Current Topics and Trends on Durability of Building Materials and Components

Carles Serrat, Joan Ramon Casas and Vicente Gibert (Eds.)

Current Topics and Trends on Durability of Building Materials and Components

Proceedings of the XV edition of the International Conference on Durability of Building Materials and Components (DBMC 2020)
Barcelona, Spain

20 – 23 October 2020

Edited by

Carles Serrat

Dept. of Mathematics

Joan Ramon Casas

Dept. of Civil and Environmental Engineering

Vicente Gibert

Dept. of Architectural Technology

Universitat Politècnica de Catalunya-BarcelonaTECH, Catalonia, Spain

A publication of: International Center for Numerical Methods in Engineering (CIMNE) Barcelona, Spain

Current Topics and Trends on Durability of Building Materials and Components

Carles Serrat, Joan Ramon Casas and Vicente Gibert (Eds.)

First edition, October 2020

© The authors

ISBN: 978-84-121101-8-0

Cover: Basilica of the Sagrada Família. Spiral staircase inside the Nativity towers. Photo (c) Pere Vivas. Triangle Books. Sagrada Família.

Printed by: Artes Gráficas Torres S.L., Huelva 9, 08940 Cornellà de Llobregat, Spain

TABLE OF CONTENTS

Preface	7
Acknowledgements	9
Organizers and Committees	11
Summary	17
Contents	19
Keynote	41
Special Sessions	51
Conference Topics Sessions	663
Authors Index	1949

ORGANIZING ASSOCIATIONS

American Society for Testing and Materials (ASTM)

International Council for Research and Innovation in Building Construction (CIB)

International Union of Testing and Research Laboratories for Materials and Structures (RILEM)

National Institute of Standards and Technology (NIST)

National Research Council Canada (NRC-CNRC)

ORGANIZERS AND COMMITTEES

ORGANIZING COMMITTEE

Carles Serrat i Piè

Chair Department of Mathematics EPSEB, Barcelona, Spain

Joan Ramon Casas i Rius

Department of Civil and Environmental Engineering ETSECCPB, Barcelona, Spain

Vicente Gibert i Armengol

Department of Architectural Technology ETSAB, Barcelona, Spain

STEERING COMMITTEE

Organizing Members

- Geert De Schutter, RILEM (Chair)
- Jennifer Keegan, ASTM
- Jorge De Brito, CIB
- Christopher C. White, NIST
- Michael Lacasse, NRC-CRC

Members at Large

- Robert Amor, The University of Auckland, New Zealand
- Carmen Andrade, CIMNE, Spain
- Christian Brischke, University of Göttingen, Germany
- Bruno Daniotti, Politecnico de Milano, Italy
- Vasco Peixoto De Freitas, FEUP, Portugal
- Peter Flüeler, m ETH/EMPA, Switzerland
- Dariusz Gawin, University of Lodz, Poland
- Julien Hans, CSTB, France
- Vanderley John, USP, Brazil
- Chun-Qing Li, RMIT University, Australia
- Isabel María Martínez, IETcc-CSIC, Spain
- Hiroyuki Miyauchi, BRI, Japan
- Shiro Nakajima, Utsunomiya University, Japan
- Carles Serrat, Universitat Politècnica de Catalunya-BarcelonaTECH, Spain
- Kiang Hwee Tan, NUS, Singapore
- Nil Turkeri, ITU, Turkey

UPC INSTITUTIONAL COMMITTEE

- Francesc Torres (Chair), President of UPC-BarcelonaTECH
- Jordi Berenguer, Vice-rector for Knowledge Transfer and Innovation of UPC-BarcelonaTECH
- Inmaculada Rodríguez, Dean of Barcelona School of Building Construction (EPSEB)
- Pedro Diez, Dean of Barcelona School of Civil Engineering (ETSECCPB)
- Félix Solaguren-Beascoa, Dean of Barcelona School of Architecture (ETSAB)
- Albert Cuchi, Dean of Vallès School of Architecture (ETSAV)
- Eugenio Oñate, Chair of Executive Council of the International Center for Numerical Methods in Engineering (CIMNE)
- Carles Serrat, Chair of the DBMC 2020 Conference

SCIENTIFIC COMMITTEE

Chairs

- Joan Ramon Casas (Co-Chair), UPC-Barcelona TECH, Spain
- Carmen Andrade (Co-Chair), CIMNE, Spain

Vice-Chairs

- Antonio Aguado, UPC-Barcelona TECH, Spain
- Túlio Bittencourt, University of São Paulo, Brazil
- Nele De Belie, University of Ghent, Belgium
- · Ravindra Gettu, IIT Madras, India
- Rade Hajdin, IMC GmbH, Zürich & Belgrade Univ.
- Michael Lacasse, NRC Construction Research Centre, Canada
- Fernanda Rodrigues, Universidade de Aveiro, Portugal
- Elisabetta Rosina, Politecnico di Milano, Italy
- Ana Silva, IST, Lisbon, Portugal
- Alfred Strauss, BOKU, Vienna, Austria

Members

- Bijan Adl-Zarrabi, Chalmers University of Technology, Sweden
- Mark Ahrens, University Bochum, Germany
- Ahu Aydogan, City College of New York, USA
- Diana Bajare, Riga Technical University, Latvia
- Véronique Baroghel-Bouny, IFSTTAR, France
- Pablo Daniel Benítez-Mongelós, National University of Itapúa, Paraguay
- Umberto Berardi, Ryerson University, Canada
- Susan A. Bernal, University of Leeds, Leeds, UK
- · Hans Beushausen, UCT, South-Africa
- Tomasz Blaszczynski, Poznan University of Technology, Poland
- Violeta Bokan-Bosiljkov, U. Ljubljana, Slovenia
- Mark Bomberg, Syracuse University, NY, USA
- Alessandra Bonazza, CNR, Italy
- Anatolijs Borodinecs, Riga Technical University, Latvia
- · Lars Boström, SP, Sweden
- Kathryn Bourke, Whole Life Ltd, Watford, UK
- Thomas Braml, Bundeswehr University Munich, Germany
- Christian Brischke, University of Goettingen, Germany
- Zeynep Basaran Bundur, Özyegin University, Istanbul, Turkey
- Stefan Burtscher, TU Wien, burtscher consulting GmbH, Austria
- Guido Camata, University G. D'Annunzio, Chieti Pescara, Italy
- Jan Carmeliet, ETH Zürich, Switzerland
- Diana Car-Pušic, University of Rijeka, Croatia
- Robby Caspeele, University of Ghent, Belgium
- Anna Cellmer, Koszalin University of Technology, Poland
- Michael Chew, National University of Singapore, Singapore
- Sheila M.A. Conejos, School of Science and Technology, Singapore University of Social Sciences, Singapore
- Anca Constantin, Ovidius University of Constanta, Romania
- Bart Craeye, University of Antwerp, Belgium
- Paulo Cruz, University of Minho, Portugal
- Meri Cvetkovska, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia
- Martin Cyr, INSA Toulouse, France
- Bruno Daniotti, Politecnico di Milano, Italy
- Jorge De Brito, Instituto Superior Tecnico, Technical University of Lisbon, Portugal
- Gianmarco De Felice, Università degli Studi Roma Tre, Italy
- Vasco Peixoto De Freitas, U. Porto, Portugal
- Dominique Derome, EMPA, Switzerland

