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Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder included in ciliopathies, 
representing the fourth cause of end stage renal disease (ESRD), with an estimated prevalence between 1:1000 and 1:2500. 
It is mainly caused by mutations in the PKD1 and PKD2 genes encoding for polycystin 1 (PC1) and polycystin 2 (PC2), 
which regulate differentiation, proliferation, survival, apoptosis, and autophagy. The advances in the knowledge of multiple 
molecular pathways involved in the pathophysiology of ADPKD led to the development of several treatments which are 
currently under investigation. Recently, the widespread approval of tolvaptan and, in Italy, of long-acting release octreo-
tide (octreotide-LAR), represents but the beginning of the new therapeutic management of ADPKD patients. Encouraging 
results are expected from ongoing randomized controlled trials (RCTs), which are investigating not only drugs acting on 
the calcium/cyclic adenosin monoposphate (cAMP) pathway, the most studied target so far, but also molecules targeting 
specific pathophysiological pathways (e.g. epidermal growth factor (EGF) receptor, AMP-activated protein kinase (AMPK) 
and KEAP1-Nrf2) and sphingolipids. Moreover, studies on animal models and cultured cells have also provided further 
promising therapeutic strategies based on the role of intracellular calcium, cell cycle regulation, MAPK pathway, epigenetic 
DNA, interstitial inflammation, and cell therapy. Thus, in a near future, tailored therapy could be the key to changing the 
natural history of ADPKD thanks to the vigorous efforts that are being made to implement clinical and preclinical studies 
in this field. Our review aimed to summarize the spectrum of drugs that are available in the clinical practice and the most 
promising molecules undergoing clinical, animal, and cultured cell studies.
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Therapeutic advances in ADPKD: the future awaits
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The knowledge of the molecular 
pathways involved in ADPKD 

pathogenesis may help clinicians 
change the course of such a challenge 

disease. Encouraging results are 
expected from ongoing trials of novel 

promising molecules.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) 
is a heterogeneous genetic disorder included in ciliopathies, 
representing the fourth cause of end stage renal disease 
(ESRD), with an estimated prevalence between 1:1000 
and 1:2500. ADPKD is mainly caused by mutations in the 
PKD1 and PKD2 genes encoding for polycystin 1 (PC1) 
and polycystin 2 (PC2), both of which are expressed on the 
primary cilium [1]. PCs regulate differentiation, prolifera-
tion, survival, apoptosis, and autophagy [2]. Calcium/cyclic 
adenosin monoposphate (cAMP) signalling plays a central 
role in ADPKD pathophysiology; its upregulation causes 
Protein Kinase A (PKA) activation, promoting cystogen-
esis and chloride and fluid secretion through cystic fibrosis 
transmembrane conductance regulator (CFTR) [3]. cAMP 
and PKA are also responsible for mitogen activated protein 
kinase (MAPK) cascade and mammalian Target Of Rapamy-
cin (mTOR) activation [4, 5], Wnt-dependent tubulogenesis 
[6], increase in ciliary length [7], and centrosomal ampli-
fication [8]. Though cAMP signalling is the most studied 
pathway, many other transduction mechanisms are modu-
lated by PCs [9–11]. Moreover, cyst growth triggers immune 
system response which determines interstitial inflammation 
and fibrosis, causing progressive renal function decline. 

Pharmacological therapies reducing cAMP production (i.e. 
tolvaptan and octreotide), along with supportive measures 
(i.e. blood pressure control, increased fluid intake, sodium 
chloride intake reduction and smoking cessation) are the 
mainstays of current management of the disease.

Deeper knowledge of the pathogenic pathways involved 
in ADPKD led to the development of several treatments 
which are currently under investigation (Figs. 1, 2).

Current therapies

Tolvaptan

Tolvaptan is a vasopressin-2-receptor antagonist reduc-
ing cAMP levels [12, 13] in collecting ducts, connecting 
tubules and thick ascending limbs of Henle [14], which are 
sites of cystogenesis. It was originally approved in Japan 
in March 2014 and in Canada in February 2015. On May 
27th, 2015, it received its first market authorization from 
the European Medicines Agency in order to slow cysts and 
renal insufficiency progression in ADPKD patients aged 
18–50 with Chronic Kidney Disease (CKD) stage 1–3, and 
rapid progression of the disease. In August 2018 its use was 
extended to individuals with stage 4 CKD. On April 24, 



Journal of Nephrology	

1 3

2018, tolvaptan was approved by the Food and Drug Admin-
istration as the first treatment in the United States for adult 
patients with ADPKD.

The Tolvaptan Efficacy and Safety in Management of 
Autosomal Dominant Polycystic Kidney Disease and Its 
Outcomes (TEMPO) 3:4 study showed a total kidney volume 
(TKV) reduction of 45% and an estimated Glomerular Filtra-
tion Rate (eGFR) decline of 26% in early (i.e. Cockcroft and 
Gault eGFR higher than 60 mL/min) but rapidly progressive 
ADPKD patients treated with tolvaptan vs placebo over 3 
years. The most important adverse effect was hepatotox-
icity, apparently dose-unrelated and completely resolving 
upon tolvaptan discontinuation [15]. Aquaretic symptoms 
(polyuria, pollakiuria, nocturia, thirst, polydipsia) resulted 
in treatment discontinuation in up to 10% of patients treated 
with tolvaptan, most of whom were young males with bet-
ter kidney function and higher urine osmolarity [16]. In the 
extension study, TEMPO 4:4, a significant eGFR differ-
ence between the two groups was maintained, especially in 

patients with more severe disease [17]. However, the “early 
treated” patients (i.e. patients who successfully completed 
TEMPO 3:4) showed a non-significant TKV change com-
pared to the “delayed treated” patients (i.e. patients who 
received placebo in TEMPO 3:4 and tolvaptan in the two-
year follow-up period of TEMPO 4:4). This result suggests 
that tolvaptan exerts its maximum effect in the first two 
years of treatment. In the Replicating Evidence of Preserved 
Renal Function: an Investigation of Tolvaptan Safety and 
Efficacy in ADPKD (REPRISE) trial, which also included 
more advanced CKD stages, tolvaptan slowed eGFR decline 
compared to placebo at 1-year follow-up, especially in CKD 
stage 2–3a, albeit with no significant benefits in patients 
older than 55 [18] (Table 1).

