crucial to settle some useful deviation bounds for dependent data.
Further details on the stability of autoregressions can be found, among others, in [10,33] as
well as in [8] for the functional case (see also Section 3). In turn, these deviation bounds are
instrumental to establish concentration properties of the estimators, and so-called oracle
inequalities.

The aim of this work is to define and study LASSO-type estimators for spherical autore-
gressive kernels under sparsity assumptions. Our approach does not require any specific
functional form for the kernel k;; in this sense, the estimation procedure can be viewed as fully
nonparametric, see also [39,45]. It is important to stress that, given the nonparametric nature of
the model (1.2), we are dealing with a functional penalized regression problem, hence differing
from the framework of VAR(p) processes, where estimators assume a vectorial form (see also
Remark 3.2). More specifically, our oracle inequalities will involve functions rather than scalar
or vectorial parameters (see Section 1.2). Exploiting the harmonic expansion for the spherical
autoregressions (1.2) and the isotropy assumption on {k; : j =1, ..., p}in (1.4), together with
an extension of the concept of stability measure introduced in [2], we will be able to establish
concentration properties in functional norms for the autoregressive kernels (see Section 4).
Moreover, the sparsity enforcement properties of LASSO procedures will avoid overfitting and
will select only the most relevant components of each kernel function spectral decomposi-
tion (1.4).

1.2. Background and main results

First of all, let us set some standard notation, necessary to state our main findings. For
two positive sequences {a,}neN, {bn}nen, We write a, > b, if there exists an absolute constant
¢ > 0, which does not depend on the model parameters, such that a, > cb,, for all n € N;

while we use a, >~ b, if there exist M|, M, > 0, which may depend on the model, such that
Mib, < a, < Mb,, for all n € N. For a vector v € R?, ||v||q indicates the £,-norm of v,

d % d
||v||,,=(2|v,~|q>; Iollg =3 L{vr # 0k Ivllog = max oyl

i=1 =
for 0 < g < 00, g = 0 and g = oo respectively. We say that v is a r-sparse vector, | <r <d,
if ||v]lg = r. Unless stated otherwise, for the sake of simplicity, ||| denotes the ¢;-norm of v.
Let f:[—1,1] > R?, f € L1 ([—1, 1], p (dz)), where p (dz) is the Lebesgue measure over
[—1, 1]. Then, for 1 < g < oo, the L?-norm of f is given by
1

I 7
1 flle = (/1 IIf(z)II"p(dz)) .

Analogously, the L*-norm of f is given by || fll,c = sup,_;1; I/ (2)Il. The spherical
L9-norms are defined by

11l (s2y = (/SZ |f ()17 dx)q , feli(s?),

where dx is the Lebesgue measure over S”. Finally, the Hilbert—-Schmidt and the trace class
norms of a compact self-adjoint operator .7 : H — H, where H is a separable Hilbert space,
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are given respectively by
1T ls =Y IMilPs 1Tl =Y Ihil.
i=0 i=0
where {A;};en are the eigenvalues of .7 (see, for example, [27]).

We provide now the definition of sparsity set, which can be understood as an instrumental
characterization of sparsity.

Definition 1.1 (Sparsity Set). For any £ > 0 and ¢, = (¢¢.1. - ... dr:p). we define g, = @],
the £th sparsity index, which satisfies 0 < g, < p. We call {q, : £ > 0} the sparsity set.

Remark 1.2. Following [8], to ensure identifiability we assume that there exists at least one
£ > 0 such that ¢y, # 0, so that P (@,,T (-, 1) # 0) > 0, for all + € Z. As a consequence, for
some £ > 0, we can have ¢, = 0 and hence ||¢e Ho = q; = 0; however, ¢ = maxy>gq, > 1.
Note that, in the simplest case p = 1, the sparsity set gives information about the null
components of the single kernel.

Set the sequence of polynomials ¢, : C — C, £ > 0, associated with the subprocesses
defined in (1.5), as follows

¢Z(Z) =1- d)(i;lz - ¢Z;pzp- (16)

‘We must introduce some conditions on the model, essential to achieve our results. Condition 1.3
will require that the eigenvalues of the covariance operator associated with I'z(-, -) are strictly
positive the operator is injective (see [27, Section 7.3]). Condition 1.5 will guarantee the
existence of a unique isotropic and stationary solution for (1.2). For rigorous proofs, the reader
is referred to [8,13,14].

Condition 1.3 (Identifiability). Let Z (x, t) be the spherical white noise used in (1.2) and let
its covariance function be given by

Iz, ) =Cov(Z(x,0),Z(y,0),  (x,0),0neSxL
It holds that

/ Tz (e y) £ () f () dedy > 0,
S2xS2

for any f € L*(S?) such that f (-) # 0.