- Josée Duchesne, Université Laval, Quebec, Canada
- Vilma Ducman, Slovenian National Building and Civil Engineering Institute, Slovenia
- Miren Etxeberria, UPC-BarcelonaTECH, Spain
- Flora Faleschini, Università degli Studi di Padova, Italy
- Ines Flores-Colen, Instituto Superior Técnico, University of Lisbon, Portugal
- David Garcia, UPC-BarcelonaTECH, Spain
- Dariusz Gawin, Lodz University of Technology, Poland
- Hua Ge, Concordia University, Montreal, Canada
- Jennifer Gerbi, U.S. Department of Energy, USA
- Michel Ghosn, City College New York, USA
- José Manuel Gómez Soberón, UPC-BarcelonaTECH, Spain
- Klodian Gradeci, SINTEF Building and Infrastructure, Trondheim, Norway
- Elke Gruyaert, KU Leuven, Belgium
- Lars Gullbrekken, SINTEF Building and Infrastructure, Trondheim, Norway
- · Guillaume Habert, ETH Zürich, Switzerland
- Carl-Eric Hagentoft, Chalmers University of Technology, Sweden
- Tomáš Hanák, Brno University of Technology, Czech Republic
- Michael Hansen, TU Hannover, Germany
- Laia Haurie, UPC-BarcelonaTECH, Spain
- Shuichi Hokoi, Kyoto University, Japan
- Vít Hromádka, Brno University of Technology, Czech Republic
- Aletheia Ida, University of Arizona, USA
- Simo Ilomets, Tallinn University of Technology, Estonia
- Kei-Ichi Imamoto, Tokyo University of Science, Japan
- Joanna Janicka, University of Warmia and Mazury in Olsztyn, Poland
- Hans Janssen, KU Leuven, Belgium
- Pär Johansson, Chalmers University of Technology, Göteborg, Sweden
- Harald Justnes, SINTEF, Norway
- Targo Kalamees, Tallinn University of Technology, Estonia
- Mohammad Arif Kamal, Aligarh Muslim University, India
- Janis Kaminskis, Riga Technical University, Latvia
- Amnon Katz, Technion, Haifa, Israel
- Jacek Katzer, Koszalin University of Technology, Poland
- Miroslav Komljenovic, University of Belgrade, Serbia
- Kinga Korniejenko, Cracow University of Technology, Poland
- Jana Korytárová, Brno University of Technology, Czech Republic
- Jarek Kurnitski, Tallinn University of Technology, Estonia
- Joao Labrincha, University of Aveiro, Portugal
- Roman Lackner, UIBK, Innsbruck, Austria
- Akos Lakatos, University of Debrecen, Hungary
- Paulo Laurenço, University of Minho, Portugal
- Elizabeth Laycock, Sheffield Hallam University, UK
- Agnieszka Lesniak, Cracow University of Technology, Poland
- Mae-Ling Lokko, Rensselaer Polytechnic Institute, USA
- Barbara Lothenbach, EMPA, Duebendorf, Switzerland
- Zoubir Lounis, National Research Council Canada, Canada
- Lyuben Lyubenov, University of Structural Engineering & Architecture, Bulgaria
- Ana Mandic Ivankovic, University of Zagreb, Croatia
- Mihajlo Markovic, University of Banja Luka, Bosnia and Herzegovina
- Ivan Marovic, University of Rijeka, Croatia
- Isabel Milagre Martins, LNEC, Portugal
- Berardo Matalucci, SHoP Architects, USA
- Jose Matos, University of Minho, Portugal
- José António Raimundo Mendes da Silva, Universidade de Coimbra, Portugal
- Esperanza Menéndez Méndez, Institute of Construction Science Eduardo Torroja (CSIC), Spain
- José Filipe Miranda-Melo, University of Porto, Portugal
- Eva Møller, Technical University of Denmark

- Sergio Montelpare, University G. D'Annunzio, Chieti Pescara, Italy
- Travis Moore, National Research Council Canada, Ottawa, Canada
- Martin Morelli, Aalborg University, Copenhagen, Denmark
- Vahid Nik, Lund University, Sweden
- María Nogal, Delft University of Technology, the Netherlands
- Takafumi Noguchi, University of Tokyo, Japan
- Ehsan Noroozinejad, Graduate University of Advanced Technology, Iran
- Daniel Oliveira, University of Minho, Portugal
- Fernando Pacheco Torgal, University of Minho, Portugal
- Ainars Paeglitis, Riga Technical University, Latvia
- Cedric Patapy, Laboratoire Matériaux et Durabilité des Constructions INSA Toulouse/UPS, France
- Marco Perino, Politecnico di Torino, Italy
- Ruut Peuhkuri, Aalborg University, Copenhagen, Denmark
- Edyta Plebankiewicz, Cracow University of Technology, Poland
- Gul Polat, Istanbul Technical University, Turkey
- Ioana Popescu, IHE Delft Institute for Water Education, the Netherlands
- Andres J. Prieto, Universidad Austral de Chile, Valdivia, Chile
- John Provis, University of Sheffield, UK
- Elzbieta Radziszewska-Zielina, Cracow University of Technology, Poland
- Laura Rampazzi, University of Insubria, Italy
- Nuno Ramos, FEUP, University of Porto, Portugal
- Jacek Rapinski, University of Warmia and Mazury in Olsztyn, Poland
- Marzieh Riahinezhad, National Research Council Canada, Ottawa, Canada
- Pere Roca, UPC-BarcelonaTECH, Spain
- Hugo Rodrigues, Polytechnic of Leiria, Portugal
- Staf Roels, KU Leuven, Belgium
- Petra Rüther, SINTEF Building and Infrastructure, Trondheim, Norway
- Hiroaki Saito, Ashikaga University, Japan
- Antonio Sansonetti, CNR, Italy
- Amaia Santamaría, Universidad del País Vasco, Bilbao, Spain
- Mats Santamouris, University of Athens, Greece
- Karma Sawyer, U.S. Department of Energy, USA
- Erik Schlangen, TU Delft, the Netherlands
- Lina Seduikyte, Kaunas University of Technologies, Lithuania
- Dmitrijs Serdjuks, Riga Technical University, Latvia
- Igal M. Shohet, Ben-Gurion University of Negev, Israel
- Carey Simonson, University of Saskatchewan, Canada
- Gintautas Skripkiunas, Vilnius Gediminas Technical University, Lithuania
- Mohamed Sonebi, Queens University, Belfast, UK
- Wil Srubar, University of Colorado Boulder, USA
- Sudip Talukdar, British Columbia Institute of Technology, Burnaby, Canada
- Kiang Hwee Tan, National University of Singapore, Singapore
- Luping Tang, Chalmers University of Technology, Sweden
- Fitsum Tariku, British Columbia Institute of Technology, Burnaby, Canada
- Nicola Tarque, Pontificia Universidad Católica del Perú, Perú
- Akos Torok, Budapest University of Technology and Economics, Hungary
- Milan Trivunic, University of Novi Sad, Serbia
- Nil Türkeri, Istanbul Techn Univ, Turkey
- Maria Rosa Valluzzi, University of Padova, Italy
- Joris Van Acker, UGent, Belgium
- Keith Van de Riet, University of Kansas, USA
- Nathan Van Den Bossche, Ghent University, Belgium
- Philip Van Den Heede, Ghent University, Belgium
- Humberto Varum, University of Porto, Porto, Portugal
- Marius Vendrell, University of Barcelona, Spain
- Anne Ventura, IFSTTAR, France
- Yury Villagran, LEMIT, La Plata, Argentina

- Martins Vilnitis, Riga Technical University, Latvia
- Eva Vitkova, Brno Univeristy of Technology, Czech Republic
- Jeroen Vrijders, Belgian Building Research Institute, Belgium
- Johan Vyncke, Belgian Building Research Institute, Belgium
- Lin Wang, Concordia University, Montreal, Canada
- John A. Wells, Crosier Kilgour and Partners Ltd., Winnipeg, Canada
- Guang Ye, TU Delft, the Netherlands
- Joan Lluís Zamora, UPC-BarcelonaTECH, Spain
- Mariano Angelo Zanini, Università degli Studi di Padova, Italy
- Cristina Zanotti, University of British Columbia, Canada
- John Zhai, University of Colorado Boulder, USA
- Xiaohai Zhou, EMPA, Switzerland
- Valentina Žileska-Pancovska, Ss. Cyril and Methodius University in Skopje, Republic of Macedonia