TKV has been accepted by the Food and Drug Admin-
istration and European Medicines Agency as a prognostic 
biomarker for patients at high-risk for progression [19] and 
its importance was confirmed by the Mayo Clinic which 
developed a validated TKV-based risk assessment tool to 

Fig. 1   Therapeutic targets studied in clinical trials. PC polycystin, 
AMPK adenosine monophosphate‐activated protein kinase, cAMP 
cyclic adenosine monophosphate, EGF epidermal growth factor, 
SAs somatostatin analogues, SSTR somatostatin receptors, V2R vaso-
pressin 2 receptor, V2R ant vasopressin 2 receptor antagonists, EGF 

epidermal growth factor, IGF insulin growth factor, VEGF vascular 
endothelial growth factor, TK inhibitors tyrosine kinase inhibitors, 
mTOR inhibitors mammalian target of rapamycin inhibitors. Inhibitor 
drugs are represented in red; activator drugs are represented in green.
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identify “high-risk” patients, using age and height-adjusted 
TKV. Moreover, with the approval in multiple countries 
of tolvaptan for the treatment of “high-risk” patients with 
ADPKD, TKV-based risk assessment takes on a crucial role 
in the clinical setting in order to identify patients who can 
get access to this therapy [20]. Magnetic resonance imag-
ing or computed tomography images by manual segmenta-
tion are currently considered the “gold standard” for TKV 
measurement; however, this method is burdensome and 
requires high radiologic expertise. On the other hand, new 
radiologic approaches are under investigation to streamline 
the determination of TKV, which can be derived through an 
ellipsoid formula with the measurement of only three axes 
for each kidney [21] or by an automatic localization model 
of ADPKD using Artificial Intelligence [22].

Somatostatin analogues

Somatostatin analogues, including octreotide, lanreotide and 
pasireotide lower cAMP levels through their interaction with 
G-protein coupled somatostatin receptors.

On August 3rd, 2018, long-acting release octreotide 
(octreotide-LAR) was approved in Italy alone for the treat-
ment of ADPKD adult patients with eGFR ranging from 15 
to 30 mL/min/1.73 m2 at high risk of progression towards 
ESRD.

The Long-Acting somatostatin on DIsease progression in 
Nephropathy due to autosomal dominant polycystic kidney 
disease (ALADIN 1) trial, conducted in patients with eGFR 
Modification of Diet in Renal Disease (MDRD) ≥ 40 mL/
min/1.73 m2, showed that the annual slope of TKV increase 
was significantly lower in the octreotide group compared to 
placebo. However, the difference in TKV increase at the end 

Fig. 2   Therapeutic targets studied in animals and cultured cells. 
PC polycystin, AMPK adenosine monophosphate‐activated protein 
kinase, cAMP cyclic adenosine monophosphate, EGF epidermal 
growth factor, PDE act phosphodiesterase activators, MAPK mito-
gen‐activated protein kinase, V2R vasopressin 2 receptor, V2R ant 
vasopressin 2 receptor antagonists, EGF epidermal growth factor, 

IGF insulin growth factor, VEGF vascular endothelial growth fac-
tor, TK inhibitors tyrosine kinase inhibitors, TNF antagonists tumor 
necrosis factor-alfa antagonists, CDK inh cyclin-dependent kinase 
inhibitors, HDAC inhibitors histone deacetylase inhibitors. Inhibitor 
drugs are represented in red; activator drugs are represented in green.
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of 3 years of follow up was not statistically significant. Renal 
function decline based on iohexol was not significantly dif-
ferent at 1 and 3 years of follow up either [23]. ALADIN 
2 recruited patients in later stages of the disease (eGFR 
between 15–40 mL/min/1.73 m2) and showed a significant 
TKV growth reduction at 1 and at 3 years of follow-up, 
while the change in eGFR was not significant. Neverthe-
less, it is noteworthy that 17.6% of patients in the treatment 
group reached doubling of serum creatinine or ESRD versus 
42.9% in the placebo group. The treatment has proven to be 
safe and well tolerated, except for some adverse gastrointes-
tinal effects (i.e. diarrhoea, abdominal pain, cholelithiasis, 
and cholecystitis), and it may have a nephroprotective effect 
on TKV and eGFR decline [24]. Moreover, octreotide is 
the only available drug that reduces total liver volume [25] 
and prevents left ventricular dysfunction [26]. ALADIN 2 
confirmed and extended the evidence from the ALADIN 1 
trial that octreotide-LAR may slow kidney volume growth 
in ADPKD patients with normal or moderately reduced kid-
ney function. Furthermore, it provides the novel information 
that a somatostatin analogue may slow the progression to 
ESRD in patients affected by ADPKD. This finding could 
have important implications for healthcare providers since 
the delay or even the prevention of ESRD, in addition to 
the improvement in the patient’s quality of life and physical 
function, also reduces the direct and indirect costs correlated 
to chronic renal replacement therapy.

However, randomized controlled trials (RCTs) studying 
the role of somatostatin analogues in ADPKD recruited 
smaller populations compared to tolvaptan. The most numer-
ically representative trial is the Developing Interventions 
for Polycystic Autosomal Kidney disease (DIPAK-1) study, 
which failed to demonstrate the ability of lanreotide to slow 
renal function worsening in stage 3 CKD patients affected 
by ADPKD [27]. The results of the Lanreotide In Polycys-
tic Kidney Disease Study (LIPS), conducted on ADPKD 
patients with stages 2–3 CKD who were followed-up for 
36 months after treatment with lanreotide, are awaiting 
publication (http://​www.​clini​caltr​ials.​gov: NCT02127437) 
(Table 1).

