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We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission
computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known
coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress
MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal
myocardial infarction, or coronary revascularization procedures whichever occurred first. ML analysis performed through the
implementation of random forest (RF) and k-nearest neighbors (KNN) algorithms proved that CZT-SPECT has greater
accuracy than C-SPECT in detecting CAD. For both algorithms, the sensitivity of CZT-SPECT (96% for RF and 60% for
KNN) was greater than that of C-SPECT (88% for RF and 53% for KNN). A preliminary univariate analysis was performed
through Mann-Whitney tests separately on the features of each camera in order to understand which ones could distinguish
patients who will experience an adverse event from those who will not. Then, a machine learning analysis was performed by
using Matlab (v. 2019b). Tree, KNN, support vector machine (SVM), Naive Bayes, and RF were implemented twice: first, the
analysis was performed on the as-is dataset; then, since the dataset was imbalanced (patients experiencing an adverse event
were lower than the others), the analysis was performed again after balancing the classes through the Synthetic Minority
Oversampling Technique. According to KNN and SVM with and without balancing the classes, the accuracy (p value = 0.02
and p value = 0.01) and recall (p value = 0.001 and p value = 0.03) of the CZT-SPECT were greater than those obtained by
C-SPECT in a statistically significant way. ML approach showed that although the prognostic value of stress MPI by C-SPECT
and CZT-SPECT is comparable, CZT-SPECT seems to have higher accuracy and recall.
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1. Introduction

Risk stratification by noninvasive cardiac imaging has
become increasingly important to optimize management
and outcome in patients with coronary artery disease
(CAD) [1]. Previous research indicated that stress single-
photon emission computed tomography (SPECT) myocar-
dial perfusion imaging (MPI) has been the most widely used
nuclear cardiac imaging technique for the noninvasive
assessment of cardiac disease, including the prognosis and
choice of the most appropriate treatment strategies for
patients with CAD [2]. Conventional- (C-) SPECT systems
utilize sodium iodide crystals and parallel-hole collimators.
This approach presents some technical limits; for instance,
we can mention extended imaging time, low spatial resolu-
tion, and large doses of radiopharmaceuticals [3]. Recently,
these limitations have been overcome with the introduction
of gamma cameras with semiconductor cadmium-zinc-
telluride (CZT) allowed to directly convert radiation into
electric signals, bringing an improvement in image accuracy
and acquisition time [4, 5].

Previous studies showed that CZT-SPECT findings can
be used for risk stratification of patients referred to MPI
for suspected or known CAD. Lima et al. [6] demon-
strated that CZT-SPECT and C-SPECT provide similar
prognostic results, with lower prevalence of hard events
in patients with normal scan [6]. Yokota et al. [7] showed
that the prognostic value of normal stress-only CZT-
SPECT is at least comparable and may be even better than
that of normal C-SPECT [7].

These biomedical technologies can produce big amount
of data and, nowadays, different techniques have been used
to obtain as much information as possible from data and
signals [8-12]. Introducing machine learning (ML) in the
healthcare sector can help clinicians in diagnosis and ther-
apy planning, as well as in management of resources [13,
14]. Several studies have been conducted to test CAD detec-
tion using ML algorithms and to predict patient outcome
[15-18]. An innovative approach is to use ML models to
compare the performance of biomedical technologies, and
an evaluation of the performance in terms of diagnostic
power has already been reported [19, 20], demonstrating
CZT-SPECT has a better ability to detect CAD. To the best
of our knowledge, the prognostic value of CZT-SPECT and
C-SPECT has not been investigated to date by using ML
techniques.

Therefore, the purposes of the present investigation were
as follows:

(1) To evaluate the prognostic value of C-SPECT and
CZT-SPECT using ML-based approaches in patients
with suspected or known CAD

(2) To compare the prognostic performance of these
biomedical instrumentations through ML

This use of ML—in this particular case, aimed at com-
pering two biomedical technologies—represents, to
authors’ best knowledge, one of the first attempts in
literature.
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2. Materials and Methods

2.1. Patients. Between February 2016 and May 2017, a total
of 453 consecutive patients with suspected or known CAD
were submitted by referring physicians to stress MPI for
assessment of myocardial ischemia. For overall population,
clinical history and cardiac risk factors were collected.
Patients with a previous history of myocardial infarction,
revascularization procedures, or a diagnosed atherosclerotic
coronary disease were considered to have known CAD.
The review committee of our institution approved the study
(Protocol Number 110/17), and all patients gave informed
consent.

