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Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early
reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that
mitochondria play central roles in cancer development and progression, from energy
production to synthesis of macromolecules, from redox modulation to regulation of cell
death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with
protein synthesis dysregulation at the hearth of cellular transformation. Accumulating
evidence in multiple organisms shows that the metabolic functions of mitochondria are
tightly connected to protein synthesis, being assembly and activity of respiratory
complexes highly dependent on de novo synthesis of their components. In turn, protein
synthesis within the organelle is tightly connected with the cytosolic process. This implies
an entire network of interactions and fine-tuned regulations that build up a completely
under-estimated level of complexity. We are now only preliminarily beginning to
reconstitute such regulatory level in human cells, and to perceive its role in diseases.
Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and
energetic stress that could be potentially exploited for therapeutic purposes. In this review,
we summarize the available literature on the coordinated regulation of mitochondrial and
cytosolic mRNA translation, and their effects on the integrity of the mitochondrial
proteome and functions. Finally, we highlight the potential held by this topic for future
research directions and for the development of innovative therapeutic approaches.

Keywords: mitochondrial translation, protein synthesis, inter-organelle coordinated translation regulation,
mitochondrial protein import, mitochondrial protein quality control (mtPQC)
1 INTRODUCTION

Mitochondria are cellular organelles with a double-membrane structure that perform several crucial
functions for the homeostasis of eukaryotic cells. Their main role is to generate chemical energy
through the oxidative phosphorylation (OXPHOS) system, which is composed of five multi-subunit
respiratory complexes associated to the inner mitochondrial membrane (IMM). Additionally, they
work as biosynthetic hubs for the synthesis of amino acids, nucleotides, lipid heme and iron-sulphur
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clusters (1, 2). Moreover, mitochondria control the redox
homeostasis and regulate cell death pathways (3, 4).

Mammalian mitochondria originate from the endocytosis of a
bacterial ancestor by a pre-eukaryotic cell (5). Although
mitochondria still maintain their own genome, during evolution
most of the original endosymbiont genes were lost or transferred to
the nuclear genome of the host cell (6). The mitochondrial DNA
(mtDNA) is found in multiple copies in the mitochondrial matrix
and, in humans, consist of approximately 16,000 base pairs
encoding 13 polypeptides, all of which are key subunits of the
OXPHOS complexes, 2 mitochondrial ribosomal RNA (mt-rRNA)
and 22 transfer RNA (mt-tRNAs), that allow the translation of the
13 mitochondrial protein-coding RNAs. Indeed, translation of these
mitochondrial messenger RNAs (mt-mRNAs) requires a dedicated
translation apparatus, which is located in the mitochondrial matrix
and includes mt-rRNAs, mt-tRNAs, nuclear-encoded translation
factors and organelle-specific ribosomes. However, most
mitochondria-resident proteins, including many subunits of the
OXPHOS complexes, are encoded by the nuclear genome,
synthesized by cytoplasmic ribosomes and then imported into the
mitochondria (7). Therefore, accurate assembly of respiratory
complexes requires a tight coordination between cytosolic and
mitochondrial translation and efficient protein quality control
(PQC) mechanisms to monitor protein import and turnover (8, 9).

Despite early theories on the metabolic characteristics of cancer
cells postulated a loss of mitochondrial functions as a key feature of
cellular transformation, it is now evident that this feature is often
crucial for tumor development and progression (10). Moreover,
several studies have shown that different cancer cells predominantly
use mitochondrial respiration to satisfy their bioenergetic and
biosynthetic demands, especially when moving towards a
metastatic or chemoresistant phenotype (11–13). Accordingly,
upregulation of the mitochondrial translational machinery has
been reported to support the energy needs of cancer cells favoring
tumor progression. Therapeutic approaches that interfere with
mitochondrial translation, directly, by targeting mitoribosomes, or
indirectly, by altering mitochondrial PQC systems, have recently
attract great attention as anticancer strategies.

Here, we review the main mechanisms affecting mitochondrial
protein homeostasis. First, we provide an overview of mitochondrial
translation, and we focus on how it is strictly interconnected to the
cytosolic apparatus. Then, we describe the importance of
mitochondrial protein quality control systems in coordinating
these translational programs, and present the case of the molecular
chaperone TRAP1, likely first example of a protein with dual
localization that participate in the regulation of proteostasis on
both sides of the mitochondrial membranes. Finally, we provide
some hints about dysfunctions of mitochondrial protein homeostasis
and cancer development, highlighting the most relevant therapeutic
approaches proposed so far in the field.
2 REGULATION OF MITOCHONDRIAL
GENE EXPRESSION

Mitochondria have their own genome and translational
machinery that allow synthesis and assembly of OXPHOS
Frontiers in Oncology | www.frontiersin.org 2
complexes, which are in turn responsible for the generation of
most of the cellular energy. The mtDNA is compacted with an
array of proteins in a structure called “nucleoid” that resembles
the bacterial one. The protein components of the nucleoid are
transcription and replication factors such as the mitochondrial
transcription factor A (TFAM), mitochondrial single-strand
binding protein (mtSSB), POLG, and mtRNA polymerase
(POLRMT) (14). Other factors seem not to bind directly
mtDNA, but are rather peripheral nucleoid proteins involved
in scaffolding, helping translation and interaction with cellular
signaling components (14). Among these ADAT3 (ATPase AAA
domain-containing protein 3), PHB1 (Prohibitin 1), PHB2 and
M19/MNF1 (mitochondrial nucleoid factor 1). The core
nucleoid component POLRMT, an RNA polymerase
structurally similar to the T3 and T7 bacteriophages one, in
association with TFAM, is instead responsible for the
transcription process. Notably, it has been recently described
the first-in-class specific inhibitor of mitochondrial transcription
that target the human POLRMT. This compound (IMT1) has
shown relevant anti-tumor effects in mouse xenograft, with no
significant toxicity in normal tissues (15). These findings
represent a promising novel weapon in the fight for cancer
treatment, but also a useful tool to study the role of mtDNA
expression in physiology and disease.

However, to the current knowledge, mitochondrial gene
expression is predominantly regulated at post-transcriptional
level through the modulation of mRNA maturation and stability
(16). Transcription of the mitochondrial genome by the RNA
polymerase generates long polycistronic precursors containing
mRNA and rRNA coding sequences flanked by tRNAs.
Mitochondrial RNAs are processed by two endonucleases, RNase
P and RNase Z (ELAC2), which cleave the 5’- and 3’-ends
respectively, excising the tRNAs and releasing the rRNAs and
mRNAs, a process known as tRNA punctuation (17).
Subsequently, all mt-mRNAs, except ND6, are polyadenylated at
3’ termini by the mitochondrial polyA polymerase (mtPAP) (18).
The mt-mRNA polyadenylation creates a functional stop codon, as
7 of 13 transcripts have incomplete stop codons in their coding
sequence (19). Moreover, polyadenylation regulates the half-life of
specific subset of mRNAs, increasing the stability of some
transcripts and decreasing that of others by targeting them for
degradation (20). Proteins that regulate mt-mRNA maturation and
degradation determine which subsets of mitochondrial transcripts
have to be translated, by affecting the availability of functional
transcripts that can be engaged by the mitoribosomes.