Remark 1.4. Note that, as a consequence of [4, Lemma 4.1], Condition 1.3 is equivalent to
state that the covariance function 'z is strictly positive definite.
Condition 1.5 (Causality/Stationarity). The sequence of polynomials (1.6) is such that
Izl <1 = ¢u(2) #0, for all £ > 0.
More explicitly, there are no roots in the unit disk, uniformly over £.
Remark 1.6. Condition 1.5, together with the spectral decomposition (1.4) for the kernels

{kj,j = 1,..., p}, implies that, if &y, ..., &, are the roots of the d;-degree polynomial
(1.6), 1 <dy; < p, then

€e:jl = & > 1,
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uniformly over £. In other words, there exists § > 0 such that

Izl <148 = ¢u(z) #0,  forall £> 0.

Condition 1.7 (Smoothness). For all j = 1,..., p, @; is a nuclear operator, that is, its trace
norm is finite:
19l =) (2€+ Digy:j| < o0, (1.7)
£>0

see again [27].

As experimental setting, for any £ > 0, we assume that the harmonic coefficients {a ,, (¢) :
m = —{,...,£} can be observed over a finite set of times {1,...,n} C Z. The vector of
functions

k=(ki,....kp)

contains all the autoregressive kernels described above. We will focus on the following pena-
lized minimization problem:

2
n

1 14 P
Al S¢S —_— 1 . . —_— / .
Ky = argmin SDATC =D& Tt = j) + 2> 1155w (1.8)

p - -
kePy t=p+l1 Jj=1 L2(s?) j=1

where N = n — p can be read as the effective number of observations, and A € R™" is the
penalty parameter. The space P4 is the Cartesian product of p copies of

span{ 1P(3(~):£=0,...,LN—1}, (1.9)

where the integer Ly > 0 is the truncation level, which corresponds to the frequency of the
highest component in (1.4) estimated by (1.8), see Section 3.1 for a detailed discussion. Let
us also define

Ly—1

kjn(z) = §:¢M

and, accordingly, kN =(kin, .- kp ).
Our main result is extensively stated in Theorem 4.12 and can be compactly formulated as
follows.

Pe(Z)

Theorem 1.8. Consider the estimation problem (1.8), assume that Conditions 1.3 and 1.5
hold, and suppose that

N = biglog(pLy),
where q = maxyso qe. Then, for any penalty parameter .. = Ay > bg,/log(p%, any solution
K% satisfies

Ly—1

_ 20+1
||k11i1,sso _ k“iz < )‘%V Z e (25 + 1) + Z ||¢K ”i 82
{>Ly

> 1 — cre~210ePln) (1.10)
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where the sequence {oy : £ =0, ..., Ly — 1} is defined in (4.11), and c, c; > 0 are absolute
constants. Moreover, under the additional Condition 1.7, it holds that

LNl

”i(‘lﬁ,sso_k“LDO < —AN Z (26-’— 1+ Z ||¢€||2

{>Ly

> 1 — ¢cje~c2loePln) (1.11)

20+ 1

Remark 1.9. The constants b; and b, depend on the model. In particular, b; = max{w?, 1}
and b, = 4F, where F, w > 0 are tightly connected to the stability measure introduced in
Section 4.1. The reader is referred to Section 4.2 for further details and comments.

Our findings provide upper bounds for the L2- and the L>-distances between the LASSO-
type estimator E@SS" and the “true” k. These upper bounds consist of the sum of two terms.
The first summand represents the error due to the approximation of the first Ly components
of k with K. The second one arises because ki provides an estimation of k truncated at
the multipole L. In this sense, we can draw an analogy with standard nonparametric statistics
and refer to them as the stochastic and the bias error, respectively (see [39]).

The upper bounds are non-asymptotic and they hold with high-probability, in the sense that,
for a fixed N sufficiently large, the probability on the left side of (1.10) and (1.11) is arbitrarily
close to 1. An appropriate choice of Ly leads both the upper bounds to converge to 0 and their
probabilities to converge to 1, as N — 00; as a consequence, our result can be also read in
terms of asymptotic consistency.

1.3. Plan of the paper

This paper is organized as follows. In Section 3, we present the LASSO estimators for
spherical autoregressive kernels under sparsity assumptions. Section 4 contains the main results
of this work, that is, how the classical LASSO-scheme fits in our setting, using the concept
of stability measure, as well as our oracle inequalities. In Section 5 we briefly show the
performance of the LASSO estimators under sparsity assumptions. Finally, Section 6 collects
the proofs.

2. General setting

2.1. Harmonic analysis on the sphere and space—time spherical random fields

This section includes some well-established results concerning harmonic analysis on the
sphere and provides the reader with an overview of the construction of space—time spherical
random fields.

The reader is referred to [31,35,42,46] and the references therein for further details
concerning harmonic analysis on the sphere and spherical random fields. Sphere-cross-time
random fields have been discussed, among others, in [24,29,37,41].

Let us start by setting some useful notation and some important concepts related to the
harmonic analysis on the sphere. Each point x on the sphere is identified by two angular
coordinates, that is, x = (¢, ¢), where ¢ € [0, 7] and ¢ € [0,27) are the colatitude and
the longitude, respectively. The spherical Lebesgue measure is labeled by dx = sin #ddde,

173



A. Caponera, C. Durastanti and A. Vidotto Stochastic Processes and their Applications 137 (2021) 167-199

while L2 (Sz) =L° (Sz, dx) describes the space of square-integrable functions over the sphere
with respect to the measure dx.