2.2. Study Protocol. All patients were submitted to stress
technetium-99m sestamibi-gated SPECT MPI by physical
exercise or dipyridamole stress test, according to the recom-
mendations of the European Association of Nuclear Medi-
cine and European Society of Cardiology [21]. The protocol
followed in this paper was the same employed in our previous
research [20]. All patients underwent MPI by both C-SPECT
and CZT-SPECT systems according to a randomized scheme
in 1:1 ratio that determined which camera was used for first
acquisition. For C-SPECT, a dual-head rotating gamma cam-
era (E.CAM, Siemens Medical Systems, Hoffman Estates, IL,
USA) was used. The acquisition time was 20 min for both
stress and rest images. For CZT-SPECT (D-SPECT, Spec-
trum Dynamics, Caesarea, Israel), recordings were obtained
using 9 pixilated CZT crystal detector columns mounted
vertically spanning a 90 geometry. Scan duration was lower
than 10 minutes for stress and lower than 5 minutes for rest
imaging.

An automated software program (e-soft, 2.5, QGS/QPS,
Cedars- Sinai Medical Center, Los Angeles, CA) was utilized
to compute left ventricular (LV) volumes and ejection frac-
tion (EF) and the scores incorporating both the extent and
severity of perfusion defects, employing a standard segmen-
tation of the 17 myocardial regions. The extent and grade of
the quantitative defect were determined based on sex-
specific normal limits while adding the scores of the 17 seg-
ments (from 0 for normal to 4 for absent perfusion) of the
stress images allowed us to compute the summed stress score
(SSS). A poststress LVEF greater than 45% and a SSS lower
than 3 were considered normal.

2.3. Follow-Up Data. A follow-up questionnaire was col-
lected by calling all patients by examinators blinded to
patient’s test results. The outcomes evaluated as endpoints
were all-cause death, cardiac death, nonfatal myocardial
infarction, or coronary revascularization procedures which-
ever occurred first. Cardiac death occurred subsequently to
acute myocardial infarction, congestive heart failure, and
cardiac interventional procedure related. Myocardial infarc-
tion was recorded when chest pain or equivalent symptom
complex, positive cardiac biomarkers, or typical electrocar-
diographic changes were reported [22]. The length of
follow-up was determined according to the date of the last
medical visit.
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2.4. Statistical Analysis. Statistical analyses were performed
by using IBM SPSS statistics software (v. 26), both to test
data distribution and to perform statistical tests. The process
was carried out separately on both the parameters of the C-
SPECT and the CZT-SPECT. First, the Kolmogorov-
Smirnov test was performed to test data normality, in order
to understand the type of test to be used (parametric or
nonparametric): in particular, normality was tested for all
parameters, for both groups, and for both camera types.
Subsequently, a two-tailed ¢-test was performed for parame-
ters with a normal distribution, while Mann-Whitney test
was performed for the remaining parameters, and both tests
were conducted considering a significance level of 0.05. After
the use of ML algorithms, a chi-square test was used in order
to compare the performances of different the models, trained
with C-SPECT and the CZT-SPECT data, and to understand
if there were statistical differences among them. The results
are shown and discussed in the “Results” and “Discussion”
sections, respectively.

2.5. Machine Learning Algorithms. The ML analysis was per-
formed by using the Classification Learning App, provided
by Matlab (v. 2019b), which trains models to classify data
using supervised ML. The 10-fold crossvalidation was used
to train and test the models; the dataset was divided into
10 groups of data, 9 were used for training the model and
one group for testing it; the procedure was repeated 10
times, and the evaluation metrics are computed by averaging
all those obtained [23]. The tree-based approach has shown
in literature great results not only in the cardiologic context
in cases such as diagnosis [24-26], prognosis [27, 28], and
comparison of biomedical technologies [19, 20] but also in
other medical specialties [29-31]. The classification tree is
a simple and effective model consisting of nodes, branches,
and leaves: each node has a rule that the data is routed along
several branches while the leaves represent the output of the
system [32].

