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Abstract. We study the homogeneous extension of the Kullback-Leibler
divergence associated to a covariant variational problem on the statis-
tical bundle. We assume a finite sample space. We show how such a
divergence can be interpreted as a Finsler metric on an extended sta-
tistical bundle, where the time and the time score are understood as
extra random functions defining the model. We find a relation between
the homogeneous generalisation of the Kullback-Leibler divergence and
the Rényi relative entropy, the Rényi parameter being associated to the
time-reparametrization lapse of the model. We investigate such intriguing
relation with an eye to applications in physics and quantum information
theory.
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Information Geometry on the Statistical Bundle

The probability simplex on a finite sample space Ω, with #Ω = N , is denoted by
∆(Ω), and ∆◦(Ω) its interior. The uniform probability function is µ, µ(x) = 1

N ,
x ∈ Ω. We regard ∆◦(Ω) as the maximal exponential family E (µ), in the sense
that each strictly positive density q can be written as q ∝ ev, where v is defined
up to a constant. The expected value of v with respect to the density q is Eq [v].

A non metric, non-parametric presentation of Information Geometry (IG)
[1] is realised via a joint geometrical structure given by the probability simplex
together with the set of q-integrable functions v ∈ L(q) : the couple (q, v) forming
a statistical vector bundle

SE (µ) =
{

(q, v)
∣∣ q ∈ E (µ) , v ∈ L2

0(q)
}
, (1)

with base ∆◦(Ω). For each q ∈ ∆◦(Ω), L2(q) is the vector space of real functions
of Ω endowed with the inner product 〈u, v〉q = Eq [u v], and it holds L2(q) =

R⊕ L2
0(p) [15, 17]. A (differential) geometry for the statistical bundle SE (µ) is

naturally provided by an exponential atlas of charts given for each p ∈ E (µ) by

sp : S∆◦(Ω) 3 (q, v) 7→
(

log
q

p
− Ep

[
log

q

p

]
, eUpqv

)
∈ Sp∆◦(Ω)× Sp∆◦(Ω)
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where eUpq denotes the exponential transport, defined for each p, q ∈ ∆◦(Ω) by

eUpq : Sq∆
◦(Ω) 3 v 7→ v − Ep [v] ∈ Sp∆◦(Ω)

As sp(p, v) = (0, v), we say that sp is the chart centered at p.
We can write then

q = exp (v −Kp(v)) · p = ep(v) , (2)

and see the mapping sp(q) = ep(v)−1 as a section of the bundle.

The cumulant function Kp(v) = Ep
[
log p

q

]
= D (p ‖ q) is the expression in

chart of the Kullback-Leibler divergence p 7→ D (p ‖ q). The other divergence

D (q ‖ p) = Eq
[
log q

p

]
= Eq [v]−Kp(v) is the convex conjugate of the cumulant

in the chart centered at p.
With respect to any of the convex functions Kp(v) the maximal exponential

family is a Hessian manifold. The given exponential atlas then provides the sta-
tistical bundle with an affine geometry, with a dual covariant structure induced
by the inner product on the fibers given by the duality pairing between Sq E (µ)
and its dual ∗Sq E (µ), and the associated dual affine transports [10].

From Divergences on E (µ)× E (µ) to Lagrangians on SE (µ)

A divergence is a smooth mapping D : E (µ) × E (µ) → R, such that for all
q, r ∈ E (µ) it holds D(q, r) ≥ 0 and D(q, r) = 0 iff q = r. Every divergence can
be associated to a Lagrangian function on the statistical bundle via the canonical
mapping [5]

E (µ)
2 3 (q, r) 7→ (q, sq(r)) = (q, w) ∈ SE (µ) , (3)

where r = ew−Kq(w) · q, that is, w = sq(r) = e−1r (w).

Remark 1. Such a mapping appears to be an instance of a general integral rela-
tion between the G = E (µ)×E (µ) intended as a pair groupoid and the associated
Lie algebroid Lie(G) corresponding to the tangent bundle SE (µ), see e.g. [11].

