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Abstract: Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary
malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged
latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates
for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of
flavonoids, are commonly found in fruit and vegetables and are known for their protective effect
against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols
was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In
this systematic review, we gathered all available evidence supporting the anti-cancer potential of
selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total
of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin
and myricetin, respectively, were found, while more limited evidence was available from animal
models and epidemiological studies or clinical trials. In conclusion, the available evidence supports
the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus
providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their
use in combination with other pharmacological and non-pharmacological interventions.

Keywords: fisetin; kaempferol; myricetin; prostate cancer; bladder cancer

1. Introduction

Prostate and bladder cancer represent the two most frequently diagnosed genito-
urinary malignancies, with 1,414,259 and 573,278 cases estimated to have been diagnosed
in 2020 [1]. In spite of considerable advances in the field of diagnosis and treatment [2–4],
mortality remains high, with an estimated 375,304 and 212,536 people dying because of
prostate and bladder cancer, respectively, in 2020 [1]. Population-based screening has
proven to be useful for early detection of prostate cancer [5], while its benefits remain
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unproven in bladder cancer [6]. Primary prevention interventions aimed at preventing
the onset of the disease through action on modifiable risk factors have true potential for
reducing prostate and bladder cancer mortality. The most commonly known risk factors
for prostate cancer include age, lifestyle, sexual habits, family history, ethnicity as well
as occupational and environmental exposure [7–9], while risk factors for bladder cancer
include smoking, age, gender, occupational and environmental exposure as well as infection
with Schistosoma haematobium [10,11]. Diet may affect both prostate [12] and bladder [13]
cancer risk. While highly processed foods are associated with a higher prostate cancer
risk, soy, lycopene-rich foods and fish may exert a protective effect [14]. Bladder cancer
risk may be increased by higher intakes of processed meat, while it may be decreased
by higher consumption of fruit, vegetables, citrus fruit, and cruciferous vegetables [13].
Dietary preventive measures, including the use of nutritional supplements, might therefore
be part of a preventive strategy against both prostate and bladder cancer.

Flavonoids represent a class of polyphenolic compounds that are normally present
in the human diet [15]. The chemical structure of flavonoids presents a benzene ring that
is condensed with a 6-member ring and has a phenyl ring attached either to the C2 or
the C3 carbon position [16]. Several classes of flavonoids have been identified based on
their chemical structure. Among these, flavonols, which are characterized by a distinctive
hydroxyl group at the C3 carbon position [17], represent the most ubiquitous flavonoids
present in food [18]. Flavonols have been extensively investigated during the past decades
as they have been convincingly associated with favourable biological activities, including
a protective effect against diabetes [19] and cardiovascular diseases [20]. Furthermore, a
higher dietary intake of flavonols was reported to be related to a lower risk of both blad-
der [21] and prostate [22] cancer. Among the several known flavonols, quercetin and its
glycosylated form, isoquercetin represent the most studied compounds [23]. Isoquercetin
has also been tested as a GMP medicinal product in prospective clinical trials as an ad-
junct therapy against sunitinib-induced fatigue by Buonerba et al. [24] and as preventive
measure against cancer-associated thrombosis by Zwicker et al. [25]. Other less exten-
sively studied—yet also promising—flavonols include kaempferol, fisetin and myricetin.
Kaempferol is a naturally occurring flavonol that can be found in tea as well as in grape-
fruit, beans, apples, kale, brussel sprouts, cabbage, grapes, broccoli, tomatoes, citrus fruits,
gooseberries and strawberries [26]. Kaempferol has displayed strong anti-inflammatory,
anti-neoplastic, cardio- and neuro-protective properties in a number of pre-clinical studies,
with no expected toxic effects in humans [27]. Fisetin is also found in vegetables and fruits,
such as cucumber, persimmon apple, grape, onion, and strawberry [28]. Besides showing
antioxidant, anti-inflammatory and antiproliferative activity, fisetin may display a peculiar
capacity to target senescent cells, which are resistant to apoptosis and are associated with
chronic diseases and aging [29]. Finally, myricetin can also be isolated in several plant
families and is commonly found in fruits and vegetables [30]. Similarly to other flavonols,
myricetin has shown multiple attractive properties, including antibacterial, antiviral, anti-
inflammatory, anti-tumor, anti-obesity, cholesterol-lowering effects, along with cardio- and
neuro-protective activity [31].

