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Abstract—The interest of Industry 4.0 in Smart Contracts
and blockchain technologies is growing up day by day. Smart
Contracts have enabled new kinds of interactions whereby
contractors can even fully automate processes they agree on.
This technology is really appealing in Internet of Things (IoT)
domain because smart devices generate events for software agents
involved in a smart contract execution, making full automation
possible. However, smart contracts have to comply with national
and international laws and accountability of participant’s actions.
Soundness of a smart contract has to be verified in terms
of law compliance. Here we propose a model for verification
and validation of law compliance of smart-contracts in IoT
environments. The main goal of this work is to propose a formal
model (based on multi-agent logic and ontological description of
contracts) for validating law compliance of smart contracts and
to determine potential responsibilities of failures.

Index Terms—Industry 4.0, Multi-Agent Systems, IoT, Smart
Contracts, Blockchain.

I. INTRODUCTION

SMART Contracts (SCs, hereafter) have been introduced
since early 1990s, however, they are becoming increas-

ingly of interest to researchers and developers from academia
and industry after the emergence of Internet of Things (IoT)
and blockchain technologies [1], [2]. Indeed, the conjunction
of SC and blockchain can guarantee trust, reliability and
security features of SCs. In contrast to usual contracts, which
are formulated in a natural language of contractors, SCs should
be expressed in formal languages that are able to address
automation of all, or a large part of, contractors’ actions. SCs
can therefore be seen as an event-based description of activities
that agents enact. In particular, software agents automatically
execute actions when specific conditions between contractor
parties are verified and hold. SCs can be automatically (or
semi-automatically) verified and enacted by using software
agents. However, the design of SCs is a complex task due
to the need of ensuring SC’s law compliance. Moreover, the
presence of software-based systems as actors in SCs introduces
the problem of having third-parties agents in contract enact-
ment, that could be hidden in the chain of responsibility that
legal aspects have to managed when any legal issue is raised.
For instance, in IoT applications where devices and sensors
could act as agents. From all the above, proper techniques
are needed to support parties in the definition of SCs and
assure compliance with current laws, rules and requirements
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to be stipulated in the contract. Often, agents making the
agreement do not have a proper view of all legal issues
related to the enactment of a smart contract –if they have
legal validity (and this is the case of most countries), they
have to be compliant to laws and rules. In this context, it
is appealing to have a methodology able to analyze legal
aspects as well as technical soundness of SCs, because they are
now considered valid-by-law in many countries. For example,
recently, car insurances make agreements where IoT devices,
like environmental and car sensors, are used to profile and
personalize SCs for insurances contractors, whereby, collected
events and data are used as evidences for liability assignments
in the case of car accidents [3]. In this work we address
law-compliance validation and verification of SCs through
a model transformation approach. More precisely, we use a
Multi-Agent System (MAS) model and a workflow language
to define SCs. MAS model has been selected as it enables an
easy modeling of agents interactions and is particularly useful
in IoT applications. Further, we use an ontology for formal
modeling of common laws and rules to verify and validate the
SCs.

The rest of the paper is organized as follows. We present in
Section II a motivating example from auto insurance industry.
The methodology for studying the properties of SCs is outlined
in Section III, which is the core part of this work. In Sec-
tion IV, we develop the example of Section II into a case study
to show the feasibility of the SCs approach and methodology.
We end the paper in Section VI with some conclusions and
indications for future work.