LOCAL ORGANIZING COMMITTEE

Chairs

• Vicente Gibert, UPC-BarcelonaTECH, Spain

Members

- Cindy Abbott-Brito
- Ronny S. Guarderas-Luna
- Laia Haurie, EPSEB
- Beatriz D. Médola
- Climent Molins, ETSECCPB
- Joan Moreno, ETSAV
- Ana-Belén Onecha, ETSAB
- Javier E. Peñuelas
- Verónica Royano
- Alejandra Valencia-Arboleda

SUMMARY

KEYNOTE

Keynote
SPECIAL SESSIONS
Approaches to Hygrothermal Simulation for Assessing Durability Related to Climate Change
Organized by Travis Moore (NRC, Canada) and Michael Lacasse (NRC, Canada)
Biomimetic and Bioinspired Approaches for Enhanced Durability of Cementitious Materials99
Organized by Wil Srubar (University of Colorado Boulder, USA) and Zeynep Basaran Bundur (Özyegin University, Istanbul, Turkey)
Degradation of Coating Materials and its Relation to Durability of Structures 145
Organized by Takafumi Noguchi (University of Tokyo, Japan) and Kei-ichi Imamoto (Tokyo University of Science, Japan)
Durability and Field Tests of Thermal Insulating and Innovative Constructive Solutions
Organized by Ines Flores-Colen (IST, University of Lisbon, Portugal) and Nuno Ramos (FEUP, University of Porto, Portugal)
Durability and Performance of Building Envelopes239
Organized by Klodian Gradeci (SINTEF Building and Infrastructure, Trondheim, Norway) and Petra Rüther (SINTEF Building and Infrastructure, Trondheim, Norway)
Durability Considering Climate Change and Natural Hazards285
Organized by Michael Lacasse (NRC, Canada) and Travis Moore (NRC, Canada)
Environmental Factors and Durability
Organized by Tomasz Blaszczynski (Poznan University of Technology, Poland)
Life Cycle Costs in Construction Projects
Organized by Vít Hromádka (Brno University of Technology, Czech Republic) and Edyta Plebankiewicz (Cracow University of Technology, Poland)
Modern Sustainable Building Materials and Technologies
Organized by Elzbieta Radziszewska-Zielina (Cracow University of Technology, Poland)
Performance Over Time of High-Performance Insulation and Reflective Building Envelope Materials
Organized by Umberto Berardi (Ryerson University, Canada) and Marco Perino (Politecnico of Turin, Italy)

Remote Sensing of Building Condition
Organized by Joanna Janicka (University of Warmia and Mazuri in Olsztyn, Poland) and Jacek Rapinski (University of Warmia and Mazuri in Olsztyn, Poland)
Slags in Cement-based Materials
Organized by Flora Faleschini (Università degli Studi di Padova, Italy) and Amaia Santamaria (Universidad del País Vasco, Bilbao, Spain)
Soft Computing Tools and Sustainable Building Construction and Maintenance615
Organized by Diana Car-Pušic (University of Rijeka, Croatia) and Ivan Marovic (University of Rijeka, Croatia)
CONFERENCE TOPIC SESSIONS
Asset and Maintenance Management663
Organized by Ana Silva (IST, Lisbon, Portugal)
Building Pathology and Durability771
Organized by Túlio Bittencourt (University of São Paulo, Brazil)
Building Physics and Durability899
Organized by Antonio Aguado (UPC-BarcelonaTECH, Spain)
Durability Approach for Historical and Old Buildings
Organized by Elisabetta Rosina (Politecnico di Milano, Italy)
Durability of Materials, Systems and Components
Organized by Ravindra Gettu (IIT Madras, India)
IT / BIM and Durability
Organized by Rade Hajdin (IMC GmbH, Zürich & Belgrade Univ)
Large Sample Size Studies in Durability
Organized by Fernanda Rodrigues (Universidade de Aveiro, Portugal)
LCA, Sustainability and Durable Construction
Organized by Nele De Belie (University of Ghent, Belgium)
Service Life Prediction Methodologies
Organized by Alfred Strauss (BOKU, Vienna, Austria)

CONTENTS

KEYNOTE

Prescription of Maintenance Interventions by the New Generation of Eurocodes for Climate-Change Resilient Structures
SPECIAL SESSIONS
Approaches to Hygrothermal Simulation for Assessing Durability Related to Climate Change
Organized by Travis Moore (NRC, Canada) and Michael Lacasse (NRC, Canada)
A Methodology for Assessment of Building Assembly Air Leakage Moisture Response, Condensation Risk, and Expected Durability When Subjected to Projected Future Climate Loads
David G. Kayll, Maurice Defo, Travis Moore and Michael A. Lacasse
Effect of Selected Moisture Reference Year on the Durability Assessment of Wall Assemblies under Future Climates
Sahar Sahyoun, Hua Ge, Chetan Aggarwal, Maurice Defo and Travis Moore
Freeze-Thaw Risk in Solid Masonry: Are 'Hygrothermal Response Based' Analyses Mandatory when Studying the Sensitivity of Building Envelopes to Climate Change?
Isabeau Vandemeulebroucke, Steven Caluwaerts and Nathan Van Den Bossche
Impact of Climate Change in Building Envelope Design: The Performance to Withstand Mould Growth
Klodian Gradeci, Alessandro Nocente, Nathalie Labonnote and Petra Rüther
The Future Climate Moisture Susceptibility of Wall Assemblies: Analysis Based on Monte Carlo Simulation Using a Simplified Deterministic Hygrothermal Simulation Model
Carl-Eric Hagentoft and Pär Johansson
Validation of Three Methods of Selecting Moisture Reference Years for Hygrothermal Simulations
Chetan Aggarwal, Maurice Defo, Travis Moore, Michael A. Lacasse, Sahar Sahyoun and Hua Ge
Biomimetic and Bioinspired Approaches for Enhanced Durability of Cementitious Materials
Organized by Wil Srubar (University of Colorado Boulder, USA) and Zeynep Basaran Bundur (Özyegin University, Istanbul, Turkey)
Biodegradable Polymers on Cementitious Materials99
Julia García-González, Paulo C. Lemos, Alice S. Pereira, Julia Mª. Morán-del Pozo, M. Ignacio Guerra-Romero, Andrés Juan-Valdés and Paulina Faria

Biomimetic Antifreeze Polymers: A Natural Solution to Freeze-Thaw Damage in Cement and Concrete105
Mohammad Matar, Shane Frazier and Wil V. Srubar III
Compressive Strength Improvement and Water Permeability of Self-Healing Concrete Using Bacillus Subtilis Natto
Nguyen Ngoc Tri Huynh, Kei-ichi Imamoto and Chizuru Kiyohara
Implication of Microbial Biofilm in the Biodeterioration of Cementitious Materials in the specific context of Anaerobic Digestion Conditions
Integrating Self-Sensing in Self-Healing Concrete: Towards a Biomimetic
Approach to Repair
Two-Part Bio-Based Self-Healing Repair Agent for Cement-Based Mortar
Degradation of Coating Materials and its Relation to Durability of Structures
Organized by Takafumi Noguchi (University of Tokyo, Japan) and Kei-ichi Imamoto (Tokyo University of Science, Japan)
Analysis of Change of Physical Properties of Organic Repair Products due to Fire Exposition
Esperanza Menéndez, Kei-ichi Imamoto, Ravindra Gettu, Takafumi Noguchi and Hairon Recino
Comparative Life-Cycle Analysis of Two Repair Measures for Chloride Contaminated Concrete Structures
Deterioration Prediction Model of Multi-Layer Coating Material and its Reference Service Life Evaluation in Terms of Carbonation Control Effect161
Kotaro Etchuya, Kei-ichi Imamoto and Chizuru Kiyohara
Effects of Finishing Materials against Carbonation and Corrosion Condition of Model Building Exposed to Outdoor Conditions for 30 Years169
Koichi Matsuzawa, Osamu Senbu, Kei-ichi Imamoto, Chizuru Kiyohara, Kotaro Etchuya and Kaori Nemoto
Morphology Changes and Fillers migration in Urethane Composites during Thermal Degradation
Atsuki Tanifuji, Takato Ishida and Ryoma Kitagaki
Study on a Proper Repair Cycle of Finishing Materials in Condominiums