Random forests (RF) model is part of the ensemble algo-
rithms and allows to train together a set number of decision
trees using the technique of Bootstrap Aggregation; this
model turns out to have better accuracy than the single weak
learner and reduces the chance of overfitting [33]. K-nearest
neighbor (KNN) algorithm is a distance-based method. In
fact, an example’s membership in a class is determined by
proximity to other known class examples. The critical aspect
is the choice of the value of k that is the number of neighbors
to consider for the decision [34]. Support vector machine
(SVM) is a classification model that is based on finding the
best surface that allows you to separate the two classes. In
particular, the algorithm tries to maximize the margin
between classes, the space that separates them, and in this
way, bases learning on the most difficult examples, decreas-
ing the influence of outliers [35]. Naive Bayes (NB) was also
employed in this study; it is a well-known algorithm based
on the a priori probability theorem [36], thus being a
completely different algorithm compared to the previous
ones. These algorithms were used to predict an adverse event
by using the features of the two cameras, and then, the eval-
uation metrics were compared through a statistical test for

proportions in order to understand which one had the best
capacity to detect the adverse event.

The present dataset is unbalanced; indeed, people with
adverse events turned out to be much less than those with
no events. In the literature, the problems that arise in
training ML models using unbalanced data are well known
[37, 38]. To deal with this problem, the Synthetic Minority
Oversampling Technique (SMOTE) [39] was used; this
oversampling technique generates new artificial data of
the minority class, on the basis of those already present,
allowing to rebalance the dataset. After that, the training
phase of the models was repeated. This can be considered
fair because it will be employed on both cameras allowing
a fair comparison; moreover, the aim of the study is to
compare C-SPECT and the CZT-SPECT rather than build
the best prognostic model.

To evaluate the performance of the models, several met-
rics [40] were used: accuracy, sensitivity or recall, specificity,
and precision. Furthermore, area under the curve (AUC)
receiver-operating characteristic (ROC) was computed
because it is a good method to assess model performance
[41]. In addition, a feature selection process was performed
to understand which parameters resulted more significant
in reference to the target variable. We tested 14 features: per-
fusion parameters as SSS, summed rest score (SRS), summed
difference score (SDS), and total perfusion defect (TPD) and
functional parameters as systolic wall motion (SWM), sys-
tolic wall thickening (SWT), end-diastolic volume (EDV),
end-systolic volume (ESV), and EF. In particular, two algo-
rithms were used: Maximum Relevance-Minimum Redun-
dancy (MRMR) that selects the variables with the most
relevance to the destination one by calculating the mutual
information of the parameters [42] and chi-square indepen-
dence test [43].

3. Results

3.1. Patient Characteristics and Outcome. The clinical charac-
teristics of patient population are shown in Table 1. The
study group comprised 204 (45%) patients with suspected
CAD and 249 (55%) with known CAD. The mean follow-
up was 2.5 + 0.5 years. During follow-up, 41 events occurred.
The events were cardiac death in 1 patient, nonfatal myocar-
dial infarction in 5, coronary revascularization procedures in
20, and 15 all-cause of death.

3.2. Statistical Analysis. The first step was to evaluate the
possible normal distribution of the features between patients
with events and patients with no events evaluated by both
cameras, applying Kolmogorov-Smirnov test. The test
revealed that, among the features of C-SPECT, only stress
and rest EF (p value > 0.05) showed a normal distribution
for both groups; similarly, no features of CZT-SPECT
resulted to have a Gaussian distribution. Therefore, t-test
was used only for stress and rest EF by C-SPECT, while
Mann-Whitney test was performed for all other parameters,
and the results are reported in Table 2.
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TasLE 1: Clinical characteristics of patient population.