II. A MOTIVATING EXAMPLE

This section introduces a motivating example for our ap-
proach from the domain of Auto Insurance Industry. IoT
devices are each time more present in cars to improve effi-
ciency, security. autonomous driving, etc. They are also being
sought as possible means for the creation of dynamic Usage-
Based Insurances (UBI) [3], where insurances monitor drivers’
behaviors according to their consent. On the one hand, the
premium can be evaluated depending on real driver attitudes
and driving styles and, on the other, a SC can automatize the
whole insurance process. Recent research [4] has shown that
blockchain can improve security in Mobile Ad-hoc Networks
(MANETs) and, in particular, in Vehicular Ad-hoc Networks
(VANET). The example here focuses on SCs in the presence
of IoT devices. Without loss of generality, we consider three
agents in a contract: a human user (U), who is the insurance
contractor and car driver; a car (C) with several sensors on-
board that record vehicle information from gear, braking and
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other systems, as well as sensors that collect driver’s biological
and behavior information (e.g. heart rate, temperature, head
position, etc.); an insurance (I) system, which automatically
prepares documents and information for the user. Fig. 1
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Fig. 1. Agents involved in a SC

represents an UML diagram with agents involved modeled
as Classes and their actions as methods. It also contains
a definition of information exchanged by agents during the
enactment of the contract. They all inherit the generic Data
class and include data from IoT sensors in the Car (CarData),
biological and behavior data (BioData), weather-related in-
formation (WeatherData) and, finally, Insurance Documents
(InfoDoc). Agents that own or manage data are linked to them
by proper associations.

The definition of an SC comprises the following steps: (1) I
signs an informative (requiring authorization to use User data)
and sends it to U for countersigning; (2) U enables sensors
on C to collect data; (3) C iterates data collection on the
vehicle and I collects weather data related to U’s positions;
(4) at each step, C stores data into a repository on the Cloud;
(5) I periodically evaluates the insurance premium for U by
analyzing collected data. Fig. 2 represents these steps in a
diagram similarly to an UML Sequence with these properties:
(1) Objects are related to agents; (2) the lifetime of an object
is not considered; (3) messages take place asynchronously; (4)
messages are sent by agents whereby messages names refer
to methods of senders. See also [5] for details of messaging
among agents in a MAS model. With regard to collected data,
we require that it is stored in an high availability storage
system in a data center and are digitally signed to guarantee
non-repudiation.

III. METHODOLOGY

This section describes the methodology to define the prop-
erties of SC, comprising the definition of: (1) a model of
interacting parties (human or software agents) in an SC; (2) a
model for requirements definition in an SC, stipulating laws,
rules and other requirements that parties define in the contract.
(3) a language to address abstract composition in SCs, which is
agnostic of middleware used for SC definition and enactment;

The methodology therefore consists of the following proce-
dures:

1) MAS model definition for smart contract: this step
uses a UML-based language to define parties’ behaviors
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Fig. 2. Steps in the definition of an SC.

in the contract as well as their interaction during the
contract.

2) Law Ontology definition: in this step lawyers use
Ontology Web Language (OWL) to formalize laws to
be verified as requirements of SCs.

3) Model Transformation and Planning: models defined
in step (1) are translated into analyzable models (namely
Planning models). We address the translation of the
MAS model into a workflow-based definition of an SC.

4) Analysis: in this step translated models from the pre-
vious step are analyzed. We focus here on analyses of
law-based requirements, defined in step (2).

Next, we describe in more detail the above procedures.

A. MAS Model

The MAS model describes behaviors and interactions
among SCs parties. The language combines MAS Beliefs,
Desires and Intentions (BDI) logic and First Order Logic
(FOL) [6]. The environment is modeled by resources (that
are agents too), properties that are true in the environment (in
terms of logical predicates), and events that may happen. In
general, agents may have an incomplete or incorrect knowl-
edge of the environment, or of other agents properties, states
and knowledge (referred to as belief ). However, in this work
we assume that agents have exact knowledge on all beliefs
they own but may have partial information.