Following for example [35,42,46], we denote by {#H, : £ > 0} the set of spaces of
homogeneous harmonic polynomials of degree £ restricted to S?. For any £ > 0, H, is spanned
by the set of spherical harmonics {Yy, : m = —¢, ..., £}. The index £ € N is the so-called
multipole, while m = —¢, ..., ¢ is the “azimuth” number. The set {H; : £ > 0} is dense in
L? (S?) (see again [35, Proposition 3.33, p.73]), thus the following decomposition holds

L? (Sz) = @ He
€20
and spherical harmonics provide an orthonormal basis for L> (82). For the sake of simplicity,
here we will make use of the so-called real spherical harmonics. For any £ € N and
m = —£{, ..., ¥, the spherical harmonic Y, , can be written as the normalized product of the
Legendre associated function Py, : [—1, 1] = R of degree £ and order m, which depends only
on the colatitude %, and a trigonometric function depending only on the longitude ¢, namely,

(2¢+1) (L—m)!
27 (L+m)!

Yo (0, 0) = 1/ S22 Py (cos ) for m =0 ,

‘/%%Pg,_m (cos¥)sin (—me) form e {—¢,...,—1}

1 N d£+m 5 ¢
Pg,m(u)zze—ﬂ(l—u)z T W -1, uel-1,1].

It is a well-known fact that the following addition formula holds

Py, (cos ¥) cos (me) forme{l,...,¢}

where

2041
4

12
> Yew () Yo () = P ((x,y), x,yeS,

m=—{

where P; is the Legendre polynomial of order ¢, given by

1 d ¢
P[(M)Zzé—g'd?(u—l), uel[—1,1].
Legendre polynomials are orthogonal on L*([—1, 1]), that is,
1
2 /
Py (u) Py (u) du = ———80 . 2.1
/;1 e (u) Py (1) du T 2.1

Recall that we are considering a sphere-cross-time random fields, which is a real-valued
collection of random variables

(T (x,1): (x,1) € S* x Z}.

Remark 2.1. All the results presented in this paper can be easily extended to the case
of complex-valued spherical random fields, after a proper definition of complex spherical
harmonics (see, for example, [35, Theorem 5.13, p.123]).

From now on, we will consider real-valued, centered, mean-square continuous, Gaussian
random fields. Moreover, T is assumed to be isotropic in the spatial domain and stationary
in the time domain. A spherical random field is said to be isotropic when it is invariant in
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distribution with respect to rotations, while stationarity guarantees that the stochastic properties
of the process do not change over time. In other words

TR +1)<T(,), (2.2)

where T € Z, R belongs to the special group of rotations SO (3), and £ denotes equality in
distribution.

As mentioned in Section I, under isotropy, for any fixed ¢ € Z, the random field 7 can be
rewritten in terms of its harmonic expansion, given by Eq. (1.1) and here recalled

12
Tx)=Y Y am®)Yomx), (x.1)eS xZ.

>0 m=—¢

The set of the harmonic coefficients {a;,, : £ > 0,m = —¢, ..., £} contains all the stochastic
information related to 7" and can be computed explicitly by

A () = / T (x,t) Y, (x)dx.
S2

Since T is centered, that is, E [T (x, )] = O for all (x, 1) € S* x Z, it follows that
E[agm )] =0 forteN, m=—¢,....¢ teL.

The covariance function of 7 will be denoted by I' : (S* x Z) x (S* x Z) — R. If the
space—time spherical random field is isotropic and stationary, then there exists a function
Iy :[—1,1] x Z — R, so that (2.2) yields

I'(x,t,y,s) =1p(x,y),t—s), (x,t),(y,s)eSzxZ.

Furthermore, for any ¢,¢ € N, m = —¢,...,¢, m’ = —{/,...,¢, the elements of the
covariance matrix constructed over the harmonic coefficients of T are given by

E [agm (1) apw ()] = Ce(t —5) 8L 8", 1,5 € L. (2.3)

Observe that, for t = s, Cy (0) in (2.3) corresponds to the so-called angular power spectrum,
the spectral decomposition of the covariance function of a purely spatial spherical random field
(see, for example, [35, Remark 5.15, p.124; Remark 6.16, p.147]). Hence, from now on, we
will use the notation C; (0) = C,.

Covariance functions of isotropic-stationary sphere-cross-time random fields have a spectral
decomposition in terms of Legendre polynomials, namely,

20+ 1
47

M, ty,s)=Y Ci(t—s) Pr(fe,y), (1), (v, 8) € S* x Z,

£>0
see [4].

