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a b s t r a c t

Inspired by Marinucci et al. (2020), we prove that the nodal length of a planar random
wave BE , i.e. the length of its zero set B−1

E (0), is asymptotically equivalent, in the L2-sense
and in the high-frequency limit E → ∞, to the integral of H4(BE (x)), H4 being the fourth
Hermite polynomial. As straightforward consequences, we obtain Moderate Deviation
estimates and a central limit theorem in Wasserstein distance. This complements recent
findings by Nourdin et al. (2019) and Peccati and Vidotto (2020).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction and main results

1.1. Motivation

Let (M, g) be a smooth Riemannian manifold and let fk : M → R be a random function which almost surely solves
he Helmholtz equation, that is ∆g fk + λkfk = 0 a.s., where ∆g is the Laplacian defined with respect to the Riemannian
etric g and −λk its eigenvalue. The study of the geometric properties of the excursion sets of fk at a fixed level u ∈ R,

.e.

Eu(fk,M) := {x ∈ M : fk(x) ≥ u},

n the high-energy limit k → ∞, has recently attracted great interest, starting from the seminal work by Berry (1977), in
hich the author conjectured that, as k → ∞, local geometric functionals of a planar random eigenfunction fk reproduce
he behavior of a typical deterministic Laplace eigenfunction on any generic manifold. In two dimensions, three important
eometric quantities that characterize local geometric functionals associated with a random field are the Euler–Poincaré
haracteristic Lfk

0 (Eu(fk,M)), the boundary length Lfk
1 (Eu(fk,M)) and the area Lfk

2 (Eu(fk,M)) of its excursion sets, namely,
he so-called Lipschitz–Killing curvatures (see Adler and Taylor (2007)).

Among these geometric functionals, particular attention was drawn by the behavior of the nodal length (the boundary
ength at u = 0), starting from the celebrated Yau’s conjecture on its value for deterministic eigenfunctions on general
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anifolds, see Yau (1982). With a physical perspective Berry (2002) investigated its expected value and variance, whereas
he first mathematically rigorous derivation of the variance was given by Wigman (2010).

Nourdin et al. (2019) and Peccati and Vidotto (2020) proved central limit theorems, as k → ∞, for the nodal length of
lanar Laplacian eigenfunctions, i.e. when M = R2 for Lfk

1 (E0(fk,D)), in a fixed convex body D ⊂ R2, using the so-called
ourth moment theorem of Peccati and Tudor (2005). More precisely, showing that the random functional Lfk

1 (E0(fk,D)) is
ominated by the fourth chaotic projection of its Wiener chaos expansion.
At the same time, Marinucci et al. (2020) proved a central limit theorem, as k → ∞, for the nodal length of Laplacian

igenfunctions on the two-dimensional sphere, i.e. when M = S2 for Lfk
1 (E0(fk, S

2)), using a different idea: instead of
tudying the asymptotic behavior of the entire dominant fourth chaotic component, which is given by a sum of six terms
nvolving the eigenfunctions and their gradients, they proved its asymptotic full correlation with a functional that only
epends on the eigenfunction fk and not on its gradient components. Such functional is the so called (centered) sample
rispectrumwhich is defined as the integral of H4(fk), where H4 is the fourth Hermite polynomial. This means that Marinucci
t al. (2020) were able to obtain a much simpler expression for the leading term, making the derivation of a quantitative
entral limit theorem much more immediate.
Hence some natural questions arise: as k → ∞, is that possible to obtain an asymptotic neater expression also on the

lane, that is for Lfk
1 (E0(fk,D)) when M = R2 and D ⊂ R2? Is the fourth chaotic component of the nodal length of planar

andom wave asymptotically fully correlated with a term that does not depend on the gradient? Here, we will positively
nswer these questions, showing that the computations are actually very similar to the ones of Marinucci et al. (2020).
ndeed, the aim of this short note is not only answering these questions but also highlighting some open ones, that are
robably more challenging to address.
In fact, it is important to point out that the asymptotic full correlation of Lfk

1 (E0(fk, S
2)) with the (centered) sample

rispectrum led to the fact that Lfk
1 (E0(fk, S

2)) is also asymptotically fully correlated with the total number of critical
oints. Indeed, in the paper by Cammarota and Marinucci (2019) it is shown that the asymptotic behavior of the total
umber of critical points is dominated by exactly the same component as the one that dominates in the nodal length,
hat is the (centered) sample trispectrum. As a consequence, it would be interesting to discover if similar results can be
roved in the planar case; heuristics clearly suggest that higher number of critical points would presumably correspond
o a higher number of nodal components.