We here present a narrative review based on a systematic search of the literature
aimed at assessing currently available evidence regarding the anti-neoplastic effect of
kaempferol, fisetin and myricetin in prostate and bladder cancer. Potential applications
are also discussed from a multidisciplinary (urologist/oncologist/nutritional biologist)
perspective.

2. Materials and Methods

The systematic review was conducted following PRISMA principles, where appli-
cable [32]. PUBMED, SCOPUS and EMBASE were used for the systematic review of the
literature. The search string included the following terms: “prostate cancer”, “bladder
cancer”, “kaempferol”, “myricetin”, “fisetin”. No temporal limits were applied. Original
articles reporting in vitro, animal and human studies were included. Non-original articles
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(editorials, review articles, letters to the editor, etc) as well as articles describing purely
theoretical models or reporting chemical/pharmacological experiments were excluded.
The systematic review was conducted by FC and CB in August 2021. Any discrepancies
were resolved through a consensus discussion with a third author (VC). The number of
included and excluded articles is reported in Table 1.

Table 1. Included and excluded articles.

Entries Found 1 Excluded Included

original
work, but not
experimental

not
original

work

not involving the single
pure substance or the

prostate/bladder cancer
Preclinical Clinical

Prostate
cancer

Kaempferol 53 3 6 25 17 2
Myricetin 16 2 2 5 5 2

Fisetin 28 2 8 6 12 0

Bladder
cancer

Kaempferol 13 1 4 4 4 1
Myricetin 3 0 0 0 2 1

Fisetin 4 0 0 1 3 0
1 After removal of duplicate articles.

3. Results of the Systematic Review
3.1. Kaempferol
3.1.1. Preclinical Studies

Kaempferol has shown anti-neoplastic activity in multiple pre-clinical models of
prostate and bladder cancer. In a pre-clinical study employing 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay to assess cell viability [33], kaempferol
at concentrations of 5, 10 and 15 µM yielded a reduction in androgen-dependant LNCaP
cells growth of 33%, 60% and nearly 100%, respectively. Another pre-clinical study based
on the trypan blue cell counting assay reported a half maximal effective concentration
(EC50) for kaempferol of 38.35 ± 1.94 and 33.29 ± 2.96 µM in androgen-independent
DU-145 and PC-3 cells, respectively. Importantly, at these concentrations, kaempferol
had no impact on the viability of human foreskin fibroblasts (HFF) cells, which provides
evidence supporting a favourable efficacy/toxicity profile for kaempferol [34]. Kaempferol
anti-neoplastic activity was confirmed in another in vitro study using a WST-1 cell viability
assay, which showed that 10 µM kaempferol reduced cell proliferation by 20% in LNCaP
cells [35]. Another pre-clinical study [36] conducted in DU-145 cell culture reported that
50 µM kaempferol was associated with a 50% growth rate reduction in MTT assay. One
preclinical study that used the SRB (Sulforhodamine B) assay showed that kaempferol
displayed potent cytotoxic activity towards several cancer cell lines (including PC-3), with
IC50 values in the 1.0–2.3 µM range [37]. Kaempferol has also shown potent activity
in bladder cancer pre-clinical models. One study reported a 50–58% reduction in EJ
cell viability after exposure to 20–54.7 µM kaempferol, with no effect on the growth of
normal bladder cells SV-HUC-1 exposed to 10–40 µM kaempferol [38]. In a mouse model
developed by injecting bladder cancer cells subcutaneously into nude mice, kaempferol
injected intraperitoneally at a dose of 50–150 mg/kg daily for 4 weeks was associated with a
tumor weight reduction in the range of 30–60%, measured after sacrificing the animal with
no apparent toxicity [39]. Furthermore, immunohistochemistry analysis (TUNEL assay) of
cancer tissues showed that in mice treated with 150 mg/kg kaempferol, a 70% apoptotic rate
was detected compared to 7% in control mice, with decreased expression of c-Met, cyclin B1,
and c-Fos [39]. Hypothesised mechanisms of action of kaempferol anti-neoplastic activity
involve blocking the cell cycle progression [40], induction of apoptosis [39], inhibition of
Anoctamin 1 (ANO1), a calcium-activated chloride channel [41], inactivation of oncogenic
proline-directed protein kinase FA [42], which is involved in neoplastic transformation
and progression, inhibition of cyclooxygenase-2 [43], inhibition of fatty acid synthase
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activity [44], inhibition of Glyoxalase 1 [45], increased synthesis of granulocyte-macrophage
colony-stimulating factor [46], modulation of DNA methylation [47], and induction of
oncosuppressor protein PTEN [48].