An Agent, in a static setting, is defined as a triple:

𝐴𝑔𝑒𝑛𝑡 = (𝐴𝑐𝑡𝑖𝑜𝑛𝑠, 𝐵𝑒𝑙𝑖𝑒 𝑓 𝑠, 𝐺𝑜𝑎𝑙𝑠)

where Actions is the list of actions an agent can perform;
Beliefs is a set of formulae representing an agent’s knowledge;
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Goals is the set of formulae to be asserted in order to reach
its goals. An Action is defined by a triple:

𝐴𝑐𝑡𝑖𝑜𝑛 = (𝑛𝑎𝑚𝑒, 𝑃𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝐸 𝑓 𝑓 𝑒𝑐𝑡𝑠)

where Precondition and Effects are respectively, one formula
and a set of Timed Computational Tree Logics (TCTL) for-
mulae, where atomic components are asserted by RDF triples
from the domain/law ontology. We denote the Preconditions
and Effects with the name of Conditions. In addition Events
are particular formulae that are expected as precondition, or
asserted as effect of an action.

Let W𝑜𝑟𝑙𝑑 be the set of evaluations of conditions of all
beliefs in the environment and all the agents states (i.e. the
beliefs that are true for agents in the W𝑜𝑟𝑙𝑑). In order for
an action 𝑎𝑐𝑡 to be executed, W𝑜𝑟𝑙𝑑 should meet all its
preconditions. The execution of 𝑎𝑐𝑡 leads to a change of
the state space adding Effects of 𝑎𝑐𝑡 to W𝑜𝑟𝑙𝑑. In order
to describe agents we use a modeling language inherited
by Unified Modeling Language (UML). The definition of
a contract, requires the declaration of agents structures and
a specification of contract interactions. To that purpose, we
exploit a formalism extended from UML Class and Sequence
Diagrams. For convenience, we refer to Fig. 1 described in
Sec.II. Proper stereotypes (Agent and Belief ) identify MAS
elements in the diagram; methods in the class diagram are the
Agents available actions, and attributes in beliefs define their
contents. In the example, Car, Insurance and User are the
three agents acting during contract execution. The car agent
owns the Beliefs (i.e. information) CarData and BioData that
respectively represent data acquired from vehicle sensors and
data related to the (human) driver. The Insurance agent owns
InfoDoc and WeatherData, which represent the information for
the use of User’s data and the data about weather collected
during contract execution. Finally, the User owns its BioData
and Informative data. All data inherit from the generic Belief
Data that has three attributes representing Belief’s structure
identified by a triple (unit, value and type). Methods listed in
each Class, are the actions available to the agents.

Preconditions and effects of actions are listed in Table I that
we explain in the next section. The Sequence Diagram in Fig. 2
defines the dynamic view of agents participating in contract
execution. As introduced before, messages in the diagram
represent actions that one agent uses to communicate with
other agents, or to execute inner actions (reflexive messages).
For a description of this diagram see Sec.II.

B. Law Ontology Definition

The presented methodology requires a formal definition
of laws to verify as requirements of smart contracts. The
definition contains laws, rules and other requirements that are
applicable to the domain of smart contracts. We used Resource
Description Framework (RDF) and Ontology Web Language
(OWL) to define an ontology. The ontology is defined once,
and its elements can be re-used and integrated while defining
models related to the same domain. Fig. 3 describes the main
elements of the ontology. We distinguish here the main classes
in the ontology as follows: (1) Laws descriptions, (2) actions

Law

LAction

LCondition

LEvent

requires_Laction

requires_Lcondition

requires_Levent

forbids_Laction

forbids_Lcondition 

forbids_Levent

enables_Laction

enables_Lcondition

enables_Levent

applicable_when

has_precondition

to_apply_when

Fig. 3. Laws Ontology

(LAction) that agents can enact, (3)conditions (LCondition)
with predicates to check in order to execute actions, and (4)
events (LEvents) enabled by actions executions (that in turn
may enable or forbid other actions in the same or different
law). An LEvent is-a LCondition: this means that events too
can be preconditions or effects of laws enactments. These
classes define the ability of a law to enable or forbid the
execution of an action. The require−∗ properties define actions,
and other elements that are requirements for the application
of a Law. The forbids−∗ properties declare the elements that
a law forbids and finally, The enables−∗ properties list the
elements enabled by a law.