Durability and Field Tests of Thermal Insulating and Innovative Constructive Solutions

Organized by Ines Flores-Colen (IST, University of Lisbon, Portugal) and Nuno Ramos (FEUP, University of Porto, Portugal)

Assessing Water Resistance and Surface Properties of ETICS19	1
Giovanni Borsoi, João L. Parracha, Pedro Caiado, Inês Flores-Colen, Amélia Dionísio and Rosário Veiga	
Development of an Integrated Durability Assessment Methodology	
of Thermal Mortars Applied in Multi-layer Systems20	1
Joana Maia, Nuno M.M. Ramos and Rosário Veiga	
Evaluation of ETICS Characteristics that Affect Surface Mould Development 20	9
João L. Parracha, Armand Cortay , Giovanni Borsoi, Rosário Veiga and Lina Nunes	
In-Situ Tests on Silica Aerogel-Based Rendering Walls21	7
Inês Flores-Colen, Marco Pedroso, António Soares, Maria da Glória Gomes, Nuno M.M. Ramos, Joana Maia, Rui Sousa, Hipólito Sousa and Luís Silva	
Laboratory Vs Field Performance of Innovative Thermal Insulating Plasters22	3
Stefano Fantucci, Elisa Fenoglio and Valentina Serra	
Large Scale Laboratory and Field Tests of Aerogel Renders	1
Jürgen Frick, Nayara R. M. Sakiyama, Marina Stipetic and Harald Garrecht	
Durability and Performance of Building Envelopes	
Organized by Klodian Gradeci (SINTEF Building and Infrastructure, Trondheim, Norway) and Petra Rüther (SINTEF Building and Infrastructure, Trondheim, Norway)	
Bio-Based Building Materials-How to Unravel the Role of Material	^
Characteristics on Fungal Susceptibility?23	9
Liselotte C. De Ligne, Jan B.B. Van den Bulcke, Jan M. Baetens, Bernard De Baets and Joris C.M. Van Acker	
Implementing a Framework for Qualitative Assessment of New Technical Solutions:	
A Case Study on CLT24	7
Charlotte Svensson Tengberg and Carl-Eric Hagentoft	
Influence of Grid Presence in the Characteristics of Applied Mortars25	5
Isabel Torres, Inês F. Colen, Dora Silveira and Rafael T. Pinto	
Influence of Lightweight Concrete Block Support on Physical and Mechanical	•
Characteristics of Applied Mortars	3
Dora Silveira, Isabel Torres, Inês F. Colen and Rafael T. Pinto	
Performance and Durability of Adhesive Tapes for Building Applications. Even Product Decumentation to Scientific Vineylodge (and Book Again)	0
From Product Documentation to Scientific Knowledge (and Back Again)	9
Malin Sletnes and Susanne Frank	

Predominant Climate Exposure Strains - Thermal Degradation Testing	255
Compared to Historical and Future Climate Scenarios Petra Rüther, Klodian Gradeci and Malin Sletnes	211
Durability Considering Climate Change and Natural Hazards	
Organized by Michael Lacasse (NRC, Canada) and Travis Moore (NRC, Canada)	
Assessment of Moisture Performance of National Building Code Canada Compliant Wall Assemblies under Climate Change Max Junginger, Maurice Defo, Travis Moore, Michael A. Lacasse and Vanderley M. John	285
Assessment of Moisture Response and Expected Durability of a Heritage Masonry Building Subjected to Projected Future Climate Loads of Ottawa, Canada	293
Do We Need Hygrothermal Simulations to Evaluate the Design for Durability? <i>Martin Morelli and Erik Brandt</i>	301
Hygrothermal Performance Difference of Wooden Beam Embedded in an Internally Insulated Masonry Wall in 2D and 3D Models	309
Preventing Damage by Updating Moisture Control Standards	317
The Impact of Climate Change on Material Degradation: Finding a Feasible Approach for Climate Model Evaluation	325
Various Factors of Water Entry and Penetration Through Water Proofing Layer in Wooden Wall Assembly Hiroaki Saito and Masashi Miyamura	333
Environmental Factors and Durability	
Organized by Tomasz Blaszczynski (Poznan University of Technology, Poland)	
A Probabilistic Model for the Evolution of Porous Structure Caused by Solid-Phase Precipitation/Dissolution within Building Materials	341
Assessment of Reasons behind and Level of Destruction of Aquatic Supports in a Hydraulic Ash Removal Bridge	349
Tomasz Błaszczyński and Aldona Łowińska-Kluge	
Grain size analysis of class C fly ash used for aluminium-silicate	
binders production	357
Hygrothermal Regulation of Brick Masonry of Nanjing City Wall by Plants	365

Numerical Strategy to Simulate Seawater Ingress in RC Concrete Blocks Exposed to Wetting-Drying Cycles in Field Conditions During 19 years
Anthony Soive, Véronique Baroghel-Bouny and Francis Lavergne
The Influence of Injection Agents Applied for Carrying out Secondary Horizontal Damp Proof Courses on Masonry Mortar Properties381
Tomasz Błaszczyński, Barbara Ksit and Bartłomiej Monczyński
Life Cycle Costs in Construction Projects
Organized by Vít Hromádka (Brno University of Technology, Czech Republic) and Edyta Plebankiewicz (Cracow University of Technology, Poland)
Client's Expectations vs Contractor's Pricing. Fair Prices or Bid Rigging
Evaluation of Economic Efficiency of Territory Development399
Jana Korytárová, Vít Hromádka, Martin Marek, Svatopluk Pelčák and Jiří Rouzek
Evaluation of Socio-economic Impacts of Incidents on the Railway Infrastructure407 Vít Hromádka, Jana Korytárová, Eva Vítková, Tomáš Funk and Herber Seelmann
Identifying the Possibility of Using Unmanned Aerial Vehicles in the Process of Construction Projects Implementation
Dariusz Skorupka, Artur Duchaczek, Agnieszka Waniewska, Magdalena Kowacka and Grzegorz Debita
Multiple-Criteria Cost Analysis for Simulated Life Cycle of Office Building
Possibilities of Reducing Energy Costs in the Life Cycle of Office Buildings
Modern Sustainable Building Materials and Technologies
Organized by Elzbieta Radziszewska-Zielina (Cracow University of Technology, Poland)
Application of Pro-Ecological Building Technologies in Contemporary Architecture
Jerzy Górski, Joanna Klimowicz and Anna Nowak
Fire Properties of Novel Cellulosic Material Modified with Expandable Graphite443 Anielkis S.R. Batista, Wojciech Ł. Grześkowiak and Bartlomiej Mazela
Fundamental Properties and Durability of Concrete with Gasification Molten Slag as Fine Aggregate
Takafumi Watanabe, Hiromi Fujiwara, Masanori Maruoka and Koji Satori
Performance Based Specification of Wood - Project CLICKdesign457
Ed Suttie, Christian. Brischke, Eva Frühwald Hansson, Stefania Fortino, Jakub Sandak, Magdalena Kutnik, Gry Alfredsen, Christophe Lucas and Fric Vieillemard