3.1.2. Clinical Studies

Only limited evidence is available from epidemiological studies that have investi-
gated the potential association between dietary consumption of kaempferol and prostate
and bladder cancer. In a case-control study conducted in western New York including
433 men with histologically confirmed prostate cancer and 538 population-based controls,
matched according to age and county of residence, a non-statistically significant 10–20%
reduction in the odds of having prostate cancer was found for those who consumed more
kaempferol [49]. It must be considered that overall intake of kaempferol was low (ap-
proximately 20 mg/a day) both in cancer cases and controls, compared to doses required
to achieve serum concentrations investigated in preclinical models. Conversely, in an
epidemiological study based on the Netherlands Cohort Study involving 3362 men with
prostate cancer, of whom 1164 men with advanced disease, who were followed-up for
a period of 17.3 years, a higher intake of kaempferol was associated with a significantly
decreased hazard ratio of advanced prostate cancer [50]. One study reviewing data from
a Spanish case-control study was conducted to explore the association between bladder
cancer and specific carotenoids (alpha-carotene, lutein, lycopene and beta-carotene) and
flavonoids (quercetin, kaempferol, myricetin, and luteolin). In the analyzed population,
which included 497 newly diagnosed bladder cancer and 1113 matched controls, neither
total intake of carotenoids/flavonoids nor specific compounds (including kaempferol)
were associated with bladder cancer [51]. Although the study has merit in its investigation
of the potential relationship of bladder cancer with specific flavonoids, its small sample
size is a major limitation that underlines the need for larger epidemiologic studies.