2.2. Spherical autoregressions

This section lists those conditions which, from now on, will characterize the class of sphere-
cross-time random fields studied along this paper. Hence, they will be implicitly assumed in
all our statements.
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Following [15], we consider isotropic-stationary random fields {7 (x, t) (x, ) € S? x Z} that
satisfy the functional autoregressive equation (see also [8]) given by Eq. (1.2) and here recalled

p
Tx.t)=Y (5;TC.t—))E®+Zx.1),
j=1
where:

efor j=0,...,p, & : L>(S*) - L*(S?) is a linear and bounded operator defined by
Eq. (1.3), i.e.,

(2 f) ) = /2 Kj(,y) fndy, felLl*(S).
S
e The kernel K : S? x S? — R is continuous and isotropic, that is, there exists a function

kj 1 [-1,1] — R so that K; (x,y) = k; ({x,y)), for all x,y € S2. Moreover, the
following decomposition holds (in the L>-sense and pointwise under Condition 1.7)

Kj(e,y) =k (x, ) =) Z i Yem () Yo ()

>0 m=—¢
20+1
= e P (e, 24)
>0 T

where the coefficients {¢y,; : £ > 0} are the eigenvalues of the operator @;.

e The field Z is a Gaussian spherical white noise, that is, {Z (-, t), t € Z} is a sequence of
independent and identically distributed Gaussian isotropic spherical random fields, defined
so that

(i) for every fixed ¢t € Z, Z (-, t) is a Gaussian, zero-mean isotropic random field, with
covariance function given by

20+1 2041
Iz(x.y) =) oo CezPe(x, ), such that > . Cez <o,
>0 >0

where {Cy.z : £ > 0} is the angular power spectrum of Z (-, ¢) such that Cp.z > 0
for any £ > 0O (cf. Condition 1.3);

(ii) for every ¢ # s, the random fields Z (-, ¢) and Z (-, s) are independent, so that, for
any x,y € S,

E[Z (x,1) Z(y,s)]=0.
For any ¢ € Z, (2.4) yields

(T (1= ) (x) = ZZm]aem(r NYem (), xeS,

>0 m=—¢
namely, the spectral representation of (525 T (-t —j )) (+) is characterized by the following set

of harmonic coefficients {¢¢,ja¢, (t —j) : £ = 0;m = —£, ..., £}. Consequently, from (1.1),
it follows that

P
agm () =Y G jarm (t = j) +armz @), 2.5)
j=1
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that is, that is, the coefficients {a,,, () : t € Z} follows an autoregressive model of order p,
forany £ >0, m = —¢,..., L.

Remark 2.2. An alternative formulation can be used to described our setting. It is well
known that real-valued autoregressive models of order p can be represented as order 1 vector
autoregressive models, thus defined in R?. In a functional framework, our SPHAR(p) can be
rewritten as a process defined in the Cartesian product of p copies of L*(S?) (see [8, Section
5.1]).

Before concluding this section, let us fix the so-called truncation frequency L € N. Then,
the truncated random field is defined by
L-1 ¢

TL(, ) =) D arm @) Yem(x).

=0 m=—¢

Remark 2.3. The truncated random field 77 (x, ¢) describes exactly a band-limited random
field, with band-width Ly < L. Moreover, as mentioned for example in [36], it provides a very
good approximation of a smooth random field, in the sense that its covariance decays fast as
£ grows to infinity.

3. LASSO estimation on the sphere

Here we present LASSO-type estimators for spherical autoregressive kernels under sparsity
assumptions. More specifically, merging the techniques based on the stability measure presented
in [2] with the properties of SPHAR(p) processes enables the construction of functional
estimators for the kernels {k; : j =1,..., p}.

3.1. The estimator construction

As introduced in Section 1, the spectral decomposition on the sphere allows to reduce the
functional penalized minimization problem to the equivalent ¢;-penalized problems in the space
of the harmonic coefficients, see (3.1). Let us recall the definition of our LASSO estimator.

Definition 3.1 (LASSO Estimator). The functional LASSO estimator for the vector of kernels
k = (ki, ..., kp) is defined by Eq. (1.8), that is,

2
n

o P P
Eﬁsso:argmlnﬁ Z T(-J)-Z@J‘T(',f—j) +)»Z||‘pj||TR,
kePy Y i=pti j=1 pEy =

where Py is given by (1.9).
More in details, the first part of (1.8) can be interpreted as a functional residual sum of
squares, where each term has spectral decomposition

p

4 p
TCO=Y (BTCr=)=Y Y |am@® =Y dejamt =) | Yem
j=1

j=1 >0 m=—¢
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As a consequence,

2
n

p
YT =D 8T t—j)

r=p+1 j=1 L2(s2)

Z Z Z ag.m (t) Z(b[jafm(t )

t=p+1 >0 m=—¢
Recalling that the truncation level induced by PY is L = Ly, which depends on the number
of observations N, the functional minimization problem can be reformulated as

Ly—1

~lasso 2¢ + 1
’\lasso _ Z ¢€ y [’

with
2

~lasso 1 - "
oy =argmin— 3 agn (1) =Y dujarm ¢ = )| +r2C+1D o],

deeRP SV j=1

2
1 ‘ U
= argmin————— Z agm (1) = Y bejarm (t = )| + 1] ée], - 3.1)

prerr NQE+T) =

Remark 3.2 (Important Remark on the High Dimensional Nature of the Procedure). The
formula (3.1) could lead to a misleading interpretation of the minimization problem. Although
from a computational point of view the procedure is separable, i.e. it can be solved separately
for each ¢, the problem still has a high-dimensional nature. First of all, the penalty parameter A
does not depend on £. Moreover, our penalization problem applies also to SPHAR(1) processes,
which means that it can be used as a penalization procedure only on the first Ly multipoles
and not on the lags. This fact is made very clear by Figs. 1-4 in Section 5 where it shows up
that, also with very small lag dimension (p = 2), the LASSO has the effect to regularize the
kernel estimates. To better understand our point, take p = 1 and

n

¢
~ 1
asso § : § : 2
min—— m (1) — m (=1 + A ;