Some other properties also define logic conditions that
enable laws (applicable−when), as well as their precondi-
tions (has−precondition) and events required for activation
(to−apply−when). For example, by using our ontology, sen-
tences in the following structures are able to define laws in a
formal way:

This law declares that, the following pre-conditions are
required to execute this action

or

When the event occurs, the law defines that an action
forbids another action

C. Model Transformation and Planning

Once the ontology and the contract model have been cre-
ated, the methodology applies the Model Transformation [7]
and generates an intermediate model to enact the analysis.
The first model transformation generates a planning model. It
merges ontological information that matches with that defined
in the MAS model. As plans are sequences of actions enacted
by agents to reach their goals, if these coincide with smart
contracts goals, we can state that all agents participating in
a contract, works together in order to reach goal contracts.
During contract execution, some actions or events may enable
the execution of malicious of incorrect actions, leading to
a state where the contract is considered failed. A planning
model is a transition system identified by agents actions and
their connections, expressed in terms of a precedence graph.
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Algorithm 1: Planning Model Transformation
Input: Agents Class and Sequence Diagrams
forall messages in Sequence do

Create an Activity 𝑎 in the Planning model relate 𝑎 to the sender Agent in the sequence relate 𝑎 to
the action with same name in the sequence.

forall blocks in the Sequence do
if the block is a Par Block then

Create a parallel pattern in the Planning Model with a route activity at the beginning
and at the end of the parallel; link first activity in parallel alternatives to the outgoing
transitions of the route activity link last activities of parallel alternatives to the
incoming transitions of the last route activity

if the block is a Loop then
Create a loop pattern in the Planning Model with a route activity at the beginning and

at the end of the loop;
end
Link consecutive Activities in the order their related Actions appear in the Sequence.

end

We adopt the planning model from workflow-based models,
whose main components are:

Activities: an activity is an action executed by an agent;

Transition: a transition defines a precedence between two
actions. It is basically a directed edge linking two activity
nodes;

Transitions Conditions: A transition condition is a pred-
icate that has to evaluate true in order to allows the activity
on the end point of the transition, to be activated after the
completion of the activity on the starting point;

Join and Split Conditions: these elements allows for
the definition of complex workflow patterns, like sequences,
synchronization points, parallel branches etc.

Activities contain the description of Agents performing the
Action related to each activity, as well as its Precondition,
Effects and waited and raised Events. A Transition specifies
a Transition Condition that, if evaluated true, enables the
execution of the activities on the directed edge of the tran-
sition. The Join and Split Conditions in the activities allows
for specification of different control points, which are used to
define flows of activities in the Planning Model. In particular,
an AND Split is a point where a single thread of control split in
(one), two or more threads executed in parallel. An AND Split,
with transition conditions, also enable conditional choices of
paths. An XOR Split is eventually a decision point, where only
one condition on outgoing transitions can evaluate true. An
OR Split is like an XOR, except that more than one outgoing
transition can fire if their conditions evaluate true. From the
Join (incoming) point of view, It controls if and when the
related activity can execute. An AND Join executes the activity
only when all its incoming transitions have fired; An XOR Join
executes the activity in the case only one among its incoming
transitions have fired. As can be seen in Fig. 4, we use boxes
to represent Activities and arrows for Transitions. split and
join conditions are respectively reported at the beginning and
at the end of the activity in the directed graph. Eventually
Transition Conditions are reported on the top of transitions.
For clarity and brevity sake, we use in this work the name
of activities are the name of agents’ actions enacted during
the activity. We can apply a simple Model Transformation
procedure (Alg. 1) to the MAS model in Fig. 2 to create a
Planning model for the smart contract depicted in the figure.

Fig. 4 (without considering the C.encrypt activity) is the
output of Alg. 1 applied to the Sequence Diagram in Fig. 2.