LRPPRC (leucine-rich pentatricopeptide repeat containing), and
Fas-activated serine/threonine kinase (FASTK) are protein families
playing a major role in mt-mRNA stability and translation and
whose dysregulation is related to diverse pathological processes,
including cancer. LRPPRC, in complex with SLIRP (SRA stem
loop-interacting RNA-binding protein), behaves as a mRNA
chaperone, by preventing the formation of secondary structures,
and affects the stability of mitochondrial transcriptome (21, 22). In
particular, LRPPRC-SLIRP complex promotes mt-mRNA stability,
by preventing their degradation, and polyadenylation, by simulating
mtPAP activity (22). Moreover, LRPPRC-SLIRP complex has also
been shown to stabilize a pool of non-translating transcripts that are
November 2021 | Volume 11 | Article 797265

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Criscuolo et al. Targeting Mitochondrial Protein Expression
not engaged with mitoribosomes (23). It is clear that LRPPRC-
SLIRP complex is necessary for coordinated mitochondrial
translation as its loss causes dysregulations, increasing translation
of some transcripts and inhibiting translation of others (23, 24).
Interestingly, human LRPPRC–SLIRP complex preferentially binds
the human mt-Cyb RNA, whereas the mouse complex
preferentially recognized the mouse corresponding transcript (21),
and therefore that preferred locations of LRPPRC-binding sites
within mitochondrial RNAs differ from mouse to humans. This
testifies the importance of these proteins in dictating the local RNA
structures that are critical in the lifecycles of mitochondrial RNAs.
Several studies have shown that LRPPRC is upregulated in different
cancer tissues and cell lines, including prostate, gastric, lung and
colon cancer (25). Moreover, LRPPRC has been proposed as
prognostic biomarker for gastric cancer. Indeed, a higher
LRPPRC expression was found in cancer tissues compared to
paired noncancerous regions and in patients with a poor survival
rate (26).

FASTK family proteins are particularly expressed in the
mitochondrial matrix, where they post-transcriptionally
regulate the expression of different mitochondrial transcripts
(27). For instance, FASTK interacts with the ND6 mRNA to
prevent its degradation, by ensuring correct biogenesis of the
complex I, whereas FASTKD1 negatively regulates complex I
activity by destabilizing the ND3 mRNA (28, 29). Recently, a
pan-cancer analysis showed that FASTK genes are frequently
mutated in different cancer types highlighting the potential role
of FASTK family members as therapeutic targets. In particular,
gene amplification was found for FASTK and FASTKD3 in
ovarian and lung cancers, respectively, while increased mRNA
levels of all FASTK members were found in esophageal, stomach,
liver and lung cancers (30).
3 OVERVIEW OF THE MITOCHONDRIAL
mRNA TRANSLATION PROCESS

A detailed discussion of the complex mechanisms involved in
mitochondrial translation is beyond the scope of this article. For
a comprehensive view of this topic, we recommend further
reading [e.g (31)]. Hereafter, we provide a brief overview of the
mitochondrial translation process, as well as of synthesis and
import of the nuclear-encoded, mitochondria-destined proteins,
with the aim to highlight how recent advances on this topic could
open new scenarios on the mechanisms involved in metabolic
remodeling in diseases, providing solid bases for future
therapeutic approaches.

Translation of mt-mRNAs occurs on specialized ribosome
resident in the mitochondrial matrix: the mitoribosomes. The
mammalian 55S mitoribosomes are macromolecular complexes
composed of two subunits, the large 39S subunit (LSU) and the
small 28S subunit (SSU). The 39S subunit contains 16S mt-rRNA
and 52 mitoribosomal proteins (MRPs), whereas the 28S subunits is
composed of 12S mt-rRNA and 30 MRPs (32). Mitochondrial
rRNAs are exclusively encoded by mtDNA, whereas MRPs are all
encoded by the nuclear genome, translated in the cytosol and then
Frontiers in Oncology | www.frontiersin.org 3
imported into the mitochondrial matrix to be assembled
coordinately with mt-rRNAs to form functional ribosomes.
Mitoribosomes assembly takes place in close proximity to mtDNA,
probably in mitochondrial RNA granules or mitochondriolus,
membraneless structures containing MRPs, mitoribosome
assembly factors and rRNA modifying enzymes required for post-
transcriptional processing of mt-RNAs (33, 34).

Although mitoribosomes are evolutionarily derived from
bacterial ribosomes, they have strongly diverged from them in
terms of composition, function, and structure, by acquiring
mitochondrial-specific proteins, and exhibiting differences in
the number and total amount of the rRNAs. These structural
changes have been accompanied by a strong functional
specialization, considering that mammalian mitoribosomes
exclusively synthesize membrane proteins, represented by
components of the respiratory complexes, which functionally
explains the acquired feature of mitochondrial ribosomes to be
permanently attached to the IMM (32). The 13 proteins encoded
by the mtDNA are indeed all subunits of respiratory chain
complexes and, as such, are highly hydrophobic polypeptides
predominantly associated with the IMM. To avoid unproductive
protein aggregations, the mitochondrial translation products are
cotranslationally inserted into the IMM (35). Accordingly, the
mitoribosomes extensively interact with the IMM to facilitate
the membrane insertion of nascent polypeptides. In particular,
the LSU subunit MRPL45 anchors the mitoribosome to the IMM
aligning the polypeptide exit tunnel with the insertase OXA1L,
that mediates the co-translational insertion of newly synthetized
proteins into the IMM (36, 37) (Figure 1).

Mitochondrial translation begins when a mt-mRNA is loaded
onto the SSU, then a start codon is recognized by the initiator
tRNA carrying a formylated methionine (fMet-tRNAMet) (38).
Before mRNA loading, two mitochondrial initiation factors
(mIFs), mIF2 and mIF3, assemble on the SSU. Initially, mtIF3
binds SSU to prevent the premature reassociation with LSU and
avoid binding of fMet-tRNAMet to the P-site in the absence of
mRNA and mtIF2 (39). Subsequently, mtIF2:GTP binds the SSU
and promotes the binding of fMet-tRNAMet to the P site while
avoiding the association of tRNAs to the ribosomal A site.
Following correct codon-anticodon interaction between fMet-
tRNAMet and the start codon, LSU joins the SSU forming the
monosome, mtIF2 hydrolizes GTP to GDP and the initiation
factors are released from the ribosome resulting in the mature
ribosome ready to enter the elongation phase (38).

Currently, how mitochondrial transcripts are loaded onto the
mitoribosomes and how the start codon is selected is unclear, as
human mt-mRNAs lack the Shine–Dalgarno or the Kozak
sequences, the most common cis-regulatory elements located
at the 5’ UTRs of the prokaryotic and eukaryotic mRNAs
respectively, that help to recruit mRNA to the ribosome and to
recognize the start codon during translation initiation (40).

During elongation, selected amino acids are sequentially
added to the nascent polypeptide. Aminoacyl-tRNAs are
delivered to the A-site of mitoribosomes by the mitochondrial
elongation factor EFTu (mtEFTu) bound to GTP. Upon correct
codon-anticodon interaction, GTP is hydrolyzed to GDP and
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mtEFTu : GDP is released from the complex. The recycling of
mtEFTu needs the elongation factor Ts (mtEFTs), that exchange
GDP for GTP on mtEFTu, allowing it to bind and deliver the
next aminoacylated tRNA (41). After the release of mtEF-Tu, the
peptidyl transferase center in the LSU catalyzes the formation of
the peptide bond between the nascent peptide chain of peptidyl-
tRNA in the P site and the new amino acids carried by the
aminoacyl-tRNA present in the A-site leaving a deacetylated
tRNA in the P-site and one residue longer peptidyl-tRNA in the
A-site (42). Subsequently, the mitochondrial elongating factor
G1 (mtEFG1) catalyzes the GTP hydrolysis-dependent
translocation of the mitoribosome, moving the deacylated
tRNA from the P to the E-site and the peptidyl-tRNA from the
A-site to the P-site, hence a new codon is exposed in the A-site
and the cycle can start again (43).