The current eligibility criteria for patients who may be 
prescribed Tolvaptan or Octreotide are described in Fig. 3.

Standard medical therapy

Hypertension is common and occurs in the early phase of 
ADPKD [28]; it relates to progressive kidney enlargement 
and it is a significant, independent risk factor for progres-
sion to ESRD. The cilia of tubular epithelial cells, the 
endothelial cells and the vascular smooth muscle cells highly 
express PKD1 and PKD2 genes, so decreased PC1 or PC2 
expression is associated with abnormal vascular structure 
and function. This happens through the reduction of nitric Ta
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oxide production, resulting in altered endothelial response 
to shear stress with the attenuation of vascular relaxation. 
Cyst expansion leads to intra-renal ischemia and activation 
of the renin–angiotensin–aldosterone system which causes 
hypertension, thus leading to ESRD. Therefore, inhibition 
of the renin–angiotensin–aldosterone system is possible with 
angiotensin-converting enzyme (ACE) inhibitors which are 
the first-line treatment for hypertension in these subjects. As 
suggested by the Halt Progression of Polycystic Kidney Dis-
ease (HALT-PKD) study, aggressive blood pressure control 
is safe and recommended and is associated with preservation 
of kidney function and a reduction in TKV over time [29]. 
A recent post hoc analysis of the HALT-PKD study showed 
that eGFR loss was significantly attenuated in patients with 
indicators of rapid progression (Mayo Classes 1D–E) [30]. 
A fluid intake of > 3–3.5 L/day is commonly recommended 
to decrease plasma osmolarity and reduce vasopressin secre-
tion which mediates cyst growth through the cAMP pathway 
[31, 32]. Nevertheless, the influence of fluid intake on eGFR 
loss or TKV increase has not yet been determined. PRE-
VENT-ADPKD is an ongoing RCT which aims to assess 
the efficacy and safety of water intake in preventing kidney 
failure and TKV increase in ADPKD. The study will recruit 
180 patients with eGFR ≥ 30 mL/min/1.73m2, randomized 
into two groups, both of which will be treated with standard 
therapy; patients in the control group will continue with their 
usual fluid intake, whereas patients in the intervention group 

will be prescribed enough water to maintain plasma osmo-
larity less than or equal to 270 mOsm/L for 36 months [33]. 
Limiting sodium chloride intake is generally recommended 
to patients suffering from CKD, and this was recently 
strengthened by a post hoc analysis of the HALT-PKD trial, 
in which urinary sodium excretion was significantly associ-
ated with kidney growth in ADPKD patients [34]. Smok-
ing increases cardiovascular risk in CKD patients and it is 
associated with more rapid ADPKD progression through the 
increase of vasopressin secretion, as recently confirmed in a 
PKD1 rodent model [35, 36]. The data available from human 
cohorts do not indicate any effect on eGFR or TKV asso-
ciated with caffeine consumption [37], therefore ADPKD 
patients can drink coffee but in limited amounts because it 
acts as a phosphodiesterase (PDE) inhibitor, which could 
lead to an increase of cAMP in the renal tubular epithelial 
cells [38].

Therapies in development

Targeting the cAMP pathway

Lixivaptan

Lixivaptan is a novel, selective V2 receptor antagonist. 
Its safety and efficacy will be studied in a 52-week RCT 
which will enrol 1200 patients ranging from 18 to 60 years 
of age, withCKD stages 1–3, randomized 2:1 to oral lix-
ivaptan twice a day or placebo for one year; the primary 
outcome will be eGFR assessment (http://​www.​clini​caltr​ial.​
gov: NCT04064346) (Table 1). Moreover, lixivaptan was 
predicted to have a markedly lower risk of hepatotoxicity 
compared to tolvaptan [39]. PCK rats treated with low-dose 
lixivaptan showed a 26% reduction in kidney weight/body 
weight ratio, a 54% reduction in kidney cystic score (a histo-
morphometric measure of cystic burden), a 23% reduction 
in kidney cAMP levels, and a 13% reduction in plasma cre-
atinine compared to controls. A significant reduction in liver 
cyst burden was also reported, probably due to V2 receptor 
expression on cholangiocytes [40].

PDE activators

cAMP homeostasis is determined by a balance between syn-
thesis, determined by adenylate cyclase, and degradation via 
PDEs [41]. Of note, a small allosteric activator of PDE4 
long isoforms was recently discovered and characterized, 
namely, the N-substituted-2-(3-aryl-1H-1,2,4-triazol-1-yl) 
acetamidechemotype of MR-L2 [42] (Table 3). It reduces 

ADPKD
DIAGNOSIS

RAPID PROGRESSION
ADPKD

eGFR ≥ 30
ml/min/1.73m2

15 to 29
ml/min/1.73m2

Age 18-55

>55 OCTREOTIDE

TOLVAPTAN

Fig. 3   Flow chart of eligibility criteria for Tolvaptan or Octreotide 
treatment

http://www.clinicaltrial.gov
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	 Journal of Nephrology

1 3

intracellular cAMP levels, restrains cAMP-mediated signal-
ling events, and profoundly inhibits the in vitro formation 
of kidney cysts, mimicking the stimulatory effect exerted 
by PKA phosphorylation on dimeric PDE4 long isoforms. 
These results suggest that direct pharmacological activa-
tion of PDE4 long forms may have a therapeutic function in 
ADPKD patients [43].

CFTR and potassium channel inhibitors

cAMP increase in ADPKD leads to the activation of CFTR 
channels on the apical membrane, and of potassium chan-
nels, such as Kir6.2 and Kca3.1, in the collecting ducts, 
resulting in the generation of a transepithelial negative elec-
trical potential. Pharmacological inhibitors of these chan-
nels, such as TRAM-34, can delay kidney failure progres-
sion in kidney cells derived from patients with ADPKD [44]. 
Ouabain, a Na+/K+-ATPase inhibitor, also blocks cAMP-
dependent fluid and anion secretion [45] (Table 3).