Algorithm 2: Propagation of Conditions
Input: Plan Graph
Result: List of Lists of Conditions on Activities
Initialisation :
For each activity create a List of Conditions (Conditions is a List itself)
forall Activity in the Plan Graph do

Assigning Conditions of previous activity to new Activity
if Effects on activity do not change Conditions in the lists then

Insert Effects into the List of Conditions
else

Delete Conditions in the new list
end
if Split Condition of the Activity is XOR or OR then

forall Activities on outgoing Branches do
Insert other Conditions FOR EVERY BRANCH (these are alternatives for others)

end
else if Split Condition is AND then

forall Activities in outgoing Branch do
if Conditions on Branches do not interfere then

Assume Worst Case: The branch fires first.
Add All Conditions into Activities

else
Assume both the Best Case and Worst Case Principles:
For all Conditions, insert the The List Built as in the previous case, but with

Conflicting activities in both order
end
Include an alternative List of Conditions FOR ALL BRANCHES

end
if Join Condition is AND then

Melt Conditions of incoming activities in a unique list
else if Join Condition is XOR or OR then

Maintain all Conditions from incoming activities in the list of Condition of the actual Activity.
They are all Conditions that can appear at the beginning of the activity

end

D. Analysis

(Law-based) Correctness analysis of a SC requires the
creation of a state-based model, where conditions and beliefs
represent the state of contract execution. Activity enactment
changes the state of the system, producing effects and chang-
ing the beliefs.

In order to build this state-based model, where we can
apply model checking techniques, we need to: (1) produce a
Planning Model where Effects are propagated over the whole
Plan; (2) translate the new model into a state-based model.
Alg. 2 summarizes the execution of the Condition Propagation
on the planning model graph. Its application to the planning
model results in propagation highlighted in Fig. 4, where
there is one parallel branch (starting after the collect (route)
activity).

Effects of each activity are in the last column of Tab.I (we
use here the short name Ex). Under each activity we reported
the list of properties asserted by Effects. For example, the list
of effects of I.SignInformative contains only an empty list.
Then, the effect of this latter activity is added to the list of
I.SendInformative, which has only one Condition in the list,
the E1.

Branches on transitions outgoing from collect route activity
execute in parallel. This means that subsequent activities in
the graph propagate their effects independently from other
branches. Effects are merged on the join route activity. For
convenience, in the figure we renamed two subsets of condi-
tions into K and J (with 𝐽 ⊂ 𝐾). After Condition Propagation,
it is possible to check if the lists of conditions on each activity
matches its own precondition. It easy to prove that here all
propagated conditions match activities preconditions, which
are listed in Table I. This implies that activities, enacted when
scheduled by the SC middleware, can be always activated
resulting in a correct and runnable contract.

Reachability Analysis is another kind of analysis that
involves both model transformation and Planning Graph (PG)
exploitation. By means of model transformation, reachability
of states in SCs is translated into a reachability problem of
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Fig. 4. Plan for Insurance smart Contract

Algorithm 3: Reachability Model Transformation
Input: Agents Class Diagram and Planning Graph Model
forall 𝑎 ∈ 𝐴𝑔𝑒𝑛𝑡𝑠 do

Create a TA 𝑡𝑎 : ; forall 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ 𝑎 do
add one state to 𝑡𝑎 with an incoming (waited) event for entering the state and one outgoing

(asserted) event when exiting the state after method execution
end
Create a Synchronization TA (syncTA) from PG: forall activity in PG do

create a state in syncTA with an (asserted) event with the name of the activity and a one
outgoing (waited) event;

forall parallel branches do
Create a sub-automaton for the branch with syncTA rules

end
end

end

Timed Automata (TA) [8], which are the target model of our
transformation.