Permeability of Ultra-Fine Reactive Fly Ash applied to	4.6
Cement-Based Composites	465
Wei-Ting Lin, An Cheng, Wei-Chung Yeih, Kinga Korniejenko, Marek Hebda and Michał Łach	
Selecting Criteria for Assessing "Environmentally-Friendly" Material Options in Construction: Part I	473
Robert Bucoń and Agata Czarnigowska	
Selecting Criteria for Assessing "Environmentally-Friendly" Material Options in Construction: Part II Robert Bucoń and Agata Czarnigowska	481
Robert Bucon and Agaia Czarnigowska	
Performance Over Time of High-Performance Insulation and Reflective Building Envelope Materials	
Organized by Umberto Berardi (Ryerson University, Canada) and Marco Perino (Politecnico of Turin, Italy)	
Effects of Long-Term UV Exposure on the Performance of Cement Plasters Integrated with Thermochromic Paint and PCMs for Building Facade Applications	180
Shahrzad Soudian, Umberto Berardi and Nadia O. Laschuk	,тоу
Experiences from Interior Super Insulation of a Brick Wall from the 1800s	497
Experimental Verification of the Theoretical Aging of Vacuum Insulated Panels <i>Mahsa Nikafkar and Umberto Berardi</i>	505
Failure Analysis of a Total Damage by Hail Impact of an External Thermal Insulation Composite Systems	513
Silvain Michel, Peter Flüeler, Martin Jordi and Roger Welter	
Quantifying Thermal Performance of the Building Envelope - Beyond	
Common Practice	521
Remote Sensing of Building Condition	
Organized by Joanna Janicka (University of Warmia and Mazuri in Olsztyn, Poland) and Jacek Rapinski (University of Warmia and Mazuri in Olsztyn, Poland)	
A 3D Model for Building Condition Assessment	529
Anna Banaszek, Sebast Banaszek, Anna Cellmer, Vicenç Gibert and Carles Serrat	
Identification of Defects and Hazards in Structures Based on the Point Cloud Using the OptD Method	537
Wioleta Błaszczak-Bąk and Joanna Janicka	
Mobile Augmented Reality Application Supporting Building Facades	.
Visualization Michal Bednarczyk and Tomasz Templin	545

Out-Of-Plane Displacements Determination Based on the Analysis of Point
Clouds from TLS Using the M-Split Estimation
Joanna Janicka, Jacek Rapiński, Wioleta Błaszczak-Bąk and Czeslaw Suchocki
Verification of Building Constructions Surroundings Based on Airborne Laser Scanning Data
Maja Michałowska
Slags in Cement-based Materials
Organized by Flora Faleschini (Università degli Studi di Padova, Italy) and Amaia Santamaria (Universidad del País Vasco, Bilbao, Spain)
Durability in Marine Environment of High-performance Concrete
with Electric arc Furnace Slags and Cupola Slag Admixture567
Israel Sosa, Carlos Thomas, Juan Antonio Polanco, Jesús Setién and Pablo Tamayo
Durability Studies of Self-Compacting Concrete containing Electric
ArcFurnace Slag Aggregate
and Javier J. González
Durability Studies on Fiber-Reinforced Siderurgic Concrete
Vanesa Ortega-López, Víctor Revilla-Cuesta, Amaia Santamaria, Ana B. Espinosa, José A. Fuente-Alonso and José A. Chica
Mechanical and Environmental Behavior of Cement Mortars Containing Ladle Furnace Slag
Diego Aponte and Marilda Barra
Pore Refinement Action of GGBFS and Fly Ash on the Primary
and Secondary Capillary Imbibition Rates of Concrete
Natalia M. Alderete, Yury A. Villagrán-Zaccardi and Nele De Belie
Seismic Performance of RC Moment Frame Structures Made with EAF Slag Aggregates
Flora Faleschini, Mariano A. Zanini and Klajdi Toska
Soft Computing Tools and Sustainable Building Construction and Maintenance
Organized by Diana Car-Pušic (University of Rijeka, Croatia) and Ivan Marovic (University of Rijeka, Croatia)
Application of Soft Computing Methods to Increase Sustainability in Construction
Silvana V. Petruseva and Valentina K. Zileska Pancovska
Decision Support to Identification of Road Infrastructure Segments With Poor Conditions 623 Niksa Jajac

Early Stage Construction Cost Prediction in Function of Project Sustainability631 Diana Car-Pusić and Marko Mladen
Possible Applications of Neural Networks in Managing Urban Road Networks 639 <i>Ivan Marovic</i>
Uncertainty and Sensitivity Analyses for Evaluating the Building Element's Replacement in Building LCA647
Kyriaki Goulouti, Pierryves Padey, Alina Galimshina, Guillaume Habert and Sébastien Lasvaux
Use of Machine Learning in the Function of Sustainability of Wastewater Treatment Plants
CONFERENCE TOPIC SESSIONS
Asset and Maintenance Management
Organized by Ana Silva (IST, Lisbon, Portugal)
A Comprehensive Description of a Low-Cost Wireless Dynamic Real-Time Data Acquisition and Monitoring System
A Framework for Installation Impact Analysis on Building Performance
A Maintenance Management Model. Upgrading and Experimentation
A Vector Scale of Severity of Damages in Buildings
Assessing the Condition of Reinforced Concrete Bridge Using Visual Inspection Ratings
Abdoul S. Bah, Thomas Sanchez, Yan Zhang, Kotaro Sasai, David Conciatori, Luc Chouinard, Gabriel J. Power and Nicola Zufferey
Condition-Based Maintenance Models for Stone Claddings
Detection Sensitivity of Iron-Foil Corrosion Sensor in Simulated Concrete Solution
Development of an Apparatus for Measuring the Load Acting on Joint Sealant when Movement Occurs
Financial Management of Construction Companies

Neural Model of Projecting Compressive Strength of Cement Concrete Intended for Airfield Pavements	721
Małgorzata Linek	/31
Maigorzala Linek	
Platform Development for Drone Utilization in the Architectural Field	739
Sustainability and Maintainability of High Rise Vertical Greenery Systems (VGS): its Lessons and Assessment Scoresheet	747
Sheila Conejos and Michael Y.L. Chew	/ ¬ /
Synthetic Resin Reinforcement of Timber Joints Deteriorated by Termites	755
Use of Steel Fiber Reinforced Concrete for the Protection of Buildings Against High Dynamic Actions	763
Vahan Zohrabyan, Thomas Braml, Tobias Zircher and Manfred Keuser	703
Building Pathology and Durability	
Organized by Túlio Bittencourt (University of São Paulo, Brazil)	
Airborne Algal Growth on the Roofs of Membrane-Structured Residences in a Cold Areas of Japan	771
Makiko Nakajima, Daisuke Masueda, Shuichi Hokoi and Takayuki Matsushita	
Analysis of the Degradation Condition of Elementary Schools	779
Comparative Study on (Non-)Destructive Techniques for On-Site Strength and Durability Assessment of Limestone Based Concrete Slabs	787
Concrete Durability Probed Using Compressive Strength, Chloride Penetration and Porosity Measurements on CEMII and CEMV Concretes Incorporating Mollusc Shell Spares in Artificial and Natural Seawaters	
Development of a Damage Detecting Method for RC Slabs by Means of Machine Learning Yutaka Tanaka and Takahiro Nishida	803
Dynamic Observability Method for Durability Assessment Considering Measurement Noise	811
Field Survey of Hygrothermal Behaviour within Wall Assembly Derived from Rain Penetration and Ventilation Performance of Exterior System	819