The elongation cycle is reiterated until the polypeptide chain is
completed and a stop codon reaches the ribosomal A-site. The
stop codon association is recognized by the mitochondrial release
factor 1a (mtRF1a) that mediates the hydrolysis of the ester bond
between the last tRNA and the completed polypeptide, resulting in
the release of the newly formed protein (44). Subsequently, two
mitochondrial ribosome recycling factors, mtRRF1 and mtRRF2
(also known as mtEFG2), promote the dissociation of the
mitoribosomal subunits and the release of mt-mRNA and
deacylated mt-tRNA (45).

Aberrant expression of mitoribosomal proteins has been
associated with several types of cancer in recent years (46). In
breast cancer, analysis of genome-wide transcriptional profiling
data and subsequent validation by immunohistochemistry,
highlighted a significant enrichment in mitoribosomal proteins
among the genes upregulated in the tumor tissue compared to
the adjacent stroma. This suggests a tissue organization
comprising highly oxidative epithelial breast cancer cells rich
in mitochondria (and mitoribosomes), and a surrounding
glycolytic stroma (47). On the other hand, lactate-mediated
Frontiers in Oncology | www.frontiersin.org 4
suppression of MRPL13 expression in hepatoma cells seems to
promote hepatoma cell invasiveness and hepatocellular
carcinoma development (48), highlighting the importance of
the metabolic context in the contribution of mitochondrial
protein synthesis to pathogenesis of human cancers.
4 ORGANELLE-LOCALIZED
TRANSLATION

In line with the endosymbiotic theory, mitochondria originate
from a respiring proteobacterium, whose genome has been
transferred during evolution into the nucleus of the eukaryotic
host cell. Consequently, the vast majority of mitochondria-resident
proteins are encoded by the nuclear genome, synthesized by the
cytosolic translational machinery and imported into the
mitochondria. The nuclear-encoded mitochondrial proteins are
synthesized by cytosolic ribosomes as precursors bearing specific
targeting signals that direct them to different mitochondrial sub-
compartments, such as the N-terminal presequence required for a
localization to the IMM or the matrix (49).

According to the classical view, once their synthesis is
complete, preproteins are delivered on the mitochondrial surface
in an unfolded state by molecular chaperones and then are
imported via translocases of the outer mitochondrial membrane
(OMM) and IMM (TOM/TIM complexes) (50, 51). However,
experimental evidence suggest that mitochondria-destined
proteins may be synthesized by cytosolic ribosomes localized
near the OMM and co-translationally imported into the
mitochondria (52, 53).

Already back in the 1970s, electron microscopy analysis
found that cytoplasmic ribosomes can be localized near the
OMM (54). Moreover, many microarray and RNA-seq
analyses of biochemically fractionated mitochondria highlight
FIGURE 1 | The mtDNA is organized in structures called “nucleoids”, in which both core and peripheral proteins contribute to organization, stability and communication
of the mtDNA with additional factors. Among the nucleoid components, POLRMT plays a key role, being responsible for the transcription process. Subsequently, the
original polycistronic transcript is subject to extensive maturation, yielding mitochondrial tRNAs, rRNAs and mRNAs. The latter encode 13 polypeptides, all members of
the respiratory chain, can be stabilized and regulated by RNA-binding proteins such as LRPPRC, SLIRP FASTKD1, and finally translated by inner membrane-tethered
mitoribosomes, to be cotranslationally assembled into the OXPHOS complexes. I, II, III, IV: respiratory complexes I-IV.
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the presence of nuclear-encoded mRNAs that are co-purified
with mitochondria, and fluorescent microscopy analyses confirm
these observations (55–58). Importantly, it has been shown that
active translation is a key part of the localization process, as
disassembly of polysomes by EDTA or puromycin treatment
reduces the association between mRNAs and mitochondria (55,
59). In addition, ribosome profiling analyses performed on
fractions of ribosomes isolated in the proximity of
mitochondria confirmed that many IMM protein coding
transcripts are co-translationally targeted to mitochondria (58).
Delivery of mRNAs to the mitochondrial surface requires cis-
acting signals, present in the transcripts or in the encoded
polypeptide, and proteins that recognize these signals. Both 3′
UTR and coding regions, primarily through mitochondrial
targeting sequences (MTSs), contribute to mitochondrial
localization of transcripts (60, 61). In yeast, two classes of
mRNAs that are translated near the mitochondria have been
identified: class I mRNAs, bearing a binding motif in the 3’UTR
recognized by the RNA-binding protein Puf3, and class II
mRNAs, that are localized to mitochondria in a Puf3-
independent manner (57). Both mRNA groups, independently
transported on the mitochondrial surface, participate in the
assembly of respiratory complexes: class I mRNAs encode
assembly factors, whereas class II mRNAs encode structural
proteins, indicating that differential regulation of mRNA
localization near mitochondria is a potential mechanism to
post-transcriptionally coordinate the construction of OXPHOS
complexes (57). The TOM complex also participates to mRNA
localization in both yeast and mammalian cells through
interaction of protein receptor Tom20 with the MTS of the
nascent polypeptide as it is translated (59, 62) instead, the outer-
membrane protein OM14 is a mitochondrial receptor for the
ribosome nascent-chain-associated complex (NAC), which
interacts with both cytosolic translating ribosomes and nascent
polypeptides as they emerged from exit tunnel (63). In
Drosophila ovaries, the AKAP protein MDI, in complex with
the translation stimulator La-related protein (Larp), promotes
site-specific translation on the OMM of mRNAs encoding for
mtDNA replication factors, mitochondrial ribosomal proteins,
and electron-transport chain subunits, which is crucial for
mitochondrial biogenesis during oogenesis (64).

These findings support the idea of co-translational import of
nuclear-encoded proteins into mitochondria (65). Thus, the
localization of transcripts in proximity of mitochondria and
the activity of RNA-binding proteins as trans-acting factors
provide a tool for a post-transcriptional regulation of gene
expression at both a temporal and spatial level, to control
protein import and respiratory complex assembly (56, 57, 66).

Finally, interactions between mitochondria and mRNA/
nascent-peptide complexes can be altered by the kinetics of
protein synthesis, which leads to enhanced protein expression
for these factors during respiratory conditions (67). In this
context, the length of translation time plays an important role
in mRNA localization to the mitochondria, and it has been
shown that increased translation time due to a translation
elongation stall caused by polyproline sequences is one way
Frontiers in Oncology | www.frontiersin.org 5
exploited by yeast cell to extend the “competent state” of a
translating mRNA to be recruited to the mitochondrion;
moreover other mechanisms that increase translation duration
such as increased ORF length, the presence of rare codons within
the transcript, and mRNA structures could likely play a similar
role in mRNA localization (67).
5 IMPORT OF NUCLEAR-ENCODED
PROTEINS INTO THE MITOCHONDRIA:
THE ASSEMBLY OF RESPIRATORY
COMPLEXES

As stated above, mitochondrial proteome is composed mostly of
nuclear-encoded proteins that need to be imported into the
mitochondria. Two transport mechanisms have been described,
the post-translational and the co-translational translocation. Post-
translational protein import implies that unfolded polypeptides,
synthesized by cytosolic ribosomes, are guided to receptors of the
TOM complex (Tom20, Tom22 and Tom70) by chaperones of the
Hsp70, Hsp40, and Hsp90 families (50). Precursors containing
the MTS are recognized by protein receptor Tom20, whereas
Tom70 recognizes internal signals of hydrophobic polypeptides
(68). Alternatively, ribosomes translating mitochondrial proteins
can localize in the proximity of mitochondria through the action
of RNA-binding proteins, such as Puf3 or NAC complex
assembled on nascent polypeptides, controlling the co-
translational translocation of proteins into mitochondria (63). In
both cases, once transported across the OMM, mitochondrial
precursors interact with the TIM23 complex, which transports
preproteins into the IMM or matrix, aided by presequence
translocase-associated motor (PAM) (69, 70).