The analysis of correct termination of contracts and other
reachability problems becomes the analysis of properties
expressed in TCTL logic like: “Is it always true that a
collaboration will ever reach contract goals respecting legal
requirements?”. The model transformation produces both the
model and the expression of the formulae to analyze. Fig. 5
shows some of the TA generated by Alg. 3 from models in
figures 1 and 4. In particular, at the bottom left there is the TA
for the Car Agent; at the top there is part of the TA generated
from the Planning graph in Fig. 4, where for simplicity we
reported the parts related to the first two activities of the SC, as
well as the part included between the collect and join activities
(dotted arrows represent cut elements in this TA); at the bottom
right there is one of the sub automaton generated to implement
one of the parallel branches in Fig. 4 (the one reported in the
middle of parallel pattern).

Notation: We use a dotted notation in names of states
and events. In addition, we use the common TA notation for
events where asserted events in sub automata are followed by
an exclamation point, while waited events are followed by a
question mark. Dotted notation in events naming highlight the
name of the agent and the name of the action that generate
the event. The events terminating with ”Done” are asserted
when an action ends. The Car TA automaton reports clock
variable that can be used for temporal analysis, where ex1,

ex2 and ex3 can be considered as timeouts for Car’s actions.
As example, the waited event C.collectCar? is generated by
the sub automaton of the parallel branch reported at bottom
right in the figure.

The use of results from PG analysis we described before,
contribute in reducing complexity of generated TA. Previous
analysis assures that all preconditions hold for all activities
and it is possible to ignore properties in preconditions and
effects when checking reachability.

IV. CASE STUDY

Table I summarizes the agents’ actions with their precon-
ditions and effects. Notice that all predicates on the last two
columns of the table must be defined in the Law and Domain
Ontology (in fact their structure is similar to a RDF triple).
It should be noted here that hasData and hasCarData (as well
as hasBioData) are object properties in the ontology, where
the latter is a specialization of the former (i.e. if there is a
car data, there is data too). For the presentation of this case
study, we omit details of Beliefs (environmental, bio-metrical
and data from car sensors are the beliefs we consider in this
case study). Other beliefs refer to the state of informative and
data (sent, signed, etc.), while Goal is represented by a belief
that states that insurance premium has been evaluated by data
analysis.

Fig. 4 shows the related plan model for the smart contract.
We use the classical dotted notation in order to define the
agents and the action it is performing. Let us describe the plan
without considering the dotted-lined activity I.encrypt, that it
is not yet defined in Table I.

By applying the methodology presented in Sec. III to this
plan, we achieve to meet all preconditions for any action,
in any state. It might be the case that contractors has made
an omission, namely, they did not consider explicitly some
laws about data protection, say, the General Data Protection
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plan.Start plan.s1 
par2? I.signInformative! I.signInformativeDone? 

plan.s2 

plan.collect 

plan.s3 

par1!,  
par2!, 
par3! 

p>=3 

plan.join 

plan.par 

endpar1? 

endpar2? 

endpar3? 

p:=0 

p:=p+1 

p:=p+1 

p:=p+1 

plan.end 

Planning Model TA (parallel detail) 

clk<=e 

C.Start C.collCar 

C.Idle 

clk<=ex1 

clk<=ex2 

clk<=ex3 

C.collectCarDone! 
clk:=0 

C.collectCar? 
clk:=0 

clk>e 
clk:=0 

C.CollectBio? 
clk:=0 

C.collectBioDone! 
clk:=0 

C.send? 
clk:=0 

C.sendDone! 
clk:=0 

C.collBio 

C.send par2.Start 

par2.s1 
par2? 

par2.s2 par2.s3 

par2.s6 par2.s5 
par2.s4 

par2.s7 
par2.end 

C.colltCar! C.colltCarDone? C.send! 

C.sendDone? 

I.store! I.storeDone? 

endpar2! 