3.2. Fisetin
Preclinical Studies

Fisetin anti-neoplastic activity has also been assessed in multiple pre-clinical prostate
and bladder cancer models. In a cellular model that used fisetin as a positive control, the
IC50 of fisetin was 34.1 ± 7.7 µM as measured by WST-1 cells in LNCaP cell culture [52].
In mice, fisetin (1 mg/kg) intraperitoneally daily) significantly reduced both the tumor
weight and size of the xenograft prostate tumors [53]. In another preclinical study, fisetin
(10–60 µM) was associated with decreased cell viability in LNCaP cells (19–62%) and
CWR22Rυ1 cells (18–55%) after 48 h treatment, with minimal effect on prostate epithelial
cells at the same concentrations. Furthermore, this study showed that in nude mice bearing
xenograft prostate cancer tumors, fisetin (1 mg/day intraperitoneally) was associated with
an average tumor volume of 302 mm3 after 26 days treatment, compared to an average
tumor volume of 1200 mm3 in controls [54]. Fisetin (20 µM) has also been found to
synergize with cabazitaxel (5 µM) in cellular models of 22Rν1, PC-3M-luc-6, and C4-2
prostate cancer cell lines [55]. In these three cell lines, a 45%, 49% and 74% decreased cell
viability, respectively, was reported with fisetin alone while a 32%, 11% and 38% decreased
cell viability was reported with cabazitaxel alone. This model showed that fisetin can
synergize with cabazitaxel, as a combination of fisetin plus cabazitaxel yielded a reduction
in cell viability by approximately 79%, 53% and 78%, respectively, in the three cell lines
assessed. In nude mice bearing prostate cancer xenografts, the authors explored the effect
of intraperitoneal injection of either fisetin (20 mg/kg; 3 times/week) alone, cabazitaxel
(5 mg/kg; once/week) alone, fisetin (20 mg/kg; 3 times/week) plus cabazitaxel (5 mg/kg;
once/week), or vehicle. Of note, while fisetin alone and cabazitaxel alone were associated
with 22% and 31% inhibition of tumor growth, respectively, cabazitaxel plus fisetin yielded
a 53% inhibition of tumor growth compared to the control group [55].
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One of the possible mechanisms of action of fisetin may be mediated by decreased
synthesis of ialuronic acid [56], as higher levels of ialuronic acid in the tumor microenviron-
ment are associated with prostate cancer progression [57]. Additional putative mechanisms
of action of fisetin in prostate cancer include microtubule stabilization (10 µM) [58], inhibi-
tion of epithelial-to-mesenchymal transition (60 µM) via inhibition of YB-1 [53], TRAIL-
mediated augmentation of apoptosis (50 µM) [59], inhibition of cell cycle (1–50 µM) [60–62],
induction of autophagic cell death via mTOR suppression [63], and inactivation of the
JNK and PI3K/Akt signaling pathways [64]. Fisetin may also favorably modulate gut
microbiota [65], which is possibly involved in prostate cancer etiopathogenesis [66].

Fewer studies have been conducted in bladder cancer models, although fisetin has
also shown promising results as an anti-neoplastic agent in this tumor. In a bladder cancer
cellular model, 60 µM fisetin was associated with an approximately 60% cell viability after
48 h in T24, EJ, J82 cell lines [67]. In a rat model of bladder cancer induced by intravesical
N-methyl-N-nitrosourea (MNU) [68], fisetin + MNU yielded tumor occurrence in 22.2%
of rates (4/18) compared to 70.6% (12/17) of MNU alone. This finding is consistent with
the results obtained in another study showing that fisetin was moderately inhibitory
to mutagenicity associated with benzidine, a human bladder carcinogen, in the Ames
Salmonella microsome/mutagenicity assay [69], which provides proof of concept evidence
supporting the use of fisetin as a preventive bladder cancer agent. Putative biological
mechanisms of fisetin anti-neoplastic activity in bladder cancer involve apoptosis and cell
cycle arrest via activation of p53 and inhibition of NF-kappa B pathway [67,68].