‘ az%eRm NQE+1) &~ [ae.n (1) = Beaen ( )| el

then the solution can be computed as follows
~ A o~ A
ols ols
4+ — fOr C < ——=
‘T aC PCe= 3

¢
e )\.
¢ =10 for |¢)01qu

N |

A A
“ols “ols ~
— — for Cp> =
TR
Note that the procedure shrinks the estimate towards zero not only if the true value ¢, is close
to zero, but also if the variance C, is very small, which clearly happens at high frequencies,
because of the summability of the C,’s. On the contrary, for classical LASSO problems, one
assumes that the regressors are standardized, which surely cannot happen in our case at fixed
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£. Indeed, since here we start our penalization procedure from Eq. (1.8), we can at most rescale
by the total variance of the spherical process.

Remark 3.3. In our functional minimization problem, the penalization term implicitly assigns
a uniform weight to all the p linear operators. Indeed, all the kernels k;, j € {1,..., p}, are
assumed to be sparsely decomposable. To take into account different structures for the k;’s and
capture the potential complexity of the model, several strategies can be hinted, such as adaptive
LASSO, elastic-net or group-Lasso variants; see also [2, Section 5.3] for a similar discussion
related to VAR processes.

Remark 3.4. Note that the penalization procedure given by Definition 3.1 preserves isotropy.
This is a consequence of the fact that we are considering a block-sparsity model; indeed,
given the structure of the predictor @;T(-,t — j), where all the a,. share the same ¢y, ;, the
procedure will automatically select only the relevant multipoles £. As a result, a multipole is
either removed entirely or not removed at all from the jth component of ﬁ‘,@sw. The reader is
referred for further discussions to [12], where it is shown that not all the £;-penalized problems
have solutions which are isotropic, and to [23] for sparsity enforcing procedures for isotropic
spherical random fields.

3.2. Matrix notation

An alternative form for the minimization problem given by Definition 3.1 can be introduced
as follows. First, we define the following N (2¢ + 1)-dimensional vectors,

Yon = (ae-e ), ....ap—¢(p+1...oaee (p+ 1),
Yon (h) = (as—c(m—h),...;ae_¢(p+1—h),....;a0e (p+1—h)),
h=1,...,p,
Eony=(a,—z0),...;a0_02(p+1),....a002(p+ 1),
where we recall that N = n — p. We can thus define the (N (2¢ + 1) x p) matrix

Xen ={Yen () - Yen (P}, (3.2)
so that the LASSO problem (1.8) reduces to
Ly—1

~lasso 2¢ + 1
’\lasso _ Z ¢€ N l»

with

~~lasso 1 2

—argmin ——— Y,y — X + A . 3.3

¢[ N ¢eg€]R]7 N(2€ + 1) H LN K,N¢£ HZ ”¢l ”1 ( )
Fixed £ =0, ..., Ly — 1, we define the covariance matrix [, that is, the p x p matrix with
generic ijth element C; (i — j). We can use (3.2) to define its unbiased estimator

~ X, v X

Ton=—28 X

NQe+1)

Let us now consider the product Xé yEen/N(@2E + 1). Observe that E, y is related to the
error random field Z, so that we can read this random object as the process obtained from
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the product of the stochastic data matrix X, y and the noise vector. Indeed, it represents the
so-called empirical process (see [11] and the references therein), associated with the multipole
£. Furthermore, observe that the £th empirical process corresponds to the following sum

’ ’ ’
XE,NEE,N XZ,NYZJV Xz,NXE,N

NeiTD - Neirh Ny nPeT ey e 3.4
where
Xy nYen
Ye N = m

Establishing an upper bound for the empirical processes will be crucial for the proof of the
consistency property for the LASSO estimators.

4. Main results

In this section, we present the main results of this paper, which consist of properties for the
LASSO-type estimator of k given in (1.8). First of all, in Section 4.1, we introduce the concept
of stability measure, a powerful tool firstly proposed in the LASSO framework in [2], to obtain
some bounds on the concentration of the sample covariances and the empirical processes around
their expected values. Then, in Section 4.2, we will follow the standard scheme of LASSO-
techniques, see [11,26], to establish a basic inequality, a deviation condition and a compatibility
condition. Finally, in Section 4.3, we present our main theorem, that is, the so-called oracle

inequalities for /lzl,f}“o.