Car TA Par2 Branch Sub Automaton 

Fig. 5. Generated TA structure

TABLE I
AGENTS, ACTIONS, PRECONDITIONS AND EFFECTS

Agents
Name Actions Precondition Effects

Insurance (I)

signInformative (infoDoc) E1:signed(infoDoc,I)
sendInformative (infoDoc) signed(infoDoc,I) E2:hasSignedInfo(I,InfoDoc)
store (data) hasData(I,data) E3:stored(data,I), E4:dataStored(I,data)
analyse(U) dataStored(I,U) E5:dataAnalyzed(I,U)
evaluate(premium,U) dataAnalysed(I,U) E6:premiumEvaluated(I,U)
collectWeather(Wdata) hasWaterData(I,Wdata) E7:hasData(I,Wdata)

User(U)
signInformative(infoDoc) hasSignedInfo(I,InfoDoc) E8:signed(infoDoc,U)
sendInformative(InfoDoc) signed(infoDoc,U) E9:hasData(I,infoDoc)
enableCarSens(C) signed(infoDoc,U) E10:carEnabled(U,C)

Car(C)
collectCar(carData) carEnabled(U,C) E11:hasCarData(C,carData)
collectBio(bioData) carEnabled(U,C) E12:hasBioData(C,bioData)
send(data) hasData(C,data) E13:hasData(I,data)

Regulation (GDPR)1, which states that Biometric Data has to
be stored encrypted.

Since Beliefs address Biometric data too, therefore this have
to be dealt with in the law domain ontology. In particular, we
have to address these elements:

• isInstance(GDPR, Law);
• forbids−condition(GDPR, (storageEncryption(data,

!crypted)) );
• requires−action(GDPR, (encrypt(data)) );
• applicable−when(GDPR, (isDataStored(data,storage)) );
• applicable−when(GDPR, (dataType(data,biometric)) );
• requires−condition(GDPR, (isDataStored(data,storage)

AND dataType(data,biometric) AND strageEncryp-
tion(data,crypted)) );

By linking this information too in the Planning Model, the
activity I.store(bioData) does not meet preconditions added

1https://gdpr.eu/, site accessed Jan 9th, 2021

by GDPR. The clause applicable− when allows to introduce
the precondition to the activity in the plan; the requires
clauses define preconditions to add. In order to meet these
preconditions, an action should be added to I, which encrypts
data before the storagetakes place (as depicted in the figure,
with the activity I.encrypt inside the dotted lined box). In
addition we can study reachability of the finalization of an
SC. Following the methodology for reachability analysis, this
problem is the same of analyzing the reachability of plan.end
state in the TA of Fig. 5. This problem is solved by assuming
that the planning model is correct in terms of enactment
of activities and by applying model checking techniques to
analyse a property in TCTL logic on the TA that, for the
reachability of end point of the SC is:

AF(plan.end)
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We use the UPPAAL model checker2 to check the asserted
formulae. In addition, the model transformation in Alg. 3 pro-
duces TA representation in UPPAAL formalism. The property
referred to above, for this concrete case study, evaluates to
true.

V. RELATED WORK

In the last year, many surveys in scientific literature ana-
lyzed challenges, advances and platforms related to the topic
of smart contracts (e.g. [1], [2]). Considerable efforts by the
research community are being done for improving security
and analysis of correctness. IoT-SC intersection is interesting
for sharing services in IoT ecosystems and of automating
existing time-consuming workflows in Industry 4.0 domain, by
introducing some blockchain-related benefits such as the use
of encrypted and verifiable transactions [9]. While most of the
scientific works in the literature deal with verification of byte-
code and other low-level representation of smart contracts,
some methodologies are now addressing high-level languages
for definition of SCs [1], [2], [9], [10]. In particular when
dealing with Law-compliance of smart contracts [11], [12],
[13], the general approach is to provide a language that
is simple and abstract enough to be used by both lawyers
and programmers. This high level representation of contracts
would then be translated (by using model transformation)
into low-level and byte code languages, as well as into other
intermediate representations for formal verification.