For a threshold parameter u ̸= 0, asymptotic full correlation of Lipschitz–Killing curvatures and critical values among
hemselves and with a functional of just the eigenfunction fk was proved in the works by Marinucci and Wigman
2011), Rossi (2015) and Cammarota and Marinucci (2018, 2020), some years before considering the degenerate (and
ence more challenging) case u = 0. Such functional is the so-called (centered) sample power spectrum, which is defined
s the integral of H2(fk), where H2 is the second Hermite polynomial. Moreover, Marinucci and Rossi (2021) proved that the
orrelation between Lfk

1 (E0(fk, S
2)) and Lfk

1 (Eu(fk, S
2)) at any level u ̸= 0 is asymptotically zero, while the partial correlation

fter controlling for the random norm ∥fk∥L2(S2) is asymptotically one. In general, it would be interesting to study whether
hese results hold in the planar case.

.2. Main results

Let us now get into the notation used by Nourdin et al. (2019) and Peccati and Vidotto (2020). From now on M = R2

nd we let ∆ be the Laplace operator on R2. For E > 0, we define

BE(x) =

∫
S1

ei2π
2E⟨θ,x⟩Z(dθ ) , x ∈ R2 , (1.1)

here Z is an appropriate Hermitian Gaussian measure on S1; then BE : R2
→ R is a Gaussian random field on R2 such

hat EBE(x) = 0 and

E [BE(x)BE(y)] = J0(
√

2π2E∥x − y∥) , x, y ∈ R2 ,

where J0 denotes the zero-order Bessel function of the first kind (see Krasikov (2014))

J0(t) =

∞∑
m=0

(−1)m

(m!)2

(
t
2

)2m

, t ∈ R . (1.2)

oreover, BE almost surely solves the Helmholtz equation ∆BE + λEBE = 0, λE := 2π2E, so that BE = fk, in the notation
of the previous section.

In this paper, we focus on the nodal length of the random fields {BE(·)}, i.e. the boundary length of the excursion set
t the level u = 0 inside a fixed convex body D ⊂ R2:

LE := LBE
1 (E0(BE,D)) = length{B−1

E (0) ∩ D} . (1.3)

It is a straightforward application of the Gaussian Kinematic Formula, see Taylor and Adler (2009), showing that the
xpectation of the nodal length LE satisfies the following relation

E[LE] = area(D)
π
√

√
E , ∀E > 0 , (1.4)
2
2
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hereas it is more challenging to prove that the variance verifies the asymptotic relation (see Berry (2002), Wigman
2010) and Nourdin et al. (2019))

Var(LE) =
area(D)
512π

log E + o(log E) , E −→ ∞ . (1.5)

oreover, Nourdin et al. (2019) established a CLT showing that, as E → ∞,

L̃E :=
LE − E[LE]
√
Var(LE)

d
−→ N,

where N ∼ N (0, 1) is a standard Gaussian random variable and
d

−→ denotes convergence in distribution.
In this short note, we will prove the asymptotic equivalence (in the L2(Ω) sense) of the nodal length LE and the

(centered) sample trispectrum of {BE}, i.e.

hE;4 :=

∫
D
H4(BE(x))dx , (1.6)

where H4 is the fourth-order Hermite polynomial — we recall that H4(u) = u4
− 6u2

+ 3. Now, let us define the following
properly rescaled random variables

ME := −

√
2π2E
96

∫
D
H4(BE(x))dx = −

√
2π2E
96

hE;4 . (1.7)

rom Nourdin et al. (2019, Lemma 8.4) we know that, as E → ∞, we have

Var{ME} =
areaD
512π

log E + O(1) . (1.8)

ooking at (1.5) and (1.8), it is immediate to note that the variance of ME is asymptotically equivalent to the variance of
E , i.e. Var{LE}/Var{ME} = 1 + o(1), as E → ∞.
Now, set M̃E := ME/

√
Var(ME); the main result of this note is the following theorem, which is the planar counterpart

f Marinucci et al. (2020, Theorem 1.2).

heorem 1.1. As E → ∞, we have that

E
[
{L̃E − M̃E}

2]
= o (1) and in particular L̃E = M̃E + oP(1) . (1.9)

The previous result states that the normalized nodal length (1.3) and (centered) sample trispectrum (1.7) are
symptotically equivalent in L2(Ω), as E → ∞, and hence in probability and in law.
The reduction principle in Theorem 1.1 also allows to establish Moderate Deviation estimates for the nodal length of

lanar random waves, see Macci et al. (2021, Remark 1.9). The proof of the following result, which is a refinement of
he Central Limit Theorem for the sample trispectrum, is analogous to the proof of Lemma 3.1 by Macci et al. (2021) and
ence omitted.

orollary 1.2. Let {aE, E > 0} be any sequence of positive numbers such that, as E → ∞,

aE −→ ∞ , aE/(log E)1/14 −→ 0 . (1.10)

hen the sequence of random variables {M̃E/aE, E > 0} satisfies a Moderate Deviation principle with speed a2E and Gaussian
ate function I(x) := x2/2, x ∈ R, i.e., for every Borelian set A ⊂ R it holds that