The inverse mapping is the retraction mapping

SE (µ) 3 (q, w) 7→ (q, eq(w)) = (q, r) ∈ E (µ)
2
. (4)

As the curve t 7→ eq(tw) has null exponential acceleration [16], one could say
that eq. (4) defines the exponential mapping of the exponential connection, while
eq. (3) defines the so-called logarithmic mapping.

The expression in a chart centered at p of the mapping of eq. (4) is affine:

Sp E (µ)× Sp E (µ)→ E (µ)× E (µ)→ SE (µ)→ Sp E (µ)× Sp E (µ)

(p, u, v) 7→ (ep(u), ep(v)) 7→ (ep(u), sep(u)(ep(v))) 7→ (p, u, (v − u)) .
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The correspondence above maps every divergenceD into a divergence Lagrangian,
and conversely,

L(q, w) = D(q, eq(w)) , D(q, r) = L(q, sq(r)) . (5)

Notice that, according to our assumptions on the divergence, the divergence
Lagrangian defined in eq. (5) is non-negative and zero if, and only if, w = 0.

Kullback-Leibler Dissimilarity Functional

Let us consider, as a canonical example, a Lagrangian given by the Kullback-
Leibler divergence D (q ‖ r), which, by means of the canonical mapping in (3),
corresponds to the cumulant function Kq(w) on Sq E (µ). This is a case of high
regularity as we assume the densities q and r positive and connected by an open
exponential arc. The Hessian structure of the exponential manifold is reflected
in the hyper-regularity of the cumulant Lagrangian.

Let R 3 t 7→ q(t) ∈ E (µ) be a smooth curve on the exponential manifold, in-
tended as a one-dimensional parametric model. In the exponential chart centered
at p, the velocity of the curve q(t) is computed as

d

dt
sp(q(t)) =

d

dt

(
log

q(t)

p
− Ep

[
log

q(t)

p

])
=
q̇(t)

q(t)
− Ep

[
q̇(t)

q(t)

]
=

eUpq(t)
q̇(t)

q(t)
= eUpq(t)

d

dt
log q(t) . (6)

where partial derivatives are defined in the trivialisations given by the affine
charts. By expressing the tangent at each time t in the moving frame at q(t)
along the curve, we define the velocity of the curve as the score function of the
one-dimensional parametric model (see e.g. [8, §4.2])

?
q(t) = eUq(t)p

d

dt
sp(q(t)) = u̇(t)− Eq(t) [u̇(t)] =

d

dt
log q(t) =

q̇(t)

q(t)
. (7)

The mapping q 7→ (q,
?
q) is a lift of the curve to the statistical bundle whose

expression in the chart centered at p is t 7→ (u(t), u̇(t)).
We shall now understand the cumulant Lagrangian as a divergence between q

and r at any time, which compares the two probabilities at times infinitesimally
apart. This amounts to consider the two probabilities as two one-dimensional
parametric models constrained via the canonical mapping defined with respect
to the score velocity vector, namely r(t) = eq(t)(

?
q(t)).

By summing these divergences in time, we define a dissimilarity functional
as the integral of the Kullback-Leibler cumulant Lagrangian L : SE (µ)×R→ R
along the model

(q, r) 7→ A[q] =

∫
L(q(t),

?
q(t), t) dt (8)

=

∫
D
(
q(t) ‖ eq(t)(

?
q(t)), t

)
dt =

∫
Kq(t)(

?
q(t)) dt .
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As shown in [16, 5], via A[q], one can consistently define a variational principle
on the statistical bundle, leading to a non-parametric expression of the Euler-
Lagrange equations in the statistical bundle. Indeed, if q is an extremal of the
action integral, one gets

D

dt
grade L(q(t),

?
q(t), t) = gradL(q(t),

?
q(t), t) , (9)

where grad indicates the natural gradient at q(t) on the manifold, grade the
natural fiber-derivative with respect to the score, and D

dt the mixture covariant
derivative, as defined in [5].

The variational problem on the statistical bundle provides a natural set-
ting for accelerated optimization on the probability simplex, with the divergence
working as a kinetic energy regulariser for the scores, leading to faster converg-
ing and more stable optimization algorithms (see e.g. [9]).