Global Inspection, Diagnosis and Repair System for Buildings:
Homogenising the Classification of Repair Techniques
Ciara I ereira, sorge de Brito ana sose D. Suvestre
Higher Incidence Pathologies in Installations of Solar Energy, Gas, Cooling,
Heating and Ventilation 83:
Manuel J. Carretero-Ayuso
Hydronium Detection in Hardened Concrete84
Ana Martínez Ibernón, José M. Gandía Romero, Isabel Gasch and Manuel Valcuende
Implementation of an Embedded Sensor Based on Electrical Resistivity
to Monitor Drying in Thick Concrete Structures85
Joanna Badr, Géraldine Villain, Jean-Paul Balayssac, Sérgio Palma Lopes,
Yannick Fargier, Fabrice Deby and Sylvie Delepine-Lesoille
Manual December 10 Printers of Comments Street
Macrocell Processes in Reinforced Concrete Structures
Josep R. Lliso-Ferrando, José E. Ramón Zamora, Román Bataller and Juan Soto
Mechanical Behaviour of ETICS in Presence of Water86
Fulvio Re Cecconi, Giuseppe Cocchetti, Aram Cornaggia and Tomaso Villa
Observations of Moisture Damages in Historic and Modern
Wooden Constructions
Stephan Ott and Patrik Aondio
Pathologies of a Glass Building Envelope that Affect Durability and Comfort88.
Susana Santamaria-Fernandez, Arritokieta Eizaguirre-Iribar and Xabier Olano-Azkune
Vinyl and Linoleum Floorings in Health Infrastructures: Maintenance
Recommendations Based on Fieldwork Data
Cláudia Carvalho, Jorge de Brito, Inês Flores-Colen and Clara Pereira
Building Physics and Durability
Organized by Antonio Aguado (UPC-BarcelonaTECH, Spain)
Organizea by Antonio Aguado (OI C-Barceiona I ECII, Spain)
A New Alkali-Silica Reaction (ASR) Mitigation Technology - Part I:
Comparing with Li, Ca, Al Salts, and Densified Silica Fume899
Frank Ong, Michae Myers, Thomas Vickers, Jacki Atienza, Lesley Ko and Paul Seiler
An Experimental Evaluation of the Thermal Performance of Felt Type
Vegetated Facade System
Elif Özer Yüksel and Nil Türkeri
An Evnezimental Study on the Thermal Conductivity of Concrete
An Experimental Study on the Thermal Conductivity of Concrete Containing Coal Bottom Ash Aggregate91:
In-Hwan Yang, Jihun Park and Hoe-Won Jung
in iinan iang, onun i an ana iioc non oang
Behaviour of Surface Chloride Concentration in Concretes Subjected
to Field Exposure in Marine Atmosphere Zone92
Gibson R. Meira, Pablo R. R Ferreira, Maria S. Freitas and Carmen Andrade

Carbonation Effect on the Chloride Profile
Detailed Modelling of the Masonry Unit-Mortar Interface Using Hygrothermal Simulation
Michael Gutland, Scott Bucking and Mario Santana Quintero
Drying Potential of Wood Frame Walls Subjected to Accidental Water Infiltration
Marijke Steeman, Nathan Van Den Bossche and Klaas Calle
Durability Evaluation of Hemp Fibers and Recycled Aggregates Concrete 953 Samer Ghosn and Bilal Hamad
Effect of Crack Repair by Bio-Based Materials Using Alginate and Bacillus Subtilis under Wet and Dry Environment Part-II
Effect of Vapor Diffusion Port on Drying of Wood-Frame Walls
Evaluation of Pore Structure of Hardened Cement Paste Immersed in Sodium Sulfate Solution
H.Nicolás Otsuka Sakata, Kennosuke Sato and Shigehiko Saito
Evaluation of Tortuosity in Cemented Sand Using X-Ray Computed Microtomography
Examination of Optimum Construction Area for Appropriate Thickness in Polyurethane Waterproofing Construction
Field Study on Hydrophobised Internally Insulated Masonry Walls
Hempcrete Buildings: Environmental Sustainabilityand Durability of Two Case-studies in North and South Italy
Improving Frost Durability Prediction based on Relationship between Pore Structure and Water Absorption
Intrinsic Differences on the Photodegradation Mechanisms between Pigmented and Non-Pigmented Coatings Determined by Multi-Scale Analysis
Ionic Diffusivity and Pore Structure of Hardened Cement Paste Exposed to High Temperature Environment for Long Period

Monitoring Durability of Limestone Cement Paste Stored at Conditions Promoting Thaumasite Formation	1039
Konstantinos Sotiriadis, Michal Hlobil, Jaromír Toušek, Dita Machová, Petra Mácová, Michal Vopálenský and Albert Viani	
Non-Destructive Evaluation of Micro-Cracked SCC by Ultrasonic Waves	1047
Irene Palomar, Gonzalo Barluenga, Hugo Varela, Javier Puentes and Ángel Rodríguez	
On Bio-Deterioration of Solar Reflective Materials: An Innovative	
Experimental Procedure to Accelerate the Ageing Process of Surfaces	1055
Giulia Santunione, Chiara Ferrari, Alberto Muscio and Elisabetta Sgarbi	
Post Peak Behavior of Carbonated Concrete Structure - A Case Study of the Former Shime Mining Office Vertical Derrick in Japan	1063
Kaiting Su, Kei-ichi Imamoto, Takafumi Noguchi, Manabu Kanematsu , Hitoshi Hamasaki, Kohji Teranishi, Chizuru Kiyohara and Munenori Yamada	
Proven Performance: Aged TPO Field Study	1071
Jennifer Keegan, Thomas J. Taylor and James R. Kirby	
Rainwater Management of Ventilated Facades:	
Impact of Joint Width and Cavity Size	1079
Stéphanie Van Linden and Nathan Van Den Bossche	
Salt and Ice Crystallization Resistance of Lime Mortars with Natural	
Lightweight Aggregate	1087
Martin Vyšvařil and Patrik Bayer	
Self-Compacting Concrete with Recycled Concrete Aggregate:	
Resistance against Aggressive External Agents	1095
Víctor Revilla-Cuesta, Marta Skaf, Aratz García-Llona, Ignacio Piñero, Juan M. Manso and Vanesa Ortega-López	
Statistical Analysis of Sulfate Attack Resistance of Reactive Powder Concrete	1103
Umut Bektimirova, Eldar Sharafutdinov, Chang S. Shon, Dichuan Zhang and Jong R. Kim	
Study on the Practical Use of Urea to Reduce Drying Shrinkage of Concrete	
by Spraying Urea Solution under Cold Environment	1111
Takumi Sato, Hiromi Fujiwara, Masanori Maruoka and Liu Lingling	
The Durability of Plant-Based Air Filtering Systems in Buildings:	
From an Air Quality and Energy Reduction Perspective	1119
Ahu Aydogan	
Thermodynamic Processes in Nanostructured Thermocoatings	1127
David Bozsaky	
Towards the Determination of Chloride Profiles by means of Resistivity	
Measurements in Reinforced Concrete	1135
Géraldine Villain, Marie A. Alhajj, Sérgio Palma Lopes and Véronique Bouteiller	

Durability Approach for Historical and Old Buildings

Organized by Elisabetta Rosina (Politecnico di Milano, Italy)