3.3. Myricetin
3.3.1. Preclinical Studies

Myricetin has shown promising antineoplastic activity in a few pre-clinical models
of prostate and bladder cancer. In a cellular model employing multiple prostate cancer
cell lines, myricetin IC50 values measured via CCK-8 and colony formation assays were
47.6 µM, 55.3 µM, 79.9 µM in prostate cancer cell lines PC3, DU145, C4-2, respectively,
while it was much higher (362.1 µM) in normal epithelial prostate cell line RWPE-1 [70]. In
nude mice, myricetin (25 mg/kg) administered every other day by intraperitoneal injection
was able to induce regression of PC3 subcutaneous xenografts compared to controls, with
an average tumor volume three times lower in myricetin-treated mice compared to control
on day 45. Myricetin was able to induce apoptosis in PC3 cells, as shown by flow cytometry,
with increased expression levels of the apoptosis-related proteins cleaved caspase-3 and
cleaved caspase-9, as shown by Western blot analysis. Furthermore, myricetin’s mechanism
of action was associated with inhibition of PIM1 (proviral integration site for moloney
murine leukemia virus), a kinase mediating transcriptional activation of genes related to
cell cycle progression and cell survival [71]. In another cellular study that compared the
effect of myricetin, myricetrin and quercetin on PC-3 cells viability using the MTT assay,
the IC50 value for myricetin was 94.48 µM, which was 2–4 times lower compared to the
IC50 of myricetrin and quercetin [72]. Another prostate cancer cellular model showed
that 100 µM myricetin was associated with a 60% inhibitory growth effect [40]. While
myricetin’s mechanism of action may involve inhibition of Glyoxalase 1 [45], similarly
to other flavonols, myricetin may also serve as a preventive cancer agent in view of its
capacity to inhibit CYP1B1, an enzyme that can metabolize polyaromatic hydrocarbons
into toxic intermediates [73]. Myricetin may also synergize with chemotherapy agents as
CYP1B1 is also involved in anti-cancer drug metabolism [73]. In bladder cancer cellular
models, myricetin showed an IC50 of 72.68, 30.26, 20.94 µM in RT4, SCABER and SW780
bladder cancer cell lines, respectively [74] by MTT assay. In another cellular model that
used bladder cancer T24 cell lines tested by MTT assay, myricetin induced a 2.6–61%
decrease in cell viability at concentrations of 20–100 µM after 12 h, with an IC50 value of
85 µM for 24 h [75].
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3.3.2. Clinical Studies

Only a few epidemiologic studies were identified by the systematic search. In the
prostate cancer cohort assessed by Geybels et al. discussed above [50], a higher myricetin
consumption was also associated with a lower risk of being diagnosed with advanced
prostate cancer, although overall intake was low (average intake < 1.5 mg/a day). One
large cohort study estimated the flavonoid intakes of 10,054 individuals based on dietary
habits and flavonoid concentrations in Finnish foods and computed incident cases of
the diseases from available national public health registers. In the entire cohort, total
myricetin daily intake was 0.12 mg. Of all the malignancies considered (lung, prostate,
breast, urinary, colo-rectal), prostate cancer was the only tumor that was associated with
myricetin consumption, with a significantly lower risk in the fourth vs. the first quartile
(0.43; 95% CI: 0.22, 0.86; p = 0.002) and in the third vs. the first quartile (0.51; 95% CI: 0.28,
0.91) [76]. In the study by Garcia et al. [51] referred to above, no statistically significant
association between myricetin consumption and bladder cancer was identified, which was
consistent with the results obtained by Knekt et al. [76].

Results obtained in in vitro, animal and human studies are schematically reported in
Tables 2–4, respectively.

Table 2. Results of in vitro models with available IC50.

Flavonol
(Kaempferol,

Fisetin, Myricetin)

Model (Prostate
vs. Bladder

Cancers)
Cell Line Assay IC50 (uM) Reference

Kaempferol

Prostate cancer

LNCaP
MTT assay

28.8 ± 1.5 µM (with 1 nM DHT)
[33]PC-3 58.3 ± 3.5 µM (with 1 nM DHT)

RWPE-1 69.1 ± 1.2 µM (with 1 nM DHT)
DU-145 Cell count with

Trypan Blue
38.35 ± 1.94 µM

[34]PC-3 33.29 ± 2.96 µM
LNCaP WST-1 assay 29 ± 6 µM [35]
DU-145 MTT assay 50 ± 0.00 µM [36]

PC-3 WST-1 assay 1.8 uM [37]

Bladder cancer
EJ MTT assay 54.7 µM [38]
EJ CCK-8 assay 78.4 µM (T24 h) 38.1 µM (T48 h)

[47]T24 85.3 µM (T24 h) 54.2 µM (T48 h)

Fisetin Prostate cancer

PC-3
WST-1 assay

>50 µM
[52]DU-145 >50 µM

LNCaP 34.1 ± 7.7 µM
LNCaP CyQuant cell

proliferation assay
22.65 µM

[62]PC-3 32.50 µM

Myricetin
Prostate cancer

PC-3

CCK-8 assay

47.6 µM

[68]
DU-145 55.3 µM

C4-2 79.9 µM
RWPE1 362.1 µM

PC-3 MTT assay 94.48 µM [70]

Bladder cancer
SV-HUC
SW-780

CellTiterGlo
reagent assay

>200 µM
20.9 µM [72]

T24 MTT assay 85 µM [73]
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Table 3. Results of animal models.