More generally, the cumulant Lagrangian in (8) can be used to formulate a
generalised geodesic principle on the statistical bundle, in terms of a class of local
non-symmetric, non-quadratic generalizations of the Riemannian metrics. To
this aim, beside smoothness and convexity, we need in first place the divergence
Lagrangian to be positive homogenous of the first order in the scores. This brings
new structures into play.

Re-parametrization Invariance of the Dissimilarity Action

Homogeneous Lagrangians (more precisely, positively homogeneous of degree
one) lead to actions that are invariant under time re-parametrizations. Consider
the action in eq. (8) and introduce a formal time parameter τ , such that t = f(τ)
and q(t) → q(f(τ)) = q(τ). This elevates the time integration variable t to the
rank of an independent dynamical variable, with f an arbitrary function, for
which we can assume ḟ(τ) > 0.

As a consequence, the re-parametrised action reads

A[(q, t)] =

∫
dτ L(q(τ),

?
q(τ)/ḟ(τ))) ḟ(τ)

=

∫
dτ D

(
q(τ) ‖ eq(

?
q(τ)/ḟ(τ))

)
ḟ(τ) ,

where dt→ df(τ) = d
dτ f dτ = ḟ dτ .

The new Lagrangian

L̃(q, f, v, ḟ) = D
(
q ‖ eq(v/ḟ)

)
ḟ = Kq(

?
q/ḟ) ḟ (10)

is defined on the extended statistical bundle S̃E (µ) = SE (µ) × R, with base
Ẽ (µ) = E (µ)× R.
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In particular, L̃(q, f, v, ḟ) is homogeneous of degree one in the velocity (v, ḟ) ∈
S̃(q,f) E (µ), that is

L̃(q, f, λv, λḟ) = λL̃(q, f, v, ḟ) . (11)

In terms of L̃, the dissimilarity action becomes covariant to time reparametri-
sation, providing a generalisation of the notion of information length (see e.g.[6]),
which allows for a generalised geodesic principle on the (extended) statistical
bundle.

We shall focus on the very notion of homogeneous cumulant function. Our
interest in this sense is twofold. On the one hand, as already noticed in [12], the
homogenised cumulant function L̃(q, f, v, ḟ) = Kq(

?
q/ḟ) ḟ generalises the Hessian

geometry of E (µ) to a Finsler geomety for the extended exponential family Ẽ (µ),
with L̃ playing the role of the Finsler metric. On the other hand, as it will be
shown in the last section, the reparametrization invariance symmetry property
of the homogeneous cumulant can be used to newly motivate the definition of
Rényi relative entropy, with the Rényi parameter appearing as associated to the
time-reparametrization lapse of the model.

Finsler Structure on the Extended Statistical Bundle

A Finsler metric on a differentiable manifold M is a continuous non-negative
function F : TM → [0,+∞) defined on the tangent bundle, so that for each
point x ∈M , (see e.g. [7])

F (v + w) ≤ F (v) + F (w) for every v, w tangent to M at x (subadditivity)

F (λv) = λF (v) ∀λ ≥ 0 (positive homogeneity)

F (v) > 0 unless v = 0 (positive definiteness)

In our setting, by definition, for each point q̃ = (q, f) ∈ Ẽ (µ), and for ḟ(τ) > 0,
the Lagrangian L̃ is positively homogeneous, continuous, and non-negative on
the extended statistical bundle S̃E (µ). By labelling ṽ = (v, ḟ) ∈ S̃(q,f) E (µ),
subadditivity requires

L̃(q̃, ṽ + w̃) ≤ L̃(q̃, ṽ) + L̃(q̃, w̃) (12)

for every ṽ, w̃ ∈ S̃(q,f) E (µ). By noticing that ṽ+w̃ = (v, ḟ)+(w, ḟ) = (v+w, 2ḟ),

the subadditivity of L̃ is easily proved via Cauchy-Schwartz inequality.