TIM23 complex is emerging as a relevant factor for respiratory
complex biogenesis, not only by regulating the import of
presequence-carrying subunits, but also by promoting the
incorporation of these subunits into the complexes. Indeed,
TIM21, a subunit of TIM23 complex, is associated with complex
I and complex IV assembly intermediates, where it transports the
nuclear-encoded subunits for integration with the subunits
encoded by the mitochondria (71). Moreover, TIM21 couples
the TIM23 translocase to the cytochrome bc1-cytochrome c
oxidase supercomplexes of the respiratory chain via a direct
interaction with UQCR6, a subunit of complex III, supporting
the import of presequence proteins under membrane potential
limiting conditions, which makes it crucial for the import of
protein when the membrane potential is reduced (72). Of note,
it has been recently shown that integrity of complex III is crucial
for the biogenesis and maturation of complex I and IV (73).
Interestingly, in plants the TIM23 isoforms were found to
associate with complex I (NADH dehydrogenase), too (74).

As proof of the intimate connection between respiratory chain
functions and protein import, the succinate dehydrogenase
(complex II) subunit Sdh3, which constitutes, along with Sdh4, a
membrane integral module required for the recruitment of the
catalytic subunits Sdh1 and Sdh2 to the IMM, is a moonlighting
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protein that participate, in partnership with Tim18, to the
formation of TIM22 [reviewed in (75)]. Of note, Tim28 is also a
close homolog of Shd4.

Once imported into the matrix via TIM23 complex, the
precursor proteins must undergo the cleavage of their N-
terminal presequences by the mitochondrial processing
peptidase (MPP), which is crucial for the following folding and
for the functionality of their catalytic activity. MPP consists of
two homologous subunits, Mas1 and Mas2, that in turn are
highly homologous to UQCRC1 and UQCRC2 core subunit of
the respiratory complex III. Amazingly, it has been found in
plants that Mas1 and Mas2 replace the core proteins and the
MPP-activity is exclusively integrated into the complex (76).

It is noteworthy that these processes impact directly on the
assembly and activity of respiratory complexes. In cancer
biology, the contribution of mitochondrial metabolism to
disease development and progression has long been
underrated. This is due to the original hypothesis that cancer is
a result of mitochondrial insufficiency, that was at the basis of
Otto Warburg’s formulation of the “aerobic glycolysis” model.
Although the Warburg effect remains central to our
understanding of cancer cell metabolic remodeling, we now
know that mitochondria play fundamental roles in several
neoplasms such as sarcomas, cervical cancer, and melanomas
(77), or, alternatively, in specific growth stages of the same tumor
(78). Moreover, OXPHOS has been proven important to sustain
survival and proliferation of chemoresistant cells (79). For these
reasons, although our understanding of these phenomena in
cancer cells is still at the early stages, it is reasonable to
hypothesize that cancer cells must be particularly sensitive to
uncoupling of mitochondrial and cytosolic translation, and
to disruption of all the quality control networks highly
connected to the electron transport chain functionality.
6 MITOCHONDRIAL PROTEIN
QUALITY CONTROL

The coordinated expression and assembly of respiratory chain
subunits, encoded by nuclear and mitochondrial genomes,
require different PQC systems involving molecular chaperones
and proteases that ensure the efficient import of nuclear encoded
proteins, the correct folding of both nuclear and mitochondrial
encoded proteins and the degradation of misfolded proteins or
unassembled subunits (80).

Mitochondrial PQC occurs at the cytosolic side of the OMM to
survey the import of nuclear-encoded proteins, in the
intermembrane space and in the matrix to control their state and
turnover. In this way, PQC occurs early on nascent polypeptides,
which can be efficiently folded, modified and targeted to cellular
membranes to avoid mis-localization, or rapidly ubiquitinated and
degraded to prevent the accumulation of protein aggregates (81, 82).

The relevance of this phenomenon is testified by the recent
discovery of a novel pathway of mitochondria-mediated cell
death named mitochondrial Precursor Over-accumulation
Stress (mPOS), that is characterized by aberrant accumulation
Frontiers in Oncology | www.frontiersin.org 6
of mitochondrial precursors in the cytosol (83). This condition is
induced not only by mutations of components of the protein
import machinery, but also by malfunction of the inner
membrane. In keeping with these data, there is also evidence
that cytosolic proteins are stabilized and mitochondrial protein
import is reduced by condition of mitochondrial dysfunction
(84–86). In this view, the positive effects evidenced by inhibition
of mTOR on progression of mitochondrial diseases (87) could be
interpreted as a result of decreases protein synthesis.

A second layer of PQC is exerted within the two sides of
mitochondrial inner membrane by two ATP-dependent
proteolytic complexes: the m-AAA complex, which functions
at the matrix side of the membrane; and the i-AAA complex,
whose role resides in the intermembrane space. The first
comprises two isoenzymatic forms, the homo-oligomeric
AFG3L2 subunits, implicated in the processing of Cox1 and
MT-ATP6 respiratory chain subunits, and the hetero-oligomeric
AFG3L2 and SPG7 subunits, involved in the degradation of the
EMRE subunit of the mitochondrial calcium uniporter complex
(88). The i-AAA complex plays a fundamental role in
mitochondrial dynamics. Its subunit YMEL1, together with
OMA1, was shown to regulate the processing of OPA1, thus
affecting the process of mitochondrial fusion. Moreover, non-
assembled Cox4, NDUFB6 and ND1 respiratory chain subunits,
and the TIM23 subunit Tim17A, were all shown to be
proteolitically processed by YMEL1 (89, 90).

Given the central role played by PQC in shaping mitochondrial
functions following stressful conditions, it is not surprising that
mitochondrial proteases could be relevant to the pathophysiology
of some cancers. Accordingly, a recent study demonstrated how
YMEL1 can rewire mitochondrial proteome to sustain the growth of
pancreatic ductal adenocarcinoma (PDAC). PDAC is a solid tumor
able to reprogram glutamine metabolism to overcome hypoxic and
nutrient-deprived environment through the stabilization of HIF1a.
Together with HIF1a stabilization, analysis of PDAC patient biopsies
revealed that depletion of YMEL1 substrates represent a further
mechanism encountered to optimize mitochondria metabolism
rewiring and tumor progression. Indeed, depletion of YMEL1 was
able to reduce both the growth of cultured PDAC cells as well as
tumor formation in vivo. Conversely, the same effect was not
observed for hepatocellular carcinoma, with HepG2 and Huh7 cell
lines showing no differences in spheroids formation following
YMEL1 silencing. These data suggest that the proteolytic rewiring
by YMEL1 could strongly depend on both the metabolic needs of
each tumor and the tumor microenvironment (91).