4.1. Stability measure on the sphere and deviation bounds

Here, we discuss the stability measure for SPHAR(p) random fields. Intuitively, a stability
measure quantifies the dependencies between the variables of the process and, hence, how stable
the autocovariance matrix is. The more intricate the dependencies between the variables are,
the less stable should the process result. Several proposals aiming to represent and measure
the stability of a given process have been suggested in the literature over the years, mostly
involving set of mixing conditions, in order to establish for how long in time the dependence
between the components is effective (see Appendix E in the supplementary file of [2]). The
stability measure considered here is in line with the one defined by [2].

Recall that {a;,, (t),t € Z} can be read as a real-valued autoregressive process of order
p (see (2.5)). Under standard stationarity assumptions (see [10, page 123]), we can define its
spectral density as

i) =5 Y Cime = ot vel-m 71,

e 2 pye)

which is bounded and continuous. Upper and lower extrema of the spectral density over the
unit circle are hence given by

M(fp) = Jnax fe(),
m(fe) = uer[rli;?n] fe).

In what follows, we adopt M(f;) as a measure of the stability of the process {ay , (¢),t € Z}.
Generalizing [2], we can consider this as a band limited stability measure, in the sense that it
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refers only to the subprocesses belonging to the multipole £. A global stability measure can
be obtained by considering jointly all the multipoles ¢ > 0 via the following definition

M=M(T) = I}legﬁM(fe);

whereas we can refer to My = max,z, M(f;) as the observed stability measure. Let us now
define the following p-dimensional process

Gom (1) = (agm (1), .. agm (t — p+ 1),

with spectral density and corresponding stability measure given by
[o¢]
~ 1 —itv r r
few) =52 Y N@e™ and M (f) = max_ Awa(fi0).
T=—00 7

where

Ie(r) =E [di,m t+1) aém (t)]

and I, = I, (0). We can therefore construct r-dimensional subprocesses of {a,,, (t) : t € Z}
as follows. We fix a r-dimensional index J = (ji,..., Jj,), so that J € {l,..., p}, and
J1 < -++ < jr. Then, we define

il @) = (@n ®), s (@n ®),)

where (ag m (t)) is the ith component of {a, ,, (¢) : t € Z}. This subprocess has spectral density
fz (v). We can finally introduce

M (fz’ r) e ,Ti)}(mer (fzj) ’

M) = max/\/l (fz, ) ,

My(r) = enii”,iM (fe, r) :
respectively, the band-limited, the global and the observed stability measures of the subprocess
{ag,, (t) : t € Z}. Notice that M (ﬁ) =M (ﬂ p), while, for the sake of completeness, we
define M ( fe r) = M(fy), for all » > p. Moreover, it can be shown that

M(fot) M (fi2) < < M(fop) = M(F).

The following quantities are also well-defined

P =m0 G @, Hmaoe = _max (@@, for £20. “.1)
zel:

z|= zeClz|]=1

Remark 4.1. Note that, in line with Remark 1.6, there exists a positive constant ¢ such that

2 2

max Mmax:¢ = Max max |1 — E Gz’ | < |1+ E max |¢g;j| <c,
>0 zeC:|z|=1 — — >0
J= J=
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and
2
14 dy
Min fmin.¢ = Min - min |1 — § "¢.;z/| =min min ]_[|1 —eTl ) > (1 =gy
>0 : >0 zeC:lz|=1 A o >0 zeC:lz|=11 tjtt = *
Jj=1 Jj=1
> 0,
recalling that &, = ming>omin;_; g4, |&;;|. These bounds represent the moral counterpart

of Proposition 2.2 in [2] and show how the global stability M behaves for SPHAR models.
Indeed, for a SPHAR(1) process, the operator @, plays the same role of the matrix A; in [2]
and &' = maxso |p¢| = || P, lop- As a consequence M is bounded as long as the operator
norm of @; (the counterpart of the spectral radius of A;) is bounded away from 1.

We apply now the idea of stability measure to establish some relevant deviation bounds on
the covariance estimators and the empirical processes, which will be pivotal to analyze our
regression problem. Note that, {a,,, (t) : t € Z}, m = —¢{,...,{, can be seen as a tool to
provide an alternative notation for the empirical process (3.4). Indeed the hth component of
X vEen/N(2€+ 1) is given by

Yon (h)Eey 1 L
NOITD) " NGIFD m;t;lae,m (t =) acmz (0). 42)

Proposition 4.2 (Deviation Bounds). Assume that Conditions 1.3 and 1.5 hold. Then, there
exists a constant ¢ > 0 such that for any £ € Ny, any r-sparse vectors u,v € RP with
lull, lvll <1, r = 1 and any n > 0, it holds that

P ([ (Fon — ) v| > 2 M (i, r) n) < 2e¢ V@D minin®a), (4.3)

P (|u' (Ten — Ie) v| > 62 M (fr, 2r) ) < 6N exDmintan) d.4)
In particular, for any i, j € {1, ..., p}, it holds that

P(|(Ton = 1) | > 67M(Fi, 20m) < emererrvmnirtan, (4.5)

Moreover, for all 1 < h < p, it holds that

/
YZ’N (h) E[,N < o CZ.Z 1 + 1 + Mmax; £ n < 6e_CN(2e+1)min[n2’n]’ (4.6)
N @i+ | -

where [imax.¢ and [Lyin:¢ are defined by (4.1).