Characteristic

Age (years) 64 + 10
Male gender, n (%) 331 (73)
Body mass index > 30 kg/m?, n (%) 110 (24)
Diabetes, 1 (%) 153 (34)
Dyslipidemia, n (%) 333 (74)
Smoking, #n (%) 196 (43)
Hypertension, n (%) 386 (85)
Atypical angina, n (%) 162 (36)
Family history of CAD, n (%) 231 (51)
Previous myocardial infarction, n (%) 148 (33)
Previous revascularization procedures, n (%) 173 (38)

Data are presented as mean + SD or #n (%) of subjects. CAD: coronary artery
disease.

3.3. Machine Learning Analysis. The ML analysis was con-
ducted separately and by using a 10-fold crossvalidation
for C-SPECT and CZT-SPECT, both before and after
SMOTE application in order to compare camera’s perfor-
mance with and without the augmentation of the dataset.
The evaluation metrics regarding the models without
SMOTE are reported in Table 3. Among the ML algorithms
used for the analysis, RF reached the highest value of accu-
racy (90.3% and 90.1%, respectively, for C-SPECT and
CZT-SPECT) and recall (98.5% and 99.0%, respectively, for
C-SPECT and CZT-SPECT), but it presented the lowest
value of specificity (7.3% and 0%, respectively, for C-
SPECT and CZT-SPECT), showing a low capacity to detect
adverse future events. Despite achieving these performances,
statistically significant differences between the two cameras
were not available, and this was also verified for Tree,
SVM, and NB models. KNN model had an accuracy and
recall lower than RF for both cameras (accuracy of 74.4%
and 80.8%, recall of 78.6% and 87.4%, respectively, for
C-SPECT and CZT-SPECT) but higher specificity (ranging
from 14.6%, in CZT-SPECT, to 31.7% in C-SPECT). Nev-
ertheless, the accuracy and the capacity to detect the
absence of adverse event were statistically significant in
favour of the CZT camera (p value = 0.021 for accuracy
and p value = 0.001 for recall). These results were influenced
by the imbalanced nature of the datasets; indeed, although
accuracy and recall were high, they were affected by the bias
introduced by the presence of a majority class for subjects
with a negative prognosis, as also validated by the low
AUCROC values of the models (ranging from 0.53 to 0.60
for C-SPECT and from 0.50 to 0.61 for CZT-SPECT). To
overcome this issue, the dataset was balanced by introducing
artificial samples of the minority class (patients with future
adverse events), generated with SMOTE. The evaluation
metrics values are reported in Table 4. The overall perfor-
mance of classifiers increased significantly with a balanced
dataset, especially in terms of specificity and AUCROC. Con-
sidering the C-SPECT, RF reached the highest values of accu-
racy (93.4%), recall (90.3%), and AUCROC (0.99), while
SVM and KNN reached higher values of specificity (95.0%
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and 99.8%, respectively). Regarding CZT camera models
performances, SVM classifier reached the highest values of
accuracy (94.5%), recall (92.2%), and specificity (96.8%).
Moreover, SVM turned out to have statistically significant
performances: the accuracy and the recall showed a statistical
significance in favor of the CZT-camera (p value = 0.016 for
accuracy and p value = 0.028 for recall), while, despite show-
ing in CZT-SPECT a higher capacity to detect adverse events,
the specificity of SVM was not found to be statistically signif-
icant (p value = 0.279).

4. Discussion

To our knowledge, this is the first study using ML approach
to compare the prognostic value of two technologies used in
clinical routine practice (C-SPECT and CZT-SPECT) in
patients with suspected or known CAD. Indeed, the ML
analysis did not aim to create the best model to predict
adverse events because, probably, it would not have been
possible considering the highly unbalanced nature of the
dataset. The aim was to test the feasibility of the cameras
in predicting adverse future events in order to understand
which could be the one with the better performance.