Durability of Internally Insulated Historical Solid Masonry Under Future Climates: A Stochastic Approach
Sahar Sahyoun, Lin Wang, Hua Ge, Maurice Defo and Michael A. Lacasse
Earth Construction Durability: In-Service Deterioration of Compressed and Stabilized Earth Block (CSEB) Housing in Algeria
Effect of Mortar Age on the Textile-to-Mortar Bond Behavior
Electro-Desalination of Sandstones With Cracks
Freeze-Thaw Deicing salt Attack on Concrete: Towards Engineering Modelling1181 Charlotte Thiel, Vadym Lomakovych and Christoph Gehlen
FRP Reinforcement for Concrete Frame Buildings at Mexico City Around 1900 to 1960
Properties of Czech WW2 Concrete Fortifications after 80 Years
Stability Assessment of Historic Plaster Ceilings on Wood Lath
The Stone Masonry Contribution in Greek Industrial Buildings' Typology and Construction Durability (Late 19th to Early 20th Century)
The Structural Strengthening of a Masonry Heritage Shop House using Glass Fibre Based Materials
Durability of Materials, Systems and Components
Organized by Ravindra Gettu (IIT Madras, India)
Analysis of Steel Bars in Corrosion Process after 70 Years of Natural Aging
Analysis of the Variation of Thermal Conductivity of Rigid Polyisocyanurate Foam (PIR) in The Context of Aging

Are Mineral Toppings of Asphalt Roofing Sufficient to Protect Flat Roofs	1242
and Roofing Felt Alone? Tomasz Szkuta and Maria Wesołowska	1243
Behavior of Mortars with Different Porosities in Front of Attack	
of Aggressive Agents	1251
Alessandra M. Weber, Wellington Mazer, Daniela E. Pedroso and Cleber Pedroso	
Behavior of Waterproofing Systems Exposed to Environmental Agents	1257
Julie A. Braun, Flávio L. Maranhão and Renata Monte	
Carbonation Behavior of Powdered Cement-Based Materials Under Different Relative Humidities and CO2 Concentrations	1265
Kiyofumi Nakada, Katsuhito Komiya, Hikaru Fumino, Yuhei Nishio, Manabu Kanematsu and Takafumi Noguchi	1203
Case Study of Pathological Manifestations of Neoprene Support Devices in Infrastructure	1273
Felipe R. Gonçalves, Lais A. Alves, Assed N. Haddad and Elaine G. Vazquez	
Characteristics of the Changes in the Compressive and Tensile Stress	
of the Construction Sealant under Cyclic Movement	1281
Kohei Yamashita, Hiroyuki Miyauchi, Akihiko Ito, Tomomi Soeta and Tohru Nakashima	
Composite Façade Elements with Self-Cleaning Surface made	
of UltraHigh-Performance Concrete (UHPC)	1289
Julia von Werder, Patrick Fontana, Johannes Hoppe, Serdar Bilgin and Birgit Meng	
Concrete: Limit States and Sustainability	1297
Kristýna Hrabová, Břetislav Teplý and Tomáš Vymazal	
Deformation Velocity Survey in Mortar and Cement Paste Specimens	
Subjected to External Aggressive Attacks	1305
Cristina Tedeschi and Elsa Garavaglia	
Deterioration of CLT under Humid and Dry Cyclic Climate	1313
Shiro Nakajima, Yoshihei Sakabe, Seiya Kimoto and Yoshinori Ohashi	
Determination of the Deterioration Characteristics of Facade Materials: A Case Study	1221
Nil Kokulu	1321
Durability Assessment of GFRP Rebars Exposed to High pH-Seawater	1329
Alvaro Ruiz Emparanza, Carlos N. Morales, Juan Manuel Palacios, Francisco De Caso and Antonio Nanni	
Durability Assessment of Gypsum Boards with Glass Mat Reinforcement	1225
Used in Light Facade Systems	1337
	1245
Durability of FRP Immersed in Water. Changes in Mechanical Properties Ernest Bernat-Maso. Manuel J. Lis. Luis E. Mercedes and Lluís Gil	1343

in Engineered Wood Products in New Zealand
Effect of Carbonation in Mortars with Different Types of Metakaolin and Curing Procedures
Helena Carasek, Mônica E. Jungblut, Paulo M. Passos and Oswaldo Cascudo
Effect of Cement Type and Micro-cracks on Chloride Penetration in Concrete
Effect of Coexisting Materials on Secondary Ettringite Formation
Effect of Crack Repair by Bio-Based Materials Using Alginate and Bacillus Subtilis under Wet and Dry Environment Part-I
Effect of Internal Hydrophobization on the Properties of Porous, Cementitious Materials
Effect of the Type of Concrete with Mineral Additions on the Reinforcement Corrosion Induced by Chlorides - Analysis in the Same Mechanical Strength Class
Evaluation of the Effects of Environmental Exposure on the Performance Decay of ETICS
Maurizio Nicolella, Roberto Landolfi and Alessio Pino
Experimental Study on Carbonation Resistance and Water Absorbing Property of Concrete Crack with repair
Naoko Tsuchiya and Kaori Nemoto
Gold Leaf Murano Glass Piastras' Performance in the Trencadís Catalan Modernism Mosaic: Recognition of Primary Alteration Patterns
How to Determine when a New Building Product is Suitable - Certifications and Experience
Impact of Portland Cement Content on Alkali Activated Bottom Ash
Influence of Different Types of Metakaolin on Compressive Strength and Chloride Migration of Concrete
Rodrigo Teodoro, Helena Carasek and Oswaldo Cascudo
Influence of Drying on Accelerated Carbonation Testing of Concrete

Dependence	1465
Hiromi Yanokura, Isao Kurashige, Naoyuki Sugihashi, Keiichi Takahashi and Yasuhiro Kuroda	
Influence of Surface Treatment of Fresh Concrete on its Resistance to Drying Shrinkage	1473
Pavel Reiterman and Vendula Davidová	
Influence of the Particle Size Distribution of Natural Sands in the Accelerated Alkali-Silica Expansion Test (AMBT)	1479
Innovative Approaches to Increase Service Life of Poplar Lightweight Hardwood Construction Products	1487
Joris C.R. Van Acker, Xiuping Jiang and Jan B.B. Van de Bulcke	
Innovative Environment-Friendly Interior Finishing Technologies Resistant to Mold Growth	1495
Piotr Czerski, Elżbieta Radziszewska-Zielina, Wojciech Ł. Grześkowiak, Patrycja Kwaśniewska-Sip and Paweł Krzyściak	
Long-term Performance of Repairs to Reinforced Concrete Exposed to Coastal Conditions	1503
Sachie Sato, Yoshihiro Masuda and Masaru Kakegawa	
Measurement of Moisture Content and Volume Change Distribution Inside Cement Paste Specimens Using X-Ray CT Imaging	1511
Takayuki Fumoto, Masaru Abuku and Stephen A. Hall	
Microstructural Evaluation of Durability of Different Cementitious Mixtures in Microbial Induced Corrosion Environments	1519
Chunyu Qiao and David Rothstein	
Monitoring the Early-Age Shrinkage Cracking of Concrete with Superabsorbent Polymers by Means of Optical Fiber (SOFO) Sensors	1527
José R. Tenório Filho, Didier Snoeck and Nele De Belie	
On the Effects of Relative Humidity and CO2 Concentration on Carbonation of Cement Pastes	1535
Quoc Tri Phung, Anna Varzina, Janez Perko, DiedeDiederik Jacques, Nobert Maes and Özlem Cizer	
OSB and Marine Plywood: Performance Comparison for use with Light Steel Frame Walls in Brazil	1545
Max Junginger, Mauricio M. Resende, Luciana A. Oliveira and Vanderley M. John	
Performance of European Wood Species in Above Ground Situations After 10 Years of Weathering: Evidence of a Positive Impact of Proper Design Magdalena Kutnik, Martine Gabillé and Mathilde Montibus	1553