PQC is carried out in the mitochondrial matrix by molecular
chaperones systems and proteases of the AAA+ (ATPase
associated with diverse cellular activities) family that maintain
the correct protein folding and remove the unfolded or damaged
proteins and unassembled OXPHOS subunits (92, 93).
The AAA+ proteases of the mitochondrial matrix include
CLPXP and LON. CLPXP is a complex constituted by two
components, the serine protease ClpP and the chaperone ClpX,
that recognizes and delivers the protein substrates to ClpP for
degradation (94). Mitochondrial LON protease plays a central
role in the PQC in the mitochondrial matrix by removing
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unfolded and oxidized proteins and promoting the folding of
imported proteins through interaction with the chaperone
mtHSP70 (95, 96).

In addition to the degradation of unfolded proteins in the
matrix, CLPX and LON regulate mitochondrial protein synthesis,
and thus the biogenesis of respiratory complexes (97, 98). The
ClpXP complex regulates mitoribosome assembly through
degradation of ERAL1, a putative 12S rRNA chaperone essential
for SSU assembly, but whose removal is necessary to form a mature
mitoribosome and for translation initiation (97, 99). Loss of ClpP or
loss of ClpXP activity affects mitoribosome assembly and reduces
mitochondrial translation, leading to respiratory chain dysfunction
(97). LON influences mitochondrial gene expression by regulating
the degradation of mitochondrial transcription factor A (TFAM),
essential for mtDNA transcription initiation,MRPP3A, the RNase P
subunit responsible for mtRNA processing, and FASTKD2, a factor
involved in the mitoribosome biogenesis (98, 100–102). Depletion
of LON in human cells reduces the levels of mtDNA, impairs
mature mitoribosomes assembly and thus abolishes mitochondrial
protein synthesis (100, 101).

As expected, both LON and ClpP proteases levels correlate
with tumor development (103). Indeed, the RNA levels of these
proteases are up-regulated in several cancers, particularly in
prostate cancer (104). Indeed, LON and ClpP synergistically
cooperate to promote cell growth and survival of prostate cancer
cells, with patients showing a worst survival outcome when the
levels of both proteases are concomitantly high. This is in
agreement with a significantly marked reduction in prostate
cancer cell growth and increased sensitivity to metabolic stress
inducers following silencing of the two proteases (104). The
mechanism behind the tumorigenic role of LON and ClpP
involves the PQC exerted on the SHMT2 enzyme, whose
inhibition leads to a significant reduction in cell growth with a
more pronounced effect when the proteases are depleted (104).

Perturbations of mitochondrial proteostasis leads to the
activation of the mitochondrial unfolded protein response
(mtUPR), a retrograde signal direct to nucleus aimed at
maintaining the mitochondrial proteome integrity (105). Primarly,
mtUPR attempts to relieve stress by inducing the expression of
chaperones and proteases that increase mitochondrial protein
folding capacity (106). In addition, in order to decrease the
mitochondrial folding load, mtUPR reduces protein import and
decreases mitochondrial translation by impairing mt-RNA
processing and inducing the degradation of mt-mRNAs and
MRPs (90, 100). The activation of mtUPR is a compensatory
response that can be use by cancer cells as a cytoprotective
strategy supporting adaptation to unfavorable milieus (107).
However, prolonged activation of this stress response pathway can
result in cell death. Therefore, targeting factors that control the
protein folding environment within mitochondria has been explored
as anticancer strategy. In this context, the molecular chaperone
TRAP1 (Tumor Necrosis Factor Receptor-Associated Protein-1), the
mitochondrial paralog of the HSP90 family, is recognized as a
relevant factor in the control of mitochondrial homeostasis (108).
TRAP1 is a gene of monophyletic origin only present in Animalia
and some Protista, mostly similar to a eukaryotic HtpG (a E. coli heat
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shock protein), with the addition of a N-terminal transit peptide
sequence for the targeting to mitochondria, likely evolved at the base
of the TRAP1 lineage. TRAP1 has therefore arisen from the ancestral
eukaryotes, and was not derived from an endosymbiont of bacterial
origin (109). TRAP1 is indeed the onlymitochondrial member of the
HSP90 family, with high homology with cytosolic HSP90 though,
holding anATPase domain and anHSP90-domain involved in client
protein binding that share an overall 26% identity and 45% similarity
with cytosolic HSP90 (110). TRAP1 protects the mitochondria
integrity under oxidative stress by preventing the permeability
transition pore opening, through binding with cyclophilin D, and
acting as downstream effector of PINK1 (111, 112). Relevant for this
protective function is also a regulation of mitochondrial metabolism
through both direct and indirect interaction with the respiratory
chain (113), with relevant effects on cancer progression and drug
resistance, especially in ovarian cancer (114–116). Moreover, it has
been shown that genetic silencing or pharmacological inhibition of
TRAP1 in human cancer cells induces the hallmarks of mtUPR
signaling, including accumulation of unfolded matrix proteins and
upregulation of multiple chaperones and stress response
transcription factors CHOP and C/EBPb (117). In addition to its
role in the regulation of protein folding within the mitochondria,
TRAP1 contributes to maintain the mitochondrial proteostasis, also
acting in the cytosol. Indeed, TRAP1 is localized to the outer face of
endoplasmic reticulum, where it interacts with both the proteasome
and the ribosomes to regulate co-translational degradation of
mitochondria-destined proteins such as F1ATPase beta subunit
and a mitochondrial isoform of Sorcin (118, 119).
7 COORDINATION OF MITOCHONDRIAL
AND CYTOSOLIC TRANSLATION

All mitochondrial-encoded proteins participate in the formation of
respiratory complexes together with nuclear encoding ones. Due to
their dual genetic origin, the biogenesis of OXPHOS complexes
requires the coordinated regulation of the mitochondrial and
cytoplasmic translational machineries. The OXPHOS system
subunits synthesized by mitochondrial translational machinery
are: ND1-6 and ND4L for complex I (NADH dehydrogenase);
cytochrome b for complex III (cytochrome c reductase); COX1-3 for
complex IV (cytochrome c oxidase); ATP6 and ATP8 for complex
V (ATP synthase). Hence, all the respiratory chain complexes but
complex II have a dual genetic origin.

Studies performed in yeast demonstrate that expression of dual-
origin OXPHOS complexes is induced upon adaptation to
respiratory growth through a rapid and synchronous translation
regulation across compartments, whereas OXPHOS mRNAs are
not coordinately induced. Indeed, while nuclear transcripts are
rapidly induced in response to a nutrient shift, the mitochondrial
ones are induced more slowly, most likely reflecting the absence of
mitochondrial transcription factor responsive to environmental
changes (120). Synchronized translation could therefore serve to
maximize the efficiency of OXPHOS complex assembly, especially
in a mutable metabolic context, but also to limit nonproductive or
harmful off-target interactions.
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Of note, how the cytoplasmic and mitochondrial translation
are synchronized in human cells is currently unknown.
Conversely, studies in the yeast Saccharomyces cerevisiae
extensively described feedback loops that coordinate
mitochondrial translation with the availability of nuclear-
encoded subunits to optimize the assembly of respiratory chain
complexes. In particular, mitochondrial gene expression is
regulated by several nuclear-encoded translational activators
located into the IMM and in contact with the mitoribosomes
(121). Translational activators tune the translation rate of
specific mt-mRNAs to the import of nuclear encoded
OXPHOS subunits to allow mitochondria to synthesize only
those subunits that can be assembled into complexes, and thus
avoiding the accumulation of unassembled subunits (121).