Although a similar evaluation has already been per-
formed, ML techniques have never been used. Lima et al.
[6] compared the prognostic value of MPI using an ultrafast
protocol with low radiation in CZT-SPECT and a C-SPECT
in different groups of patients. They concluded that the new
protocol of MPI in CZT-SPECT showed similar prognostic
results to those obtained in dedicated cardiac Na-I SPECT
camera, with lower prevalence of hard events in patients
with normal scan. Similarly, Yokota et al. [7] compared the
prognosis of patients with normal stress-only at both CZT-
SPECT and C-SPECT. They showed that the prognostic
value of normal stress-only CZT-SPECT is at least compara-
ble and may be even better than that of normal stress-only
C-SPECT. In a recent study, Liu et al. [44] showed that ultra-
low dose thallium perfusion imaging using CZT-SPECT
provides good prognostic results, with a more severe prog-
nosis in patients with abnormal MPL

However, ML has been recently employed for the com-
parison of biomedical technologies. In previous studies using
ML techniques to compare the diagnostic performance of C-
SPECT and CZT-SPECT, we highlighted how algorithms
trained with CZT-SPECT data achieved better accuracy,
recall, and specificity than C-SPECT [19, 20]. Concerning
the ML models, it has been observed that they generally
present a high accuracy and recall. In particular, accuracy
(p value = 0.021) and recall (p value = 0.001) were statisti-
cally significant for CZT-SPECT through the KNN algo-
rithm. This result would demonstrate that CZT-SPECT has
better performance to detect the absence of adverse event.
To enhance the results obtained on the unbalanced dataset,
a process of rebalancing the dataset was applied using
SMOTE and repeating all the ML analyses. As expected,
the performance of all models improved significantly for
both cameras after rebalancing. However, SVM showed
marked differences in all metrics values: accuracy, recall,
and specificity had higher values in CZT-SPECT than C-
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TaBLE 2: Univariate statistical analysis of all the parameters of C-SPECT and the CZT-SPECT.

Parameters C-SPECT CZT-SPECT

Patients with no event  Patients with event ~ p value  Patients with no event  Patients with event p value
SSS 9.90 £8.10 15.10 £ 11.50 0.053 9.30+7.70 14.30 £11.70 <0.001***
SRS 6.80£7.90 11.40 £ 11.60 0.163 5.10+7.10 9.30+11.10 0.240
SDS 3.10+3.20 3.00 £2.50 0.841 4.10+3.10 4.50 +2.80 0.310
TPD 13.10£11.70 20.40 £16.70 0.043* 13.10 £ 11.80 20.20 £17.30 <0.001***
Stress SWM 14.90 £12.20 18.80 £ 15.00 0.007* 10.70 £ 12.10 14.70 £ 14.10 0.018"
Stress SWT 8.90 £9.20 11.70 £ 10.40 0.002* 6.70 £ 8.50 9.10 £ 9.40 0.020*
Stress EDV 92.90 £ 37.80 105.00 = 51.50 0.031* 106.10 + 42.40 121.10 £ 57.40 0.044"
Stress ESV 48.10 £32.30 60.40 + 44.80 0.006* 54.70 £ 36.50 71.10 £ 51.50 0.008**
Stress EF 52.30 £ 14.20 48.40 = 15.50 <0.001* 51.30 £11.80 46.80 £ 13.10 0.005**
Rest SWM 15.40 £12.70 21.50 +15.00 0.048~ 10.20 £12.20 15.40 £ 13.00 0.070
Rest SWT 9.40 £ 9.40 12.65+£10.30 0.128 6.10 £ 8.30 9.80+13.30 0.110
Rest EDV 91.86 +41.05 99.77 £41.48 0.493 106.30 £+ 45.40 114.10 £ 52.50 0.790
Rest ESV 48.10 £35.70 57.60 £ 37.20 0.283 55.30 + 41.50 65.50 £ 43.90 0.420
Rest EF 51.70 + 13.80 46.60 = 14.90 0.098 50.80 £12.00 46.90 £ 14.10 0.160

Statistically significant at: *0.05, **0.001, ***<0.001. Abbreviations. EDV: end-diastolic volume; EF: ejection fraction; ESV: end-systolic volume; SDS: summed
difference score; SRS: summed rest score; SSS: summed stress score; SWM: wall motion; SWT: wall thickening; TPD: total perfusion defect.

TaBLE 3: Machine learning analysis and statistical comparison through chi square test for proportions on the original dataset.