With regard to analysis, we distinguish here the most
used frameworks for analysis of SCs are Zeus [14],
ContractLarva[15], Ergo [10], Beagle [11] and VERISOL [16].
All of them produce low level representation of SCs, that are
in turn described by higher level languages: some of these
are based on templates of contracts with explicit definition of
policies and laws to verify (like Zeus or Beagle), or functional
languages that are used to express legal agreements (like
Ergo). In ContactLarva, requirements of SCs are translated
(by experts) into predicates to verify on a state-based model.
VERISOL follows a similar approach, using monomial predi-
cate abstraction to apply bound model checking techniques in
verification.

Zeus, Beagle and VERISOL are commonly used in other
works [1], [2] to analyze properties of SCs defined by high
level languages. They use techniques like Depth First Search
or model checking on a state-based model. Our approach is
similar, namely, we build a graph based model from SCs spec-
ifications, and then we apply model transformation to build a
state based model after model transformation to analyze law
compliance.

The main difference with the approach presented in this
paper, is that we manage law compliance at a semantic level
and the analysis is performed directly on the abstract graph
obtained by model transformation, differently from previous
approaches that execute analysis at low-level. In this way, we
are able to maintain an high level of abstraction in verification,
which is useful for lawyers that have to manage compliance
issues.

2https://uppaal.org/

Other works take directly into account law compliance as re-
quirements to verify in SCs [17], [11], [12], [13]. These works
mainly focus on the high-level language used to describe
SCs and the requirements to be verified. In [13] the authors
discuss on the use of Business Process Model and Notation
(BPMN) or Finite State Machines (FSM) as contract modeling
languages, while in [12] authors describe a modeling language
for General Data Protection Regulation (GDPR) based on
Unified Modeling Language (UML) and a Query and Answer
(Q&A) methodology. Finally, the approach of OpenLaw3 uses
a markup language (the Legal Markup Language) to define
both law requirements and SC templates of known legal
interactions.

From the point of view of the modeling language, we
used a workflow language (like BPMN discussed in [13]),
and a model based on Multi-Agent System (MAS) to define
requirements to verify. In this way we are able to generate
an intermediate (graph-based) model that can be used for
further verification activities. In addition, we have only formal
languages at definition level, so we ca implement automatic
model translation. Definition of Law-dependent requirements
is based on Semantics (ontology): laws descriptions follow
structures forced by ontology, and preconditions and effects
of laws are checked as properties on the intermediate model.
The MAS model is powerful to express IoT and services
behaviors [9]. In [18] the authors provide a model for smart
contracts validation. It is based on Multi-Agent Models, but
it lacks the ability of catching semantics of actions, rules and
laws that we address explicitly in our paper.

From all the above, to the best of our knowledge, our
approach distinguishes for its ability to model SCs and legal
requirements from an high-level perspective. Moreover, our
approach is general enough to take into account IoT devices
actions in contracts workflows.

VI. CONCLUSION

In this work we have presented a methodology to define and
analyze smart contracts. Our methodology explicitly addresses
the problem of compliance with current laws and rules, in a
context where both humans and software can interact, whereby
accountability of liability is relevant. We reported here the
definition of a formal model and of a procedure to analyze
workflows of smart contracts. The model is based on MAS
models and BDI logic. We apply Model Driven Engineering
and Model Transformation in order to implement proper
model checking techniques, including a Condition Propagation
algorithm to be enacted before the check. We applied the
methodology to an IoT-based case study from the domain
of Industry 4.0. In the case study, a smart contract is used
to define a procedure through which insurance companies
can collect data from drivers in order to adapt premium
prices to driving styles and weather conditions. We show that
the existence of common laws (e.g. GDPR EU framework)
requires proper management of the contract. The application
of the methodology is able to identify issues in bad contracts
by showing the laws they do not match and where it happens

3https://openlaw.io
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in the smart contract. In future works we envisage to apply
the methodology to blockchain based contracts, and include
the definition of a more complex and complete ontology for
Laws and Rules in smart contracts.
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