Remark 4.3. Note that the deviation bounds can be also stated in terms of the global or
observed stability measure M(r) or My (r).

The analogous result presented in [2] is very general, since it deals with stationary Gaussian
random processes on R, while here we focus on deviation bounds for our specific empirical
covariance matrices and empirical processes. The main technical difference between our results
and the ones in [2] is that, in our framework, we use observations from a group of 2¢ + 1
stationary processes, namely, {a;,(¢) : t € Z}, m = —{, ..., £, to estimate the same covariance
matrix [, exploiting the isotropy of the random field.

Similarly to the work [2], (4.3) and (4.6) quantify how the underlying estimators concentrate
around their expected values. In particular, (4.3) will be used to verify the compatibility
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condition (see Proposition 4.6), while (4.6) will be used to prove the deviation condition (see
Proposition 4.8). In the i.i.d. case, bounds on the empirical process can be easily established,
since the data matrix is deterministic and the randomness comes only from the noise vector. In
our case, similarly to [2], the £th empirical process is the product of a dependent noise vector
and a stochastic data matrix. Therefore, proving consistency requires a bound on both these
two random objects.

4.2. Bounds for LASSO techniques

We are now in the position to present the classical path of LASSO in our setting.

The very first result concerns the so-called basic inequality, an elementary yet essential
result, which does not require any condition or assumption, except the existence of a linear
underlying model, and it is simply based on the definition of the LASSO estimator.

Proposition 4.4 (Basic Inequallity). Consider the estimation problem in Definition 3.1. For any
“lasso

£=0,....,Ly — 1, set vy = ¢, y — @;. Then, the following basic inequality holds
s 20, Xj NEen
vl nve < WH[HWHI— lpe +vel,] as. .7

This simple result implies that the prediction error ’Uéfg’ ~V¢ is bounded by the sum of two
factors. The first one is random and it depends on the empirical process X; yE¢ n/N (2¢ 4 1).
The second one is deterministic and its value depends on the penalty parameter A, on N and
on the chosen linear model itself.

The second step consists in defining an event .y such that the fluctuations of the random
factors

21}2 X 2, NE ¢,N
N2¢+1)
when conditioned to .#y, are all controlled by the same deterministic quantity. Moreover, we
need to prove that this event has a high probability, implying that a bound on the prediction
errors can be obtained in most cases. The event .#y is defined as follows.

, £=0,...,Ly—1,

Definition 4.5. In the setting previously described, let

byt [log pL
In = ﬂ{”f/\l,N—Fe,N(bz”ooSfN %},

£=0
where Fy is a deterministic function depending only on the parameters (¢O, @ N—l) and
noise variances (Co;z, ...,CL N—l;Z)- The deviation condition is said to hold if the event .y
happens.

The following theorem shows that, for an appropriate choice of Fy and Ly, the event .y
has high probability to occur.

Proposition 4.6 (Deviation Condition). Consider the estimation problem in Definition 3.1 and

assume that Conditions 1.3 and 1.5 hold. There exist some constants cgy, c1, ¢ > 0 such that,
if we define

1 4 Wmax:
F(¢¢: Cez) = co [Cz;z (1 + #ﬂ , Fy = max F (¢, Cr.z),

Mmin; ¢ {<Ly
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and if N > log pLy, then

Ly—1 _ N IngLN e og(oL
P ﬂ [Ven — Tende|, < Fn N > 1 — e~ 2lewtn),

=0

Remark 4.7. Observe that:

(1) the results presented in Proposition 4.6 also hold for a different choice of Fy, that is,

1 + max,_ :
Fy =co [(max Cz;z) (1 + — Mmax,i)i| ;
{<Ly Mming <z, Mmin;¢

which corresponds to the one used in [2];
(>i1) in order for this bound to make sense, we need that

log (pLy) = o (N).

The third and final step is to establish a compatibility condition that, whenever verified on

~lasso

2
the event .y, will allow us to bound both the prediction errors {HX N ((bzy N — ¢@> ”2} and

o n 2 . . .
the estimation errors {H ¢;s]\s,° — ¢, ” } by the same quantity. In this sense, it makes the errors
' 2

compatible.

A symmetric d x d matrix A satisfies the compatibility condition, also called restricted
eigenvalue (RE) condition, with curvature o > 0 and tolerance 7 > 0 (A ~ RE(x, 7)), if, for
any ¢ € RY,

YA > a |5 — T 27 . (4.8)

The next result gives some sufficient conditions in order to have
Ly—1
() {Ten ~ RE(as, 7o)},
£=0

for some «o;’s and t;’s, with high probability.

Proposition 4.8 (Compatibility Condition). Consider the estimation problem in Definition 3.1
and assume that Conditions 1.3 and 1.5 hold. Define qy = maxy.r, q¢. There exist some
constants cy, ca, c3 > 0 such that, if

N > max{w?, ljgy log (pLy).  with wy = c; max —m2L, (4.9)
£<LN [min;e
then
Ly—1
P( m {Tyn ~ RE(ay, Tz)}> >1—cre 2V mi“{“’xlz’”, (4.10)
=0
with
oy = 2Efr;1i1x’ and T, = oy max{w]zv, l}l()g(+LN). 4.11)

Remark 4.9. The results presented in Proposition 4.8 also hold for
MmaXyg<r Mmax;e

Wy =C3—————,
miNg <z, Mmin;e
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analogously to the findings in [2].