Targeting the EGF receptor pathway

Bosutinib

Src seems to be the key mediator of the activation and ampli-
fication of the Epidermal Growth Factor (EGF) pathway in 
Polycystic Kidney Disease (PKD).

Bosutinib (SKI-606) is an oral dual Src/Bcr-Abl tyros-
ine kinase inhibitor approved for the treatment of Phila-
delphia chromosome–positive chronic myeloid leukaemia 
in patients resistant/intolerant to imatinib. In a phase 2 
study bosutinib proved to reduce kidney growth rate in 
patients with ADPKD, eGFR ≥ 60 mL/min/1.73m2, and 
TKV ≥ 750 mL who were randomized 1:1:1 to bosutinib 
200 mg/day, bosutinib 400 mg/day, or placebo for ≤ 24 
months. However, eGFR decline, the secondary outcome, 
was not statistically significant at the end of 3 years of 
follow up. Furthermore, a large proportion of patients 
(200 mg/day, 45%; 400 mg/day, 84%; 400/200 mg/day, 
75%; placebo, 20%) in the treatment group dropped out 
because of adverse effects, such as diarrhoea and nausea 
[46] (Table 1).

In PKD mouse and rat models, bosutinib resulted in 
decreased proliferation, adhesion and migration, and moreo-
ver, the number of renal cysts and kidney size were reduced. 
Subsequent observations confirmed that Src activity is also 
increased in human PKD kidneys [47].

Tesevatinib

In 2017, a double-blind RCT was initiated to compare tese-
vatinib vs placebo in ADPKD individuals ranging from 18 
to 60 years of age, eGFR ≥ 25 mL/min/1.73 m2 according 
to MDRD4, cysts of at least 1 cm, and height-adjusted total 
kidney volume (htTKV) ≥ 500 mL for subjects 18–35 years 
of age, ≥ 750 mL for subjects 36–49 years of age, and ≥ 900 
mL for subjects 50–60 years of age (http://​www.​clini​caltr​
ial.​gov: NCT03203642). A non-randomized phase 1/2 trial 
completed the recruitment of 74 ADPKD patients with 
eGFR ≥ 35 mL/min/1.73 m2 and a htTKV ≥ 1000 mL in 
order to evaluate the safety, pharmacokinetics, maximum 
tolerated dose and eGFR (http://​www.​clini​caltr​ial.​gov: 
NCT01559363) (Table 1).

In mouse models of Autosomal Recessive Polycystic 
Kidney Disease, tesevatinib significantly inhibited multiple 
kinase cascades resulting in reduced phosphorylation of key 
mediators of cystogenesis such as EGFR, ErbB2, c-Src and 
KDR [48].

Anti‑vascular endothelial growth factor (VEGF) antibodies

ADPKD anomalies include vascular malformations with 
an extensive capillary network in the cyst wall, increased 
VEGF165 expression in cyst cells and increased VEGF 
receptor 2 (VEGFR2) expression in endothelial cells. A 
possible role of angiogenesis in the early progression of 
the disease was confirmed by a clinical study that showed 
a strong correlation between angiogenic growth factors and 
both renal and cardiac disease severity [49]. In animal mod-
els, inhibition of the mRNA expression of VEGFR1 and 
2 led to a significant decrease in tubular cell proliferation, 
cystogenesis, renal enlargement and renal function loss [50].

However, a different study reported that B20.4.1, an 
anti-VEGF-A antibody, increased cell proliferation and cyst 
growth in a rat model [51] (Tables 2, 3).

Targeting AMP‑activator protein kinase

Metformin

Metformin, which is widely used in type 2 diabetes and 
polycystic ovary syndrome, has been proposed as a novel 
therapy for early stages of ADPKD as it acts on the meta-
bolic sensor AMP-activated protein kinase (AMPK). AMPK 
is activated under conditions of metabolic and other cellular 
stress and it decreases cellular energy consumption. Further-
more, AMPK phosphorylates and inhibits CFTR, thus sup-
pressing epithelial fluid and electrolyte secretion. Similarly, 
AMPK phosphorylates tuberin protein, leading to indirect 

http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
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Table 2   Animal studies targeting calcium cell regulation, cell cycle, EGFr, MAPK, AMPK pathways, epigenetic DNA, interstitial inflammation, 
cell therapy

TRPV4 transient receptor potential vanilloid 4, CaSR calcium sensing receptor, CDK cyclin-dependent kinase, MCP-1/CCL2 monocyte chemoat-
tractant protein‐1/C–C, MSCs mesenchymal stem cells, TNF-α tumor necrosis factor-alfa

Agent Mechanism Trial Key inclusion criteria Outcome/results

Targeting calcium cell regulation
 4αPDD GSK1016790 TRPV4 channel activators Gradilone [82] (2010) PCK rats Reduction of renal cyst devel-

opment and fibrosis
 R568 CaSR selective modulator Gattone [84] (2009) Han:SPRD Cy/+rats, pcy 

mice
Cyst growth and fibrosis 

inhibition
 R568 CaSR selective modulator Chen [83] (2011) PCK rats and Pkd2−/WS25 

mice
No effect on cyst growth

 Triptolide calcium release induc-
tion from endoplasmic 
reticulum

Leuenroth [87, 88] (2007, 
2008)

PKD1−/− cells in mouse 
model

Cyst growth inhibition

Targeting cell cycle
 R-roscovitine S-CR8 CDK inhibitors Bukanov [89] (2012) PCK mice, PKD1 KO mice Renal and hepatic cystic 

index reduction
 Menadione Cdc25A inhibitor Masyuk [90] (2012) PCK rats and Pkd2ws25/− 

mice
Renal and hepatic cyst 

growth inhibition
Targeting EGFr pathway
 B20.4.1 anti-VEGF-A antibody Raina [51] (2011) Heterozygous (Cy/+) 