Accuracy (%)

Error (%) Recall (%) Specificity (%)

C-SPECT 87.4

Tree CZT-SPECT 89.0
p value 0.471

C-SPECT 744

KNN CZT-SPECT 80.8
p value 0.021

C-SPECT 85.9

SVM CZT-SPECT 86.5
p value 0.773

C-SPECT 83.4

NB CZT-SPECT 84.1
p value 0.787

C-SPECT 90.3

RF CZT-SPECT 90.1
p value 0.591

12.6 94.4 17.1
11.0 97.1 7.32
0.057 0.177
25.6 78.6 31.7
19.2 87.4 14.6
0.001 0.067
14.1 922 21.6
13.5 92.6 21.6
0.597 1.000
16.6 89.1 26.8
15.9 90.1 24.4
0.649 0.800
9.7 98.5 7.3
9.9 99.0 0.0
0.525 0.078

Abbreviations: KNN: K nearest neighbor; SVM: support vector machine; NB: Naive Bayes; RF: random forests.

SPECT. In particular, accuracy and recall were statistically
significant in favour of CZT-SPECT (accuracy p value =
0.016, recall p value = 0.028). Therefore, even considering
the balanced data, CZT-SPECT proved to achieve a better
accuracy and ability in predicting the absence of adverse
event. It is likely that patients affected by an adverse event
had a particular pattern of input variables which have
allowed instance-based algorithms (KNN and SVM) to cap-
ture the outcome better than tree-based and probability-
based algorithms. As regards the computational costs and
the runtime of our models, there was no specific problem

because all the models followed a simple workflow without
applying heavy preprocessing algorithms (such as backward
or forward feature selection methods). Indeed, all the models
required less than a minute to be run.

The novel CZT technique provides patients with sev-
eral advantages, as lower radiation dose and imaging time.
Moreover, the higher energy and intrinsic spatial resolu-
tion of CZT detectors lead to lower artifacts and need
for rest imaging, with a consequent reduction in radio-
pharmaceutical dosage which enables nuclear MPI to be
more cost-effective [45].
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TaBLE 4: Machine learning analysis and statistical comparison through chi square test for proportions after SMOTE implementation.

Accuracy (%)

Error (%) Recall (%) Specificity (%)

C-SPECT 88.1

Tree CZT-SPECT 88.1
p value 1.000

C-SPECT 91.9

KNN CZT-SPECT 91.6
p value 0.858

C-SPECT 91,5

SVM CZT-SPECT 94.5
p value 0.016

C-SPECT 59.3

NB CZT-SPECT 59.0
p value 0.880

C-SPECT 93.4

RF CZT-SPECT 93.0
p value 0.637

11.9 86.2 90.1

11.9 86.9 89.3
0.760 0.731

8.1 83.9 99.8

8.4 84.7 98.5
0.774 0.058

8.5 87,6 95.0

55 92.2 96.8
0.028 0.279

40.7 86.7 32.0

41.0 87.6 30.3
0.677 0.599

6.6 90.3 94.4
7.0 91.0 94.9
0.720 0.757

Abbreviations. KNN: K nearest neighbor; SVM: support vector machine; NB: Naive Bayes; RF: random forests.

4.1. Limitations and Future Developments. This study has
some limitations that need to be considered. The dataset
was strongly imbalanced, to the detriment of patients who
present adverse events. It influenced the learning process
of the models, introducing biases into evaluation metrics.
SMOTE technique has been applied to balance the dataset
and overcome these issues. However, the samples introduced
were artificial, which represented another limitation. Never-
theless, the aim of the paper was not to evaluate the perfor-
mance of the models in order to create a tool for clinical
support, but to compare the performance of two technolo-
gies; therefore, the limitation introduced by the oversampling
process is attenuated. Regarding future developments, it
would be necessary to try to balance the dataset with original
data rather than with artificial samples in order to increase
the reliability of the evaluation metrics.

5. Conclusions

The novelty introduced in this study was the use of super-
vised learning techniques to compare the prognostic value
of C-SPECT and CZT-SPECT. The results obtained showed
that although the prognostic value of the two systems is
comparable; CZT-SPECT seems to have higher accuracy
and recall.
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