The best understood regulatory feedback of mitochondrial
translation is the one involved in the synthesis of COX1 during
the assembly of complex IV. The translational activator Mss51
binds Cox1 mRNA to start its translation, and interacts with the
newly synthesized COX1 polypeptide in a pre-complex
temporary assembled with the assembly factors Coa1, Coa3,
Cox14 and Shy1 (122–125). In this complex, Mss51 is unable
to stimulate the translation of the Cox1 transcript until the
COX1 protein associates with additional subunits, imported into
the mitochondria during the complex assembly, releasing Mss51,
which can initiate a new round of Cox1 synthesis (121).

As for mammalian mitochondria, the only translation activator
identified is TACO1 (translational activator of cytochrome oxidase
I), which is necessary for the efficient translation of COX1 (126).
However, a regulatory feedback exerted by cytosolic translation
products on mitochondrial translation has been identified in
human cells as a mechanism for the complex IV assembly (127).
During translation of the Cox1 mRNA, two inner membrane
proteins, C12ORF62 (COX14) and MITRAC12 (COA3) interact
with the nascent polypeptide, inducing translation elongation
arrest (127). Stalled mitoribosomes resume Cox1 mRNA
translation only when COX4, the first nuclear-encoded subunit
incorporated into the complex, is imported (127). Therefore,
human mitoribosomes display a translational plasticity to
coordinate their protein synthesis rate with the influx of cytosolic
OXPHOS subunits and the assembly of respiratory complexes. It
will be interesting to investigate whether the translational plasticity
regulates the assembly of others human OXPHOS complexes with
dual genetic origin.

Remarkable for the aim of this issue, several works pursuing
the inhibition of mitochondrial protein synthesis as a therapeutic
strategy against different tumors have shown that it leads to a
decoupling of cytosolic and mitochondrial translation and
consequent reduction in cell proliferation and fitness (128–130),
suggesting that cancer cells could be particularly sensitive to
translation uncoupling. In this view, particularly relevant is the
function of the lncRNA SAMMSON, aberrantly expressed in a
large fraction of melanomas and hepatocellular carcinomas (131),
that has been found to concertedly stimulate rRNA biogenesis and
protein synthesis in both cytosol and mitochondria of tumor cells
(132). As a result, SAMMSON confers a growth advantage to
immortalized cells irrespective of their tissue of origin, and is able
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to transform immortalized cells of melanocytic origin, allowing
tumor growth in nude mice. Of note, knockdown of SAMMSON
decreases melanoma viability by impairing mitochondrial
translation and inducing an mPOS-like response (133), and
induces apoptosis even before any effect of its depletion on
ribosome biogenesis and cytosolic protein synthesis could be
observed (132), supporting the importance of the coordination
between both mechanisms in tumor cells.

An additional “study case” in the context of human tumors is
the mitochondrial chaperone TRAP1, that is involved in the control
of respiration and mitochondrial PQC, but also in the regulation of
mitochondrial translation. By using two complementary
approaches, it has been found that one of the functions most
heavily affected by inhibition of mitochondrial HSP90 activity is
mitochondrial translation, with many ribosomal proteins found
aggregated and misfolded following treatment with non-cytotoxic
concentrations of the Hsp90-inhibitor Gamitrinib (134). In support
of this, an immunoprecipitation mass spectrometry experiment has
shown that the mitochondrial translation elongation factor mtEf-
Tu and several components of the mitochondrial protein import
complexes TOM/TIM are, among others, TRAP1 interactors (135).
Accordingly, TOM40 was also found in an independent proteomic
experiment in search of TRAP1 interactors in HeLa cells (136).
These pieces of evidence preliminary suggest that a single
chaperone with predominant mitochondrial localization but with
described functions associated to protein synthesis and co-
translational PQC in the cytosolic compartment could be
involved in the regulated synthesis of mitochondrial proteins on
both sides of the mitochondrial membranes.

The coordination of processes that control the homeostasis of
mitochondrial proteome, from cytosolic translation in proximity
of mitochondria to PQC, protein import and mitochondrial
translation, are schematically represented in Figure 2.
8 MITOCHONDRIAL TRANSLATION-
TARGETED THERAPY IN
HUMAN CANCERS

Although glycolysis has long been considered the major metabolic
pathway for ATP production in cancer cells, even under aerobic
conditions, several studies have now shown that some types of
cancer cells choose OXPHOS for their metabolic demands (137–
139). Of note, the same TRAP1 protein with roles in mitochondrial
PQC within/outside mitochondria, is also considered a bona fide
OXPHOS regulator, through the direct binding to SDH and an
activity control exerted on complex IV, which require the
modulation of c-Src phosphorylation (113). Indeed, TRAP1
appears to be upregulated in predominantly glycolytic tumors,
while it is downregulated in highly respiratory ones (13, 140). This
suggests the existence of gene expression programs in which genes
are clustered for the activation of metabolic plans to integrate
energetic and biosynthetic demands with nutrient and oxygen
availability. In this context, high mitochondrial translation may
be required to support the bioenergetic needs of cancer cells.
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Additionally, emerging evidence suggests that the mitochondrial
ribosomal proteins, beside their role in mitoribosomes assembly,
also exhibit moonlight functions in the regulation of cell cycle
progression and apoptosis signaling (141). Therefore, it is not
surprising that altered expression of mitochondrial translational
machinery components has been identified in different tumor types
(46, 47, 142).

Inhibition of mitochondrial functions has been explored as
therapeutic strategy for cancer treatment. Owing to their
prokaryotic origin, mitoribosomes are susceptible to the
inhibitory effect of some antibiotics commonly used to treat
bacterial infections (143, 144). In addition, due to the tight
coupling between translation across compartments, PQC
mechanisms and assembly of respiratory complexes, as well as
mechanism of protein import and mitochondrial protein
homeostasis can be also promisingly targeted for therapeutic
purposes in all the systems in which mitochondrial function is
key for cell survival and/or proliferation.

The main compounds developed for their capacity to target at
different levels homeostasis of the mitochondrial proteome are
discussed below, and listed in Table 1.

8.1 Targeting Mitochondrial Translation
Machinery
8.1.1 Tetracycline Analogues
Tetracyclines are broad spectrum antibiotics discovered in the
late 1940s as natural products of Streptomyces aureofaciens strain
Frontiers in Oncology | www.frontiersin.org 9
and currently used to treat a wide variety of bacterial infections
(163). The bacteriostatic activity of tetracyclines depends on their
capacity to inhibit the protein synthesis by preventing the
interaction of aminoacyl-tRNAs with the A-site of the
ribosome and thus the peptide elongation (164). Besides being
antimicrobial agents, tetracycline analogues, such as doxycycline,
COL-3 and tigecycline, have shown anti-tumor effects in several
human cancers in both pre-clinical and clinical studies (129,
145, 165).

The anticancer effects of doxycycline and COL-3,
semisynthetic and chemically modified tetracycline,
respectively, were mainly related to their inhibitory effects on
the expression and activation of matrix metalloproteases (166,
167). In fact, doxycycline and COL-3 exert antiangiogenic and
antimetastatic activity in different cancer cell lines including
leukemias, osteosarcoma, breast, colorectal and prostate cancer
(166, 168–172).