Han:SPRD rats
Increased PTEC proliferation 

and cystogenesis
Targeting MAPK pathway
 PLX5568 B-Raf kinase inhibitor Buchholz [93] (2011) Han: SPRD rats Cyst enlargement attenuation, 

no effect on TKV and GFR
 PD184352 MEK inhibitor Calvet [94] (2006) pcy mouse Cyst growth inhibition
 PD184352 MEK inhibitor Okumura [95] (2009) inv mutant mice Cystogenesis decrease and

kidney function improvement
 NVP-BEZ235 Dual mTOR/PI3K inhibitor Liu [96] (2018) Heterozygous (Cy/+) Han: 

SPRD rats, Pkd1 condi-
tional ko mouse

Reduced cell proliferation, 
cyst growth, interstitial 
fibrosis

Targeting AMPK pathway
 2-Deoxyglucose Glycolysis competitive 

inhibitor
Chiaravalli [69] (2016) Orthologous and PKD mice 

models
Disease progression slowing 

down
 2-Deoxyglucose Glycolysis competitive 

inhibitor
Riwanto [70] (2016) Orthologous mouse model Cystic disease progression

Targeting epigenetic DNA
 Valproic acid
 TrichostatinA
 Tubacin
 ACy-1215

Class I HDAC inhibitor
Pan-HDAC inhibitor
HDAC6 inhibitor
HDAC6 inhibitor

Cao [97] (2009)
Fan [98] (2012)
Cebotaru [99] (2016)
Yanda [100] (2017)

Pkd1 and Pkd2 knockout 
mice

Pkd2 knockout mice
Pkd1‐conditional mouse 

model
Pkd1 mice

Cyst growth inhibition
Cyst formation suppression
Cystogenesis prevention
Slow renal cyst growth

Targeting interstitial inflammation
 Bindarit MCP-1/CCL2 synthesis 

inhibitor
Zoja [101] (2015) PCK rats Interstitial inflammation and 

renal failure reduction
 Etanercept TNF-α inhibitor Li [102] (2008) Pkd2+/− mice Inhibit cyst formation
Cell therapy
 Cell therapy Allogenic MSCs tranplan-

tation
Franchi [104] (2015) PKD rat model Kidney function and dam-

aged vasculature improve-
ment
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inhibition of the mTOR pathway. Metformin slowed cys-
togenesis in two mouse models and in a zebrafish model of 
ADPKD [52, 53]. We recently reported the beneficial effect 
of metformin on ADPKD progression in the same family, 
confirming our previous results on the effect of metformin 
in delaying renal progression in ADPKD patients with mod-
erately impaired eGFR [54, 55]. In a phase 2 active but not 
recruiting RCT (TAME) on the safety and tolerability of 
metformin compared to placebo in early stages of ADPKD 
(eGFR > 50 mL/min/1.73 m2), 97 non-diabetic patients aged 
from 18 to 60 years will be enrolled and followed-up for 
26 months (http://​www.​clini​caltr​ial.​gov: NCT02656017). 
A second phase 2 recruiting RCT will enrol 50 ADPKD 

non-diabetic patients aged between 30 and 60 years of age 
and eGFR between 50 and 80 mL/min/1.73m2; the primary 
outcome is the change in TKV and eGFR (http://​www.​clini​
caltr​ial.​gov: NCT02903511). The Metformin vs Tolvaptan 
for Treatment of Autosomal Dominant Polycystic Kidney 
Disease (METROPOLIS) study, a phase 3 RCT, will enrol 
150 non-diabetic patients ranging from 18 to 50 years of age, 
with eGFR ≥ 45 mL/min/1.73 m2 and truncating mutations 
of the PKD1 gene, who will be randomized to metformin or 
tolvaptan and followed-up for 25 months in order to assess 
the variations in TKV and GFR (http://​www.​clini​caltr​ial.​
gov: NCT03764605) (Table 1).

Table 3   Culture cell studies targeting cAMP, AMPK, and MAPK pathways, epigenetic DNA, interstitial inflammation

PDE4 phosphodiesterase 4, MDCK Madin–Darby canine kidney cells, EGFr epidermal growth factor receptor, PTEC tubular epithelial cell, 
HDAC histone deacetylases, PKD polycystic kidney disease, HDAC histone deacetylases, COX-2 cyclooxygenase-2, VEGF vascular endothelial 
growth factor

Agent Mechanism Trial Key inclusion criteria Outcome/results

Targeting cAMP pathway
 MR-L2 PDE4 long forms activator Omar [42] (2019) MDCK cells Cyst growth inhibition
 TRAM-34 KCa3.1 channels inhibitor Albaqumi [24] (2008) MDCK and ADPKD cells Cyst formation inhibition
 Ouabain Na+, K+-ATPase inhibitor Nguyen [45] (2007) Polarized ADPKD cell monolay-

ers
cAMP‐dependent net fluid secre-

tion inhibition
Targeting EGFr pathway
 B20.4.1 anti-VEGF-A antibody Raina [51] (2011) in vitro Increased PTEC proliferation, 

cystogenesis, proteinuria severe 
renal failure, and glomerular 
damage

Targeting AMPK pathway
 Metformin AMP-activator protein kinase Takiar [52] (2011) MDCK cells Ex vivo and in vivo cystogenesis 

slowing
Targeting MAPK pathway
 Sorafenib B-Raf kinase inhibitor Yamaguchi [92] (2010) Human ADPKD cells ko PKD2 Cyst growth inhibition, liver 

cyst area and cell proliferation 
increase

 PLX5568 B-Raf kinase inhibitor Buchholz [93] (2011) MDCK cells
Human ADPKD cells

Cyst growth was significantly 
reduced

Cyst growth and cell proliferation 
inhibition, no effect on TKV 
and GFR

 NVP-BEZ235 Dual mTOR/PI3K inhibitor Liu [96] (2018) in vitro culture of primary cells Reduced cell proliferation, cyst 
growth, kidney weight, and 
improved BUN, SCr, urine 
albumin/creatinine ratio