Flavonol (Kaempferol,
Fisetin, Myricetin)

Model (Prostate vs.
Bladder Cancer) Cell Line Dose Results References

Kaempferol Bladder cancer

5637 50, 100, 150 mg/kg every day for
4 weeks Tumor growth and metastasis suppression [39]

T24 150 mg/kg every day for 31 days

Tumor growth inhibition Tumor volume: control mice
('3000 mm3) vs. Tumor volume in treated mice
('1000 mm3) DNA methylation modulation by

inhibiting DNMT3B

[47]

Fisetin Prostate cancer

NB26 1 mg/kg twice weekly for 28 days Epithelial-to-mesenchymal transition inhibition [53]

CWR22Rυ1 1 mg/animal twice weekly for
46 days

Tumor growth inhibition Tumor reached a volume of
1200 mm3 after 26 days in control mice and after
46 days in treated mice-PSA secretion inhibition

[54]

22Rν1
20 mg/kg; 3 times/week for

7 weeks

Tumor growth Inhibition by decreasing proliferation
and inducing apoptosis Tumor volume: control mice

('1800 mm3) vs. Tumor volume in treated mice
('1300 mm3) Overall survival increase

[55]

PC-3M-luc-6
Tumor growth inhibition Tumor volume: control mice

('600 mm3) vs. Tumor volume in treated mice
('500 mm3)—Metastasis inhibition

NB11 NB26
40 mg/kg~1 mg/animal)

twice weekly until tumors reached
a volume of 1200 mm3

Synthesis and degradation inhibition of hyaluronan,
an enzyme involved in cancer progression [56]

Bladder cancer
Rat model of bladder cancer

induced by intravesical
N-methyl-N-nitrosourea

200 mg/kg weekly for 18 weeks Apoptosis induction [66]

Myricetin Prostate cancer PC-3 25 mg/kg every 2 days for 40 days

Cancer growth inhibition
Tumor volume: control mice ('1800 mm3) vs. Tumor

volume in treated mice
('600 mm3)-Epithelial-to-mesenchymal transition

inhibition

[68]
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Table 4. Results of human studies.

Flavonol
(Kaempferol,

Fisetin, Myricetin)

Prostate vs.
Bladder Cancer Total Sample Size Estimated Daily Intake (Mean) Results (Report p) References

Kaempferol

Prostate cancer

433 men with primary,
histologically confirmed
prostate cancer and 538

population-based controls

µg/day OR (95% CI) OR (95% CI) Further adjusted
for vegetable intake.

Cancer risk reduction [49]
<1447.5 1.00 1.00

1447.5–2990.5 0.90 (0.63–1.27) 0.90 (0.63–1.28)
2990.5–6056.8 0.73 (0.51–1.04) 0.74 (0.52–1.07)

>6056.8 0.83 (0.58–1.18) 0.85 (0.59–1.22)

3362 prostate cancer
patients

6.5 (4.4–9.4) mg/day Hazard ratios of stage IV prostate cancer for the highest
versus the lowest quartile of intake of kaempferol: 0.78 (95% CI: 0.61, 1.00;)

Dietary intake was not associated with
overall or nonadvanced prostate cancer
risk; decreased risk of advanced (stage

III/IV) or stage IV prostate cancer.