Remark 4.10. The compatibility condition on E, N 18 a requirement on its smallest eigenvalue,
which can be seen as a measure of the dependence of the random matrix columns. The sufficient
condition (4.9) ensures that, with high probability, the (sample) minimum eigenvalue of the
matrix fL ~ 1s bounded away from zero.

Remark 4.11. Note that 0 < Fy < F, where F = max;>o F (¢[, Cq. z) exists finite. Indeed,

14 tmax:
]'—((be,ce;z) =co |:Cz;z (1+ﬂ>i| — 0, as £ —> 00,
Mmin; ¢
since Cy.z converges to zero as £ goes to infinity and a < Uming < Umaxe < b, with a, b
positive constants (independent of ¢), see Remark 4.1. Similarly, it holds that 0 < wy < w,
where

Mmax; ¢
w = Cc3 max s
£=0 Mmin; ¢

and gy < g = max,>oq,. In particular, all the results presented in this paper can be stated
using F, w, g instead of Fy, wy, gy. Without loss of generality, we can assume gy > 1.

4.3. Oracle inequalities

Oracle inequalities are used to estimate the accuracy of the i(j[i‘,sso. In general, E@SSO depends
on the penalty parameter A, according to (1.8). As a consequence, given a proper choice of
A, our oracle inequalities produce upper bounds for the estimation error in the L>- and the
L*-norms, resulting in the sum of two terms. The first summand describes the stochastic
error due to the approximation of the first Ly components of k with /121;‘,550; the second term
is a deterministic error, related to the not estimated components of k, with £ > Ly. It is
worth noting that, just like in the multivariate (i.e. non-functional) case, such upper bounds are
characterized by a multiplicative factor log(pL y); roughly speaking, this factor is the cost of
not knowing explicitly the set of non-zero coefficients.

Theorem 4.12. Consider the estimation problem in Definition 3.1 and assume that
Conditions 1.3 and 1.5 hold. Moreover, suppose that,

Ly—1
() It~ RE(@e. 1)} as.. with g <a/32,
=0

and the deviation condition is satisfied almost surely, that is,

Ly—1
~ 1 L
m {|7en = Lende| ., < Fnyf W} a.s. (4.12)

=0
Then, for any penalty parameter A = Ay > 4Fn+/log(pLy)/N, any solution k Alasso satisfies

Tlasso _ 1. |12 2 Ey 22641 .
Kz — k|, < AN Z (2e+1)+ > el as.; (4.13)

K
{>Ly
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moreover, under the additional Condition 1.7, it holds that
Ly—1
3 \/_ 2041
Telasso =
[~k <~y X @+ D+ Y e, —— as. (4.14)
=0 {>Ly
To discuss the possible rates of convergence in (4.13)—(4.14), let us choose Ay = 4Fy
V1og(pLy)/N and Ly ~ N¢. Moreover, we impose some semiparametric structure to the set
{¢¢.j : £ = 0}, that is,

|pe.j] < G Fi,

where 8; > 1 and G; > 0; see also [31] for an interpretation in terms of regularity of the
kernels. Note that, since we are looking at the asymptotic behavior as N — oo, the sufficient
condition (4.9) automatically holds and the curvature oy >~ Cy.z. In particular, a standard
assumption for the behavior of the power spectrum of a spherical white noise is Cy.z >~ £7¢,
with o > 2, see [35]. As a consequence, in this framework, we have

Ly—1

q 18 20+ 1
”’\la s0 k”L2 <= )”%V Z (ZE + 1)+ Z ||¢€||2 8772
=0 o =
log pLy E 2 —2p
=0 | = X e+ Y et
(=0 {>Ly

-0 (IOgN N2d(a+1)—l + N2d(l—ﬁ)) ,

where 8 = min;_; __, B;, and, in order to ensure consistency, we can choose

0<d < ——.
2(a + 1)

Analogously, imposing this time 8; > 2, one has that

Ly—1

3
—A
T ! Z {>Ly

_ ((log N)/2 N3 1 N ,3))

20+ 1
S oern+ Y o, 22

Telasso
R k], &

IA

and in this case the consistency in the supremum norm is reached for any
1
2a+2)
Moreover, we stress that the parameter o can be estimated via a Whittle-like procedure, see
[19,20], which could be useful to choose a suitable rate for L.

0<d<

5. Some numerical results

In this section we illustrate the finite sample performance of the LASSO estimator E@SSO

under various degrees of sparsity. In particular, fixed N = 300 and Ly = L = 50, we are
concerned with the empirical evaluation of the L2-risk and L*°-risk of E@SS" for the penalty
parameters

doi1 =107 and Ay =5x 1072, for i=1,...,4,
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in comparison with the one of the non-penalized estimator described in [15], corres