Targeting epigenetic DNA
 Tubacin HDAC6 inhibitor Cebotaru [99] (2016) MDCK cells Cystogenesis prevention
 ACy-1215 Yanda [100] (2017) MDCK cells and PKD1‐null and 

heterozygous cells
HDAC6 activity reduction and 

cAMP levels downregulation
Targeting interstitial inflammation
 Celecoxib COX-2 inhibitor Xu [103] (2012) Cyst‐lining epithelial cells from 

patients with ADPKD
VEGFR‐2 and Raf‐1 expression 

inhibition, thereby, reduced 
inflammation and fibrosis

http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
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Statins

Statins are hydroxy-3-methylglutarylCoA (HMG-CoA) 
reductase inhibitors which also seem to have anti-cystic 
effects due to AMPK activation, though the mechanisms 
are yet to be elucidated [56]. They ameliorated cystic pheno-
types in ADPKD animal models as well as in clinical trials 
in paediatric patients with early-onset ADPKD [57–59]. This 
effect was confirmed in a paediatric double-blind phase 3 
RCT examining pravastatin versus placebo in 110 children 
[60]. However, a recent post hoc analysis of the HALT-PKD 
trial regarding statin use did not show any beneficial effect 
[61]. Thus, an ongoing RCT will assess the efficacy and 
benefits of pravastatin therapy in 150 adults with ADPKD 
(eGFR ≥ 60 mL/min/1.73m2, 25–60 years old) after 2 years 
of treatment by evaluating TKV through magnetic reso-
nance imaging and renal blood flow measured by kidney 
magnetic resonance angiography (http://​www.​clini​caltr​ial.​
gov: NCT03273413) (Table 1).

Thiazolidinediones (TZDs)

TZDs are Peroxisome Proliferator Activator Receptor 
gamma (PPARγ) agonists, used to treat metabolic syndrome 
and type 2 diabetes mellitus; they can also inhibit cell pro-
liferation via extracellular signal-regulated kinase (ERK) 
signalling, fibrosis, and inflammation through reduction of 
Transforming Growth Factor beta (TGF-β) levels [62, 63]. 
A combination of tolvaptan and pioglitazone showed better 
results than tolvaptan alone in an adult-onset PKD mouse 
model. Pioglitazone efficacy varies substantially between 
PKD models and species most likely because of several 
potential pharmacokinetic and pharmacodynamic differ-
ences [64]. Based on these results, a phase 2 clinical trial 
was designed to investigate low-dose pioglitazone safety 
and efficacy in slowing ADPKD progression (http://​www.​
clini​caltr​ial.​gov: NCT02697617) (Table 1). Maternal admin-
istration of high-dose pioglitazone ameliorated the cystic 
phenotype of Pkd1−/− mouse embryos and improved their 
survival [65]. The slowing effect of TZDs on PKD disease 
progression has also been shown in a PCK rat model [66]. 
Pioglitazone also reduced CFTR gene expression in in vitro 
models [67].

2‑deoxyglucose (2DG)

Defective glucose metabolism is assumed to play a role in 
cystogenesis; in fact, cyst epithelial cells avidly consume 
glucose and are highly dependent on its availability to sus-
tain their growth, being particularly sensitive to even small 
reductions in glucose levels. Glycolysis can be inhibited by 
2DG, which is transported into the cells but cannot undergo 

glycolysis, acting as a competitive inhibitor of the glycolytic 
pathway. Consistent with this hypothesis, cells with mutated 
pkd1 switched to anaerobic glycolysis for energy production 
(the “Warburg effect”) in a PKD mouse model [68]. Chronic 
administration of low-dose 2DG was able to prevent disease 
progression in two slowly progressive, orthologous disease 
models [69] (Table 2). Furthermore, 2DG slowed the pro-
gression of cystic disease in an orthologous mouse model 
of ADKPD [70].

Targeting metabolism and diet

mTOR inhibitors

Despite promising pre-clinical results, an everolimus study 
[71] on 433 relatively advanced patients as well as a siroli-
mus study [72] on 100 patients at an earlier stage showed 
no effects on TKV and eGFR (Table 1). A metanalysis of 
9 RCTs enrolling 784 ADPKD patients receiving rapamy-
cin, sirolimus, or everolimus showed that mTOR inhibitors 
did not significantly influence renal progression, but were 
associated with a higher risk of complications [73]. Stud-
ies in ADPKD rodent models showed that mTOR inhibitors 
induced a significant and long-lasting decrease in kidney 
volume, and improved kidney function.

Caloric restriction diet

A RCT will be conducted on 28 overweight/obese ADPKD 
adults (eGFR ≥ 30 mL/min/1.73m2 according to Chronic 
Kidney Disease Epidemiology Collaboration equation; 
18–65 years) to determine the feasibility of a 1-year behav-
ioural weight loss intervention program based on either 
daily caloric restriction or intermittent fasting with a similar 
(~ 34%) targeted weekly energy deficit. Key secondary goals 
are safety and tolerability of intermittent fasting in ADPKD 
versus daily caloric restriction, and changes in TKV assessed 
by magnetic resonance imaging (http://​www.​clini​caltr​ial.​
gov: NCT03342742). Recently, a pilot study on the admin-
istration of a ketogenic diet in patients affected by Auto-
somal Dominant Polycystic Kidney Disease (GREASE1) 
evaluated the feasibility of a ketogenic diet in ADPKD on 
three patients for three months: there was good compliance, 
glycaemia decreased significantly, while the most impor-
tant side effect was an increase in cholesterol levels [74] 
(Table 1). In ADPKD rodent models, mild-to-moderate food 
restriction slowed cyst growth and maintained renal function 
via mechanisms including AMPK activation, suppression of 
mTOR/S6 kinase signalling and insulin-like growth factor-1 
levels [75].

http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
http://www.clinicaltrial.gov
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Targeting the KEAP1‑Nrf2 pathway