We have
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L̃(q̃, ṽ + w̃) = L̃(q, f, v + w, 2ḟ) = 2ḟ logEq
[
exp

(
v + w

2ḟ

)]
= 2ḟ logEq

[
exp

(
v

2ḟ

)
exp

(
w

2ḟ

)]

≤ 2ḟ log

Eq

[(
exp

(
v

2ḟ

))2
]1/2

Eq

[(
exp

(
w

2ḟ

))2
]1/2

= ḟ logEq
[
exp

(
v

vf

)]
+ ḟ logEq

[
exp

(
w

ḟ

)]
= L̃(q̃, ṽ) + L̃(q̃, w̃) .

Together with the positive homogeneity expressed in (11) and the positive def-
initeness inherited by the definition of the KL divergence, we get that for each
f , the homogeneous cumulant function L̃ satisfies the properties of a Finsler
metric.

Re-parametrization Invariance gives (1/ḟ)-Rényi divergence

The homogeneous Lagrangian (q,
?
q, f, ḟ) 7→ ḟKq(

?
q/ḟ) describes a family of

scaled Kullback-Leibler divergence measure, ḟ(τ) D (q(τ) ‖ r̃(τ)), between the
probabilities q(τ) and r̃(τ) infinitesimally apart in (sample) space and time,
such that r̃(τ) can be expressed via retraction (exponential) mapping r̃(τ) =
eq(τ)(

?
q(τ)/ḟ(τ)) at any time. The same expression can be easily rewritten in

terms of unscaled distributions q and r, by virtue of the canonical (log) mapping
?
q(t) = sq(t)(r(t)). Indeed, we have

ḟ Kq(
?
q/ḟ) = ḟ logEq

[
exp

( ?
q

ḟ

)]
= ḟ logEq

[
exp

(
1

ḟ

(
log

r

q
− Eq

[
log

r

q

]))]
= ḟ logEq

[(
r

q

) 1
ḟ

]
+ D (q ‖ r) = ḟ logEµ

[
r

1
ḟ q

1− 1
ḟ

]
+ D (q ‖ r) . (13)

where we use the definition Kp(v) = Ep
[
log p

q

]
= D (p ‖ q) in the second line.

We removed the dependence on time in (13) in order to ease the notation.

Therefore, we see that for ḟ = 1/1 − α, the term ḟ logEµ
[
r1/ḟ q1−1/ḟ

]
cor-

responds to the definition of the α-Rényi divergence [18] with a minus sign

Dα(q||r) =
1

α− 1
logEµ

[
r1−α qα

]
,

while the second term, giving the KL for the unscaled distributions, derives from
the centering contribution in the canonical map.
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Remark 2. The Rényi parameter can be put in direct relation with the lapse
factor of the reparametrization symmetry. Since the α parameter in Rènyi’s
entropy is constant, in this sense relating the lapse ḟ to α amounts to restrict
to reparametrization function f which are linear in time.

Remark 3. The two terms together in expression eq. (13) define a family of free
energies, typically espressed as (1/KT )Fα(q, q′) = Dα(q||q′) − logZ (see e.g.
[3]), and the action in eq. (8) can be understood as an integrated free energy
associated with the transition from q(τ) to r(τ) along a curve in the bundle.
Similar structures appear both in physics and quantum information theory in
the study of out-of-equilibrium systems, where they provide extra constraints on
thermodynamic evolution, beyond ordinary Second Law [2].

Remark 4. While the use of the canonical mapping in our affine setting somehow
naturally leads to the Rényi formula for the divergence, along with the exponen-
tial mean generalization of the entropy formula [13, 14], the interpretation of the
relation of Rènyi index and time lapse induced by reparametrization symmetry
is open [19]. In our approach, setting ḟ > 0 just fixes α < 1. A detailed thermo-
dynamic analysis of these expressions is necessary for a deeper understanding of
the map between α and ḟ .

Remark 5. The proposed result is quite intriguing when considered together with
the Finsler characterization of the statistical manifold induced by the homog-
enized divergence, and its relation with contact geometry on the projectivised
tangent bundle of the Finsler manifold (see e.g. [4]).
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