Recently, it has been show that doxycyline and COL-3
antiproliferative and pro-apoptotic effects are related to the
inhibition of mitochondrial protein synthesis with a decreased
OXPHOS, resulting in a significant slowdown of proliferation
rate (145, 173). Moreover, the reduction of IMM potential
induced by tetracyclines yields oxidative stress, bringing the
cancer cells closer to the apoptotic threshold (173).

Tigecycline, a third generation tetracycline, has been identified
by a chemical screening as an effective drug in reducing the viability
of leukemia cell lines (129). Anti-leukemic activity of tigecycline is
FIGURE 2 | The nuclear-encoded mitochondrial proteins are synthesized by cytosolic ribosomes (ribo) that can be localized at the OMM, allowing co-translational import
of nascent proteins into the organelle via the TOM/TIM complexes. Translating ribosomes can act as a platform for early PQC by ribosome-associated chaperones,
including TRAP1, that, under stress conditions, prevents aberrant aggregation of proteins, directing them to co-translational ubiquitin-mediated proteasomal degradation.
The imported proteins taking part to respiratory complexes are then assembled in supercomplexes along with the 13 components that are synthesized within the organelle
by the mitochondrial ribosomes (mt-ribo). The co-translational insertion of these subunits into the IMM is mediated by OXA1, which is crucial for the assembly of functional
respiratory complexes. The same molecular chaperone assisting PQC of mitochondrial proteins, TRAP1, is contemporary a regulator of respiration, through a direct
binding to complex II, and an indirect regulation on complex IV, through the stabilization of the inactive form of c-Src, which is known to stimulate complex IV activity.
Inhibition of TRAP1 leads to a mtUPR and related stress response. I, II, III, IV: respiratory complexes I-IV.
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due to the inhibition of mitochondrial translation which
significantly reduces the OXPHOS capacity of cancer cells (129).
Tigecyclin inhibition is selective for mitochondrial translation as it
reduces the expression levels of Cox-1 and Cox-2, subunits of
respiratory complex IV translated by mitoribosomes, without
changing the expression of COX-4 that is translated by cytosolic
ribosomes (129, 152). As an evidence that tigecycline targets
mitoribosomes, knockdown of the mitochondrial elongation
factor EF-Tu mimics the effects of tigecycline (129, 153).
Leukemia cells are particularly sensitive to tigecycline, being them
heavily reliant on OXPHOS (174). Accordingly, experimental
evidence in different human cancer cell lines support the idea that
tigecycline exerts pro-apoptotic effects are more common in systems
with high mitochondrial biogenesis and upregulated oxidative
metabolism (130, 147–149, 151–153). Finally, tigecycline has been
shown to have a synergistic effect with several chemotherapeutic
drugs such as cisplatin (149, 152), paclitaxel (153), venetoclax (150),
doxorubicin, vincristine (151), BRAF and MEK inhibitors (175).

8.1.2 Actinonin
Actinonin is a peptidomimetic antibiotic naturally produced by
actinomyces that arrests bacterial growth by inhibiting the
peptide deformylase also identified in human cells (155, 176).
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Human mitochondrial peptide deformylase (HsPDF) is a
metalloprotease that catalyzes the co-translational removal of
the formyl group from N-terminal methionine of newly
synthesized proteins (155). Expression of HsPDF was found
significantly increased in breast, colon, and lung cancer tissues,
suggesting that this enzyme may act as an oncogene to promote
cancer cell proliferation (177). Inhibition of HsPDF by
actinonin-based antibiotics reduces mitochondrial translation
and OXPHOS complex assembly and inhibits the proliferation
of several human cancer cell lines (129, 155, 178). The
antiproliferative effects of actinonin has also been attributed to
the activation of a mitoribosome quality control pathway that
precedes the loss of mitochondrial respiration, although the
molecular mechanisms are yet to be elucidated (154, 179).
According to this interpretation, actinonin blocks the
mitoribosomal polypeptyde exit tunnel, probably by trapping
HsPDF on the LSU, leading to the accumulation of
polypeptydyl-tRNAs in the P-site, which causes mitoribosome
stall (179). Stalled mitoribosomes trigger a retrograde signal to
the nucleus, that causes cell proliferation arrest (179). Sustained
retrograde signal mediated by actinonin induces a mitochondrial
decay pathway with degradation of mt-rRNAs, mt-mRNAs and
mitoribosomes, which impairs the respiratory chain function (179).
TABLE 1 | List of mitochondrial proteostasis targeting agents used as anticancer drugs in preclinical and clinical studies.

Drug Mechanism of action Tumor type Type of study Clinical Trial References

Doxycycline Inhibitor of mitochondrial translation NSCLC, PC, CRC
MBC
NHLs

In vitro
In vivo
In vivo

NCT01847976
NCT02086591

(145)

COL-3 Inhibitor of mitochondrial translation NSCLC, PC, CRC
CNS
KS

In vitro
In vivo
In vivo

NCT00004147
NCT00020683

(145, 146)

Tigecycline Inhibitor of mitochondrial translation DLBCLs
NSCLC
OC
AML
CML
ALL
HCC
RCC

In vitro
In vitro
In vitro/in vivo +/- cisplatin
In vitro/in vivo
In vitro/in vivo +/venetoclax
In vivo
In vivo
In vitro/in vivo +/- doxorubicin or
vincristine
In vitro/in vivo +/- cisplatin
In vitro/in vivo +/- paclitaxel

NCT01332786
NCT02883036

(129, 147–
153)

Actinonin Inhibitor of mitochondrial peptide deformylase BL
BC, PC, LC, OC, BL,

In vitro
In vitro/in vivo

(154, 155)

MitoBloCK-
6

Erv1/ALR inhibitor AML
HCC

In vitro
In vitro

(156, 157)

ONC201 ClpP activator BC, EC
PC
ASC
EC
BC, EC

In vitro
In vitro +/- radiation
In vivo
In vivo
In vivo

NCT02250781
NCT03485729
NCT03394027

(158–160)

CDDO-Me LONP1 inhibitor PC, CRC, OC, NSCLC,
BC
ASC

In vitro
In vivo

NCT00508807 (161)

Gamitrinib Inhibitor of mitochondrial HSP90 and TRAP1 ATPase
activity

BC, LC, PC
ASC

In vitro
In vivo

NCT04827810 (162)
November 202
1 | Volume 11 |
ALL, Acute lymphoblastic leukemia; AML, Acute myeloid leukemia; ASC, advanced solid cancers; BC, Breast cancer; BL, Burkitt’s lymphoma; CNS, central nervous system tumors; CRC,
Colorectal cancer; DLBCLs, Diffuse large B-cell lymphomas; EC, endometrial cancer; GB, glioblastoma; HCC, Hepatocellular carcinoma; KS, Kasposi’s sarcoma; LC, lung cancer; MBC,
Metastatic breast cancer; NHLs, Non Hodgkin Lymphomas; NSCLC, Nonsmall cell lung cancer; OC, Ovarian cancer; PAD, Pancreatic adenocarcinoma; PC, Prostate cancer; RCC, Renal
cell carcinoma.
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This mechanism of action may explain the anticancer effect of
mitochondrial translation inhibitors even in cancer cells that do not
rely on the OXPHOS for their energy demand.