Bardoxolone

Under basal conditions, nuclear factor erythroid 2-related 
factor 2 (Nrf2) is sequestered in the cytoplasm via bind-
ing to Kelch-like ECH-associated protein 1 (Keap1). Dur-
ing exposure to oxidants, the interaction between Keap1 
and Nrf2 is disrupted, so Nrf2 translocates to the nucleus 
and binds antioxidant response element, increasing anti-
oxidant enzyme transcription. Moreover, Nrf2 is involved 
in the cross-talk with the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB) [76]. Bardoxolone 
methyl is a Nrf2 activator that increased eGFR in patients 
with type 2 diabetes and stage 3 CKD in the randomized, 
placebo-controlled 52-Week Bardoxolone Methyl Treat-
ment: Renal Function in CKD/Type 2 Diabetes (BEAM 
trial) [77]. The Bardoxolone Methyl Evaluation in Patients 
with Chronic Kidney Disease and Type 2 Diabetes Melli-
tus: the Occurrence of Renal Events (Beacon trial), a phase 
3 RCT designed to determine whether bardoxolone would 
reduce ESRD and cardiovascular events in patients with 
CKD and type 2 diabetes, was previously discontinued 
because of disproportionate heart failure hospitalizations 
among those assigned to the bardoxolone group [78]. The 
Falcon study is a phase 3 RCT which will study the safety, 
tolerability, and efficacy of bardoxolone methyl in ADPKD 
patients with eGFR 30–90 mL/min/1.73 m2 (18–55 years) 
or 30–44 mL/min/1.73 m2 (56–70 years), enrolling approxi-
mately 300 patients randomized 1:1 to either bardoxolone 
methyl or placebo;primary and secondary outcomes will 
be eGFR change from baseline to 52 and 104 weeks, 
respectively (http://​www.​clini​caltr​ial.​gov: NCT03918447) 
(Table 1). In an orthologous ADPKD mouse model, genetic 
deletion of Nrf2 increased reactive oxygen species genera-
tion and promoted cyst growth, whereas pharmacological 
induction of Nrf2 reduced reactive oxygen species produc-
tion and slowed cystogenesis and disease progression [79].

Substrate reduction therapy against sphingolipids: 
glucosylceramide synthase inhibitors

Venglustat

Mutations in PCs lead to target of rapamycin kinase com-
plex 1 and 2 activation, causing de novo ceramide syn-
thesis; in addition, PC dysregulation leads to target of 
rapamycin kinase complex 2 activation, which not only 
promotes de novo ceramide synthesis but also increases 
glucosylceramide production. Glycosphingolipid accumu-
lation in PKD disrupts signalling activity and promotes 
loss of differentiation and proliferation due to increased 
cell cycle progression resulting in cyst formation and 

growth [80]. Venglustat is a potent oral inhibitor of glu-
cosylceramide synthase, the enzyme that synthesizes 
sphingolipids, including glucosylceramide. Since October 
2018, a Medical Research Study Designed to Determine if 
Venglustat Can be a Future Treatment for ADPKD Patients 
(STAGED-PKD) trial is recruiting rapidly progressive 
ADPKD patients with eGFR 45–90 mL/min/1.73 m2 who 
are 18–50 years of age in order to assess effectiveness and 
safety of venglustat in 2 years of follow up. In the first 
stage, a subset of the trial population will be analysed for 
the treatment effect on htTKV. In the second stage, all 
subjects will be analysed for the treatment effect on eGFR 
(http://​www.​clini​caltr​ial.​gov: NCT03523728) (Table 1). 
Animal models showed a significant increase in gluco-
sylceramide and ganglioside GM3 plasma levels in PKD, 
and treatment with glucosylceramide synthase inhibitors 
reduced cystic disease progression [81].

Targeting intracellular calcium regulation

TRPV4 channel activators

Transient Receptor Potential Vanilloid 4 (TRPV4) is a cal-
cium entry channel acting as an osmosensor, being activated 
by extracellular hypo-osmolarity and inhibited by extracel-
lular hyperosmolarity. TRPV4 is over-expressed in the PCK 
rat and PKD human liver. Its pharmacologic activation by 
4αPDD and GSK1016790 increases intracellular calcium, 
resulting in in vitro cholangiocyte proliferation inhibition 
and in vivo cyst growth reduction by a mechanism involving 
the Akt and B-Raf/Erk1/2 signalling pathway [82] (Table 2).

Calcimimetics

Calcium-sensing receptor (CaSR) activation is associated 
with cAMP signalling reduction and intracellular calcium 
increase. Therefore, type 2 calcimimetic drugs, acting as 
positive allosteric CaSR modulators, were suggested for 
ADPKD treatment. Calcimimetic R568 was tested in mouse 
models and significantly reduced kidney weight [83] and 
renal cyst growth [84] (Table 2). Recently, increased intra-
cellular calcium and reduced intracellular cAMP and mTOR 
activity was observed in human conditionally immortalized 
Proximal Tubular Epithelial cells carrying the PKD1 muta-
tion after selective CaSR activation [85].

Triptolide

Triptolide is a natural product isolated from the traditional Chi-
nese medicine Tripterygium wilfordii (also known as “Thunder 

http://www.clinicaltrial.gov
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God Vine” or Lei Gong Teng), used for inflammatory and 
autoimmune disorders and, due to its concentration-depend-
ent anti-proliferative and pro-apoptotic properties, as a potent 
chemotherapeutic agent through the inhibition of NF-kB and 
NF-AT-mediated transcription [86]. In Pkd1−/− embryonic 
mice, triptolide induced cellular calcium release from the endo-
plasmic reticulum through a PC2-dependent pathway, arrested 
Pkd1−/− cell growth and reduced cystic burden [87]. In another 
mouse model, it significantly improved cyst growth and renal 
function at postnatal day 8; however, it presented side effects 
such as infertility and immunosuppression [88] (Table 2).