[50]

Bladder cancer
Cases(n = 495) 0.97 ± 1.15 mg/day Intake of kaempferol is not protective

against bladder cancer risk [53]Controls (n = 1112) 1.03 ± 1.18 mg/day

Myricetin
Prostate cancer 3362 prostate cancer

patients
1.4 mg/day (0.9–2.0) Hazard ratios of stage IV prostate cancer for the highest

versus the lowest quartile of intake of myricetin: 0.71 (95% CI: 0.55, 0.91).

Dietary intake was not associated with
overall or nonadvanced prostate cancer
risk; decreased risk of advanced (stage

III/IV) or stage IV prostate cancer.

[50]

Bladder cancer
Cases (n = 495) 0.23 ± 0.35 mg/day 0.21 ± 0.34 mg/day Intake of myricetin is not protective

against bladder cancer risk. [51]Controls (n = 1112)
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4. Metabolism and Bioavailability

One of the limitations that must be considered when exploring the potential appli-
cations of naturally occurring flavonols in humans is their generally low bio-availability.
Also, the optimal serum levels required to achieve the desired clinical effects are unknown
for all three flavonols reviewed.

Kampferol, which is metabolized by sulphate and glucuronic acid conjugation in
the liver, can be absorbed by both passive and facilitated diffusion [77]. One of the few
bio-availability studies conducted to assess the pharmacokinetics of flavonols in humans,
enrolled four healthy men and four healthy women (age range: 26–47 years), who were
administered 9 mg kaempferol obtained from endive and observed for one day. Also,
subjects were instructed not to consume any flavonoid-rich foods prior and during the
study. A mean maximum plasma concentration of 0.1 mM was reported after 5.8 h, which
was indicative of absorption from the colon or the distal section of the small intestine,
differently from other flavonoids, such as rutin, that are absorbed from the large intestine
for the greatest part. Furthermore, only 1.9% of the administered kaempferol was found
in 24-h urine. Glycosylated kaempferol amounted to 14% of the total kampferol content
of endive and was likely responsible for an early absorption peak that was reported in
most subjects. Kaempferol-3-glucuronide was the major compound detected in plasma and
urine [78]. In another small clinical study that included 8 males and 7 females (age range:
19–56 years), mean plasma concentrations of 15 ng/mL kaempferol were detected after
participants ingested 27 mg kaempferol from tea, with 2.5% of the total kaempferol dose
consumed detected in urine. To the best of our knowledge, no pharmacokinetic studies
are available in humans for fisetin and myricetin, so pharmacokinetic data in humans can
only be extrapolated from data obtained in murine models. Fisetin oral bioavailability
is expected to be low because of its low aqueous solubility and its extensive first-pass
metabolism [79]. In mice, after oral administration of fisetin 50 mg/kg of body weight,
the fisetin parent form could be detected in serum transiently only during the absorption
phase, while the peak concentration of fisetin sulfates and glucuronides was 72.1 µM [80].
In another pharmacokinetic study conducted in mice that were administered myricetin
both intravenously and orally, the absolute bioavailability was found to be 9.62% and 9.74%
at 50 mg/kg and 100 mg/kg of body weight, respectively, while an oral dose of 50 mg/kg
of body weight yielded an average peak concentration of 4.6 µM [81].