− inf
x∈Å

I(x) ≤ lim inf
E→∞

1
a2E

logP
(
M̃E/aE ∈ A

)
≤ lim sup

E→∞

1
a2E

logP
(
M̃E/aE ∈ A

)
≤ − inf

x∈Ā
I(x) ,

where Å (resp. Ā) denotes the interior (resp. the closure) of A.
As for the proof of Theorem 1.7 by Macci et al. (2021), the two sequences of random variables {M̃E/aE, E > 0} and

{L̃E/aE, E > 0} being exponentially equivalent (Dembo and Zeitouni, 1998, Definition 4.2.10) as soon as aE goes to infinity
ufficiently slowly (according to both (1.9) and (1.10)), Moderate Deviation estimates can be deduced for {L̃E/aE, E > 0}
ith speed a2E and Gaussian rate function I.

emark 1.1. A straightforward consequence of Theorem 1.1, which can also be immediately deduced from the work
y Nourdin et al. (2019) (see also Marinucci et al. (2020, Corollary 1.3)) is that, as E → ∞,

dW (L̃E,N) = o (1) ,

here dW (L̃E,N) denotes the Wasserstein distance between L̃E and N ∼ N (0, 1) (see e.g. Nourdin and Peccati (2012,
ppendix C) for more details). Indeed, Nourdin et al. (2019) prove that all the chaotic projections of L̃E , except for the
ourth one, converge to zero in L2(Ω), and hence in Wasserstein distance; moreover, a sequence of elements of a fixed
iener chaos converges in law to N if and only if its Wasserstein distance from N converges to zero, see Nourdin and
eccati (2012, Corollary 5.2.8).
3
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. Proof

The proof is very similar to the one by Marinucci et al. (2020) and is strongly based on various results proved by Nourdin
t al. (2019).

he Wiener Chaos decomposition of the nodal length. In the work by Nourdin et al. (2019), the chaotic expansion of the
odal length in a fixed convex body D ⊂ R2 is established:

LE =

∞∑
q=0

LE[2q] =

√

2π2E
∞∑
q=0

q∑
u=0

u∑
m=0

β2q−2uα2m,2u−2m

×

∫
D
H2q−2u(BE(x))H2m (̃∂1BE(x))H2u−2m (̃∂2BE(x)) dx ,

(2.1)

where the series converges in L2(Ω) and {β2n}n≥0 is defined in equation (3.50) of Nourdin et al. (2019), while {α2n,2m}n,m≥0
is the sequence of chaotic coefficients of the Euclidean norm ∥ · ∥ in R2 appearing in Marinucci et al. (2016, Lemma 3.5).
Once the chaotic expansions were established, Nourdin et al. (2019) proved that, as E → ∞, L̃E = LE[4]/

√
Var(LE[4])+

oP(1), noting that limE→∞ VarLE/VarLE[4] = 1. In particular, the fourth chaotic component of LE is given by

LE[4](D) =

√
2π2 E
128

{8 a1,E − a2,E − a3,E − 2 a4,E − 8 a5,E − 8 a6,E} , (2.2)

here

a1,E :=

∫
D
H4(BE(x))dx , a2,E :=

∫
D
H4 (̃∂1BE(x))dx , a3,E :=

∫
D
H4 (̃∂2BE(x))dx ,

a4,E :=

∫
D
H2 (̃∂1BE(x))H2 (̃∂2BE(x))dx ,

a5,E :=

∫
D
H2(BE(x))H2 (̃∂1BE(x))dx , a6,E :=

∫
D
H2(BE(x))H2 (̃∂2BE(x))dx .

s proved in Nourdin et al. (2019, Proposition 6.1), its variance satisfies, as E → ∞,

Var(LE[4]) =
π2E
8192

Var
(
8a1,E − a2,E − a3,E − 2a4,E − 8a5,E − 8a6,E

)
=

area(D)
512π

log E + O(1) .

roof. To establish Theorem 1.1, it suffices to show that, as E → ∞, Corr (LE, ME) → 1. We have

Corr (LE, ME) =

log E
512π + O(1)√( log E

512π + o(log E)
) ( log E

512π + gE
) = 1 + o(1) ,

here |gE | ≤ c , a constant independent of E. Indeed, since ME is an element of the fourth Wiener chaos, by orthogonality
we have that

Cov (LE, ME) = Cov

⎛⎝∑
q≥0

LE[2q], ME

⎞⎠ = Cov (LE[4], ME)

=
2π2 E

(128)(96)

[
−8 Var(a1,E) + Cov (a1,E, a2,E) + Cov (a1,E, a3,E)

+ 2 Cov (a1,E, a4,E) + 8 Cov (a1,E, a5,E) + 8 Cov (a1,E, a6,E)
]

.

After these simple steps, the fact that Cov (LE, ME) =
log E
512π + O(1) follows straightforwardly using Nourdin et al. (2019,

emma 8.4). ■
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