Targeting cell cycle regulation

CDK inhibitors

There is a direct link between primary cilium, centrosomes 
and cell cycle dysregulation in PKD. PC2 can bind Id2, a 
protein regulating cell proliferation and differentiation, and 
it prevents its translocation into the nucleus blocking cell 
cycle progression. Instead, PC1 directly arrests cell cycle by 
inhibiting cyclin-dependent kinase (CDK)2 activity through 
up-regulation of p21. In an orthologous model of ADPKD 
with a conditionally inactivated pkd1 gene, two different 
CDK inhibitors (R-roscovitine and S-CR8) reduced cystic 
kidney disease progression and functional decline as well as 
liver cystogenesis [89] (Table 2).

Menadione

Cell division cycle 25 A (Cdc25A) phosphatase over-expression 
is another factor affecting PKD cell-cycle deregulation. Cdc25A 
inhibition by menadione (vitamin K3) in animal models blocked 
cell cycle progression and proliferation, thus reducing liver and 
kidney weight and cyst growth [90] (Table 2).

Targeting MAPK pathway

Raf kinase inhibitors

Cell proliferation in cystic epithelial cells is induced by 
MEK/ERK pathway activation due to the differences in cal-
cium concentration between cystic and normal kidney cells. 
Raf kinases are part of the MAPK cascade activating the 
MAPK–ERK kinase MEK; MEK then activates ERK, and 
phosphorylated ERK translocates to the nucleus where it 
regulates various transcription factors [91].

Sorafenib (Bay 43-9006) is a multikinase inhibitor used 
for the treatment of advanced renal cell and hepatocellular 
carcinomas. At nanomolar concentrations it acts as a B-Raf 
inhibitor, suppressing MEK/ERK signalling, cell prolifera-
tion, and in vitro cyst growth of human ADPKD cells stimu-
lated by cAMP and/or EGF [92]. PLX5568, a novel selective 

small molecule inhibitor of Raf kinases, attenuated cyst 
enlargement in vitro and in a rat model of ADPKD without 
improving kidney function, presumably due to increased 
renal fibrosis [93] (Tables 2, 3).

MEK inhibitors

The MAPK/ERK inhibitor PD184352, was shown to effec-
tively block cyst growth and kidney enlargement and to 
preserve renal function when given to pcy mice affected 
by nephronophthisis, an adolescent form of recessive PKD 
[94]. PD184352 also successfully decreased ERK levels, 
inhibited renal cyst enlargement and decreased expression 
of cell-cycle regulators in Inv mice, a model for human 
nephronophthisis type 2 characterized by multiple renal 
cysts and situs inversus [95] (Table 2).

Dual mTOR/PI3K inhibitor

mTOR inhibitors up-regulate pro-proliferative phosphati-
dylinositol 3-kinase (PI3K)-Akt and PI3K-ERK signalling 
in murine PKD models. Dual mTOR/PI3K inhibition with 
NVP-BEZ235 interrupts these pro-proliferative signals and 
normalizes kidney morphology and function by blocking 
proliferation and fibrosis [96] (Tables 2, 3).

Targeting epigenetic DNA

HDAC inhibitors

Histone deacetylase 6 (HDAC6) expression and activ-
ity is increased in Pkd1-mutant renal epithelial cells and 
could play a role in cyst formation. Valproic acid is a class 
I HDAC inhibitor which decreased kidney cyst growth in 
Pkd2-deficient mice; trichostatin A, a pan-HDAC inhibitor, 
suppressed cyst formation by regulating cell proliferation in 
Pkd2 knockout mice [97]; tubacin and ACy-1215 are spe-
cific HDAC6 inhibitors which prevented in vitro cyst forma-
tion in PKD models [98–100] (Tables 2, 3).

Targeting interstitial inflammation

Interstitial inflammation is a cause of cyst progression, and 
PKD genes can regulate the expression of pro-inflammatory 
chemo-attractants such as monocyte chemoattractant pro-
tein-1 (MCP-1); in fact, macrophages are the principal com-
ponent of inflammatory infiltrate in both human and animal 
models of PKD. Bindarit is an inhibitor of MCP-1/CCL2 
synthesis, and in PCK rats, it ameliorated PKD evolution 
[101]. Other therapeutic approaches targeting inflamma-
tory cytokines are etanercept, a tumor necrosis factor-alpha 
(TNF-α) inhibitor [102], and celecoxib, a highly selective 
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cyclooxygenase 2 (COX-2) inhibitor, which prevented 
human cyst-lining epithelial cell growth [103] (Tables 2, 3).

Cell therapy

A single intravenous infusion of allogenic mesenchymal 
stem cells in a PKD rat model had a beneficial effect on 
systolic hypertension, fibrosis, cortical and parenchymal vas-
culature density, but no effect on cyst size and number [104] 
(Table 2). These favourable effects occur through different 
mechanisms, including p38 MAPK inhibition, NF-κB path-
way and pro-inflammatory cytokine interference. Moreover, 
mesenchymal stem cells inhibit the renin–angiotensin–aldos-
terone system in a more stable manner than ACE inhibitors 
through the reduction of renin, ACE, and angiotensin II type 
1 receptor expression.

Conclusions

Treatment of ADPKD still represents a challenge for both 
clinicians and researchers as concerns have been raised 
regarding the tolerability, toxicity, and real impact the 
available drugs (i.e. tolvaptan and octreotide-LAR) have 
on renal disease progression. Many preclinical models have 
provided new therapeutic targets, but they do not perfectly 
represent the human disease and may not thoroughly pre-
dict the clinical efficacy of tested molecules. Consequently, 
clinical research plays a pivotal role in really understanding 
the potential therapeutic effects of new drugs. Fortunately, 
encouraging results are expected from ongoing clinical tri-
als testing novel promising molecules, such as lixivaptan 
(PA-ADPKD-301), bardoxolone (FALCON), metformin 
(METROPOLIS, TAME), pravastatin (NCT03273413) and 
venglustat (STAGED-PKD); while results of the RCTs on 
lanreotide (LIPS), pioglitazone (PIOPKD) and tesevatinib 
(NCT01559363) are awaiting publication. In the nearfuture, 
the findings of these studies will definitely help clinicians in 
the challenging efforts to modify the dramatic natural history 
of ADPKD.
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