8.2 Targeting Mitochondrial Protein Import
Carla Koehler’s research group has identified and characterized
small molecules, including MitoBloCK-6 (MB-6) and
MitobloCK-10 (MB-10), which interfere with mitochondrial
protein import process in both yeast and mammalian cells.
These two compounds attenuate precursor translocation by
targeting different components of the import machineries: MB-
10 binds Tim44, a component of the PAM complex, impairing
the protein import into the matrix via TIM23 complex. On the
other hand, MB-6 inhibits the sulfhydryl oxidase Erv1 and, in
turn, Mia40 function in the import of intermembrane space
proteins (180, 181). Interestingly, the human homolog of Erv1
(ALR) is found upregulated in hepatocellular carcinoma cell lines
and tissues, while its silencing or inhibition through MB-6
impairs mitochondrial function and inhibits the proliferation
of liver cancer cells (157, 182). MitoBloCKs can be a useful tool
to study the role of mitochondrial translocation machinery in
cancer, and the transcriptional and proteomic responses induced
by accumulation of precursors in the cytosol, following the
inhibition of protein import.

8.3 Targeting Mitochondrial Proteostasis
8.3.1 Caseinolytic Protease P Modulators
Mitochondrial protease ClpP was found overexpressed in a subset
of hematological and solid tumors where it is necessary for cancer
cell viability (183–185). Inhibition of ClpP has been proposed as a
strategy to impair OXPHOS and induce apoptosis in leukemic cells
characterized by a high reliance on mitochondrial respiration (183).
Bacterial ClpP inhibitors, ß-lactones derivatives (A2-32-01) and
phenyl ester compounds (TG42, TG53), cross-react with human
ClpP and show anti-proliferative and pro-apoptotic effects in
human cancer cell lines (183, 186). However, these drugs are
mainly a chemical tool to be used for functional studies and,
therefore, further efforts are needed to design more specific drugs
for human ClpP and reduce off-target effects. As for the inhibition,
hyperactivation of ClpP also impairs OXPHOS and induces cancer
cell death by uncontrolled degradation of ClpP respiratory chain
substrates (187). Indeed, the ClpP activator imipridone ONC201
has shown efficacy as a single agent or in combination with other
anti-cancer therapies in several solid and hematologic tumors and it
is currently being tested in clinical trials (188).

8.3.2 Lon Inhibitors
The matrix protease LONP1 is upregulated in different tumor
types, including lymphomas, cervical, colorectal, bladder and
non small cell lung cancer (189). Inhibition of LON by synthetic
triterpenoids, 2-cyano-3, 12-dioxooleana-1,9(11)-dien-28-oic
acid (CDDO) and its C-28 methyl ester derivative (CDDO-
Me), show a cytotoxic effect in human cancer cell lines by
impairing mitochondrial functions (190). However, these
compounds exert inhibitory effects on different oncogenic
factors, such as IkB kinase (IKK), ubiquitin-specific-processing
protease 7 (USP7), erythroblastic oncogene B2 (ErbB2) or
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peroxisome proliferator activated receptor (PPAR)-g, making
the contribution of LONP1 inhibition to the anticancer effect
unclear (161).

8.3.3 TRAP1 Inhibitors
The molecular chaperone TRAP1 has been found upregulated in
several cancer types, including breast, lung, prostate and
colorectal cancers, where it is related to poor prognosis and
advanced stages, whereas its genetic silencing induces an
attenuation of cancer cells proliferation and in vivo tumor
growth, providing a strong rationale for TRAP1 targeting as
anticancer therapy (191).

Gamitrinibs are the first class of Hsp90 inhibitors that
selectively accumulate in the mitochondrial matrix (162).
Structurally, gamitrinibs are constituted by a backbone derived
from 17-(allylamino)-17-demethoxygeldanamycin (17-AAG),
needed to inhibit the ATPase activity of Hsp90, a linker region
and a mitochondrial targeting module provided by one to four
tandem repeats of cyclic guanidinium (gamitrinib-(G1-G4) or a
triphenylphosphonium (gamitrinib-TPP) (162). Once in the
mitochondrial matrix, gamitrinib inhibits the ATPase activity
of mitochondrial HSP90 and TRAP1, inducing the accumulation
of unfolded proteins with the consequent activation of the
mtUPR and organelle disfunction (100, 117). Gamitrinib has
been shown a “mitochondriotoxic” effect and anticancer activity
in several human cancer cell lines, including squamous cell,
breast, lung, prostate carcinoma and leukemia cells, and in in
vivo models (162) in addition, it is recently approved to begin
phase I clinical trial for advanced solid cancers.

Over the years, several efforts have been directed to designing
others more selective TRAP1-targeting drugs with no effects on
HSP90 activity, in order to reduce the overall cell toxicity. Rodanin
et al. identified a strategy to selectively target TRAP1 ATPase
domain by binding cationic appendages to the HSP90 inhibitors
core (192). An alternative approach to achieve specific inhibition
of TRAP1 is the identification of allosteric ligands disturbing the
substructure that controls ATP hydrolysis by binding an allosteric
site distal from the ATPase site (193). Highly selective small
molecules targeting TRAP1 are needed to dissect the dynamics
of client interaction under different conditions and thus the
biochemical functions of this chaperone in cancer cells.
9 CONCLUSIONS

Metabolic reprogramming is now recognized as one of the
hallmarks of cancer (194). In recent years, an impressive amount
of work has been done to identify energetic pathways that could be
targeted for therapy, alone or in combination with more traditional
anticancer drugs. At the same time, targeting biosynthetic pathways,
as protein, nucleotide and lipid biosynthesis, have also attract
attention and proposed the adoption of new drugs (or the
repurposing of old ones), that have sometimes entered clinical
trials (195, 196). Targeting protein synthesis seems an obvious
strategy, considering that the aberrantly increased protein synthesis
is one of the most common features of cancer cells, and that
dysregulated ribosome biogenesis has been one of the first
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characteristics to be identified, in the form of hypertrophic nucleoli
(197). Although the modulation of gene expression has been
traditionally attributed to transcription regulation, in the last few
years it has become increasingly evident that many processes were
regulated at translational level (198), and among those, assembly
and activity of respiratory complexes, whose subunits are inserted
into the nascent macromolecular units in a co-translational manner
(75). As an additional level of complexity, the respiratory complexes
have a dual genetic origin, and are therefore composed both by
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proteins synthesized into the cytosol and later imported into the
organelle and proteins synthesized in the matrix by the
mitochondrial translational apparatus. Brilliant research projects
mainly performed in yeast have shown in recent years that the two
processes are tightly connected, co-regulated and coordinated, to
ensure fine-tuned responses to energetic demands and nutrient
availability (120). The available evidence shows that many of these
processes (schematically summarized in Figure 3) are conserved in
humans, and that in human cells a large amount of mRNAs
encoding mitochondrial proteins can be found in the proximity
of mitochondria (66). These transcripts can be locally translated,
and the nascent protein co-translationally targeted to the organelle
through a protein import channel (75). This complex presents, in
turn, multiple connection with the respiratory chain, where
mitochondrial-encoded subunits are simultaneously inserted co-
translationally, based on the availability of the nuclear-encoded
subunits (127). Given the central role played by these phenomena in
cancer cells, we believe that shedding light on their regulation in
cancer could provide an entire new avenue of both knowledge and
therapeutic opportunities. Indeed, preliminary data suggest that
cancer cells are particularly sensitive to translation uncoupling, and
many compounds are already available to be tested in pre-clinical
models. We believe that this scenario holds great promises either in
terms of research advances and of opportunities for translation to
the clinic.
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