5. Discussion

Our systematic search of the literature found consistent evidence derived from cel-
lular and, in some cases, rodent models that kaempferol, fisetin and myricetin may exert
anti-neoplastic activity in prostate and bladder cancer. Epidemiologic studies exploring
a potential association between dietary daily intake of these individual flavonols and
prostate and bladder cancer suggest that kaempferol and myricetin may be associated with
a lower risk of advanced prostate cancer and all-stage prostate cancer, respectively, while
total flavonol intake was associated with a reduced risk of bladder cancer in the EPIC
study [21]. The attractiveness of these compounds as anti-cancer agents lies in multiple
factors, including their availability on the market, low cost, low toxicity, low likelihood
of pharmacological interactions as well as potential for synergism with anti-cancer med-
ications. Our work group has reported the encouraging activity of isoquercetin against
adverse events associated with sunitinib, including fatigue, hand and foot syndrome, rash
in a small cohort of 12 patients with kidney cancer [24]. Furthermore, we reported an
unusual complete response obtained with low dose oral cyclophosphamide and high doses
of oral quercetin in an older patient with advanced urothelial carcinoma [82]. In this regard,
it must be noted that isoquercetin, the glycosylated form of quercetin, is approximately
10 times more bioavailable compared to quercetin [25,83]. Similarly, it is likely that glycosy-
lated myricetin [84] and kaempferol [78], which are commonly available in food, are more
bio-available compared to their aglycone forms.
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Given the findings obtained (1) in pharmacokinetic studies in humans and rats; (2)
in cellular models of prostate and bladder cancer; (3) in murine models of prostate and
bladder cancer; (4) in epidemiological studies, we believe that there is a sufficiently strong
rationale to explore the potential clinical applications of kaempferol, myricetin and fisetin
in selected patients affected by prostate and bladder cancer. We believe that prevention of
recurrence is the ideal setting for initial testing, although fisetin may be specifically explored
in combination with cabazitaxel after docetaxel failure [55], especially in selected patients
with aggressive disease [85], on the basis of the results of the preclinical model referred to
above [55]. Both bladder and prostate cancer can be treated with radical surgery if they
present as organ-confined disease, with a recurrence risk in the range of 20–40% for prostate
cancer after prostatectomy [86], up to 50% for bladder cancer after cystectomy [87] and
up to 30–40% after TURBT [88]. Given the limited number of adjuvant systemic treatment
options, a combination of kaempferol, fisetin and myricetin may be clinically tested as a
nutritional approach after radical surgery for prostate and bladder cancer as an adjunct
intervention in addition to standard of care. Clinical trials must be designed to compare
different dose levels and assess bioavailability. Given the lack of experimental data, starting
doses can be empirically hypothesized based on pharmacokinetic data and target peak
concentrations extrapolated from pre-clinical models. Given the peak concentrations of
0.1 µM achieved with 9 mg of kaempferol, a target peak serum concentration of 10 µM
for kaempferol may be obtained by administering 900 mg. For myricetin, a 46 µM peak
concentration may be obtained by administering 500 mg/kg in rats, which are equivalent
to approximately 40 mg/kg in humans. For fisetin, effective peak concentrations may be
obtained by administering the equivalent of 50 mg/kg in rats, that is, 4 mg/kg in humans.
We may therefore speculate that in clinical trials, daily oral kaempferol and myricetin doses
may be in the range of 900–2500 mg/a day while fisetin may be effective at lower doses
(250–500 mg/day). In this regard, studies conducted with isoquercetin that have measured
peak serum concentrations and assessed them to target concentrations with a biological
activity have set an example and represent the basis for further research in the field [83].

6. Conclusions

Kaempferol, fisetin and myricetin are normally ingested as they are naturally present
in vegetables and fruits. They are also currently available on the global market as nutritional
supplements. Available evidence shows that these compounds have potential activity
against bladder and prostate cancer. Although concentrations tested in pre-clinical models
are far higher than peak serum levels that can be obtained with consumption of fruit
and vegetables, higher serum levels can be obtained with consumption of nutritional
supplements. The expected toxicity is low, so higher daily doses in the range of grams
can probably be administered to compensate for the low bioavailability. The maximum
tolerated dose for kaempferol, fisetin and myricetin is yet to be established. Clinical trials
must be designed not only to prove the effectiveness and safety of a nutritional intervention
based on these flavonols consumed as plant-derived extracts, but also to assess the optimal
dose and duration of use. Based on the evidence reviewed, both patients with active cancer
and those without cancer but at high risk of recurrence/occurrence might benefit from
consuming these flavonols. Further clinical research is warranted.
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