Performance of Fibre-Reinforced Slag-Based Alkali Activated Mortar	1561
in Acidic Environment	1361
Preconditioning of Specimens - Drying Influence on Alkali-Activated and Geopolymer Mortar	1560
Vincent Trincal, Virginie Benavent, Hugo Lahalle, Gabriel Samson, Cédric Patapy, Yoann Jainin and Martin Cyr	1309
Prolonging the Durability and Conservation of Historic Materials by Microclimatic Monitoring in the Archaeological Areas Elisabetta Rosina and Alessandra Pili	1577
Residual Strength and Durability of Glass Fiber FRCM and CRM Systems Aged in Alkaline Environments	
Valeria Rizzo, Francesco Micelli, Marianovella Leone, Antonio Bonati and Maria Antoniet	ta Aiello
Resistivity Measurements to Assess the Freeze - Thaw Attack on Concrete - Lab Specimen and Real Structure	1593
Restoration of Historic Windows: Methodology and Case Studies Edward A. Gerns and Sarah K. Van Domelen	1601
Smalti Murano Glass Tessella's Applied Outdoor in the Trencadís Catalan Modernism Mosaic: Recognition of Preliminary Alteration Patterns	1609
Study of Autogenous Self-Healing in Different Mortar Formulations	1617
Sulfate Resistance of Blended Cements (Limestone Illite Calcined Clay) Exposed Without Previous Curing	1625
Testing Joints of Air and Vapour Barriers, Do We Use Relevant Testing Method Eva B. Møller and Torben V. Rasmussen	ls? 1633
The Efficiency of Fly Ash Concrete in the Context of the Combined Action between Chlorides and Carbonation	1641
The Palace of Westminster Courtyards Project: Sourcing Stone for Repair and Conservation	1649
Transport of Moisture and Chlorides into Sprayed Concrete	1657

IT / BIM and Durability

Organized by Rade Hajdin (IMC GmbH, Zürich & Belgrade Univ)

Building Circular Economy: a Case Study Designed and Built Following
a BIM-Based Life Cycle Assessment Approach
Mauro Manca, Zuzana Prochazkova, Umberto Berardi, Licini Alfaro and Felipe Pich-Aguilera
Development of 3D Printing Technology for Geopolymers 1673
Kinga Korniejenko, Michał Łach, Janusz Mikuła, Maria Hebdowska-Krupa,
Dariusz Mierzwiński, Szymon Gądek and Marek Hebda
Environmental Monitoring System Based on Low-Cost Sensors
Behnam Mobaraki, Seyedmilad Komarizadehasl, Francisco J. Castilla Pascual
and Jose A. Lozano-Galant
Integration of Durability Data of Construction Elements Within a BIM-Based
Environment
Leticia Ortega, Begoña Serrano, Isaac Villanova and Andrea R. Ilies
Maintenance-Oriented Design in Architecture. A Decision Support System for the Evaluation of Maintenance Scenarios Through Bayesian Networks Use.
A Case Study: the Headquarters of ING Groupe in Amsterdam1695
Michele Di Sivo, Daniela Ladiana, Federico Novi and Caterina Salvatori
Metamodel Development for Predicting Hygrothermal Performance
of Wood-Frame Wall under Rain Leakage1703
Lin Wang, Hua Ge and Liangzhu (Leon) Wang
Practical Application of Low-Cost Sensors for Static Tests
Seyedmilad Komarizadehasl, Behnam Mobaraki, Jose A. Lozano-Galant and Jose Turmo
Large Sample Size Studies in Durability
Organized by Fernanda Rodrigues (Universidade de Aveiro, Portugal)
A Nonparametric Statistical Model for the Selection of Significant Variables
Acting in the Deterioration of Built Façades1719
Carles Serrat, Vicenç Gibert, Joan R. Casas and Jacek Rapiński
Degradation of Concrete Structures from the Climate Change Perspective1727
Pablo Benítez, Fernanda Rodrigues, Sudip Talukdar and Sergio Gavilán
Relationships between Outside and Interior Appearance Inspection
and Actual Bio-Deterioration of Structural Members in Existing Wood Houses1735
Takahiro Tsuchimoto, Satoshi Takahashi, Hideaki Sumikura and Takafumi Nakagawa
State of Maintenance in Relation to Property Regime, Tenancy and Uses
of a Large Sample of Residential Buildings Located in the Most Vulnerable
Areas of the City of Barcelona
Sara Vima-Grau, Còssima Cornadó and Pilar Garcia-Almirall

Statistical Analysis on Belgian Building Defects
Strategies to Support Facility Management Resourcing Building Information Modelling
Raquel V. Matos, Fernanda Rodrigues, Hugo F. Rodrigues and Aníbal G. Costa
LCA, Sustainability and Durable Construction
Organized by Nele De Belie (University of Ghent, Belgium)
Assessment of Building Resistance to Accidental Actions in the Social Aspect of Sustainable Construction
Aleksandra Radziejowska and Anna Sobotka
Behaviors of Concrete with Recycled Clay Brick as Fine Aggregate
Durability of Mortars Packaged with Production Waste of Autoclaved
Aerated Concrete
Effect of Supplementary Cementitious Material and Fine Recycled Aggregates on Shrinkage Properties of Self-Compacting Microconcrete
Identification of the Influence of Concrete Cover Thickness and Ø/p Parameter on Crack Spacing
Chavin N. Naotunna, S.M Samindi M.K Samarakoon and Kjell T. Fosså
Influence of High Volume Fly Ash and Recycled Aggregates in Chloride and Carbonation Resistance of Concrete
Modernization of Housing Estates Towards Sustainable Development: What do Housing Estate Managers Provide, What do the Users See?
Quality Evaluation of Granulated Blast Furnace Slag Sand Via Acid Immersion and Freeze-Thaw Tests
Risk-Based Approach for Improving Concrete Bridges' Inspection Planning
Structural Reliability of Bridges Made with EAF Concretes
Study on Technical Standards of Reinforced Concrete Structures with Long Service Life when Using Blended Cement and Finishing Materials

The Business Case for Re-Usable Buildings - Business Models, Systems
Diagnosis and Case for Action
Viability of Production and Application of Concrete with Addition of Fibers of Polyethylene Terephthalate (PET) Bottles for Construction
Service Life Prediction Methodologies
Organized by Alfred Strauss (BOKU, Vienna, Austria)
A Joint Inversion Approach of Capacitive and Resistive Measurements for the Estimation of Water Saturation Profiles in Concrete Structures
A Risk-Based Approach for Quantifying Durability and Life-Expectancy of the Wall-Foundation Construction Detail in Timber Buildings
A Spatially Continuous Driving Rain Map of India at 0.5°×0.5° Gridded Scale1885 Sneha Das and Kaustav Sarkar
Development of a Service Life Database of Building Elements Based on an International Data Collection
Durability Based Service Life Estimation for Chloride Exposed Cracked and Self-Healed Concrete
Environmental Deterioration Factors in Metal Claddings and GFRC Panels Implemented on Facades: An Assessment through Two Cases in Istanbul
Methodology for Predicting the Service Life of Two-Ply Roofing-Felt Membrane1917 Erik Brandt and Martin Morelli
Probabilistic Approach to the Service Life Prediction of Timber Claddings
Reliability Assessment of Pressurized Pipes with Inclined Defect
Seismic Performance of the Reinforced Concrete Girders Obtained from Existing Building Constructed in 1961

Durability of Mortars Packaged with Production Waste of Autoclaved Aerated Concrete

Maurizio Nicolella¹, Claudio Scognamillo² and Federica Vitale³

- Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, 80125-Naples, Italy, maurizio.nicolella@unina.it
- ² Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, 80125-Naples, Italy, claudio.scognamillo@unina.it
- ³ Department of Civil, Architectural and Environmental Engineering (DICEA), University of Naples Federico II, 80125-Naples, Italy, federica.vitale@unina.it

Abstract. The building sector is responsible for the introduction of about 40% of the waste in the environment (60 Mtons per year in Italy), with serious consequences for our future. Therefore, the statistics of the last few years have induced many researchers and many companies to investigate more sustainable products and technologies. Among these strategies, the re-use of waste materials has been widely encouraged. Many solutions have been proposed in the field of mortars for which the use of waste products such as ceramic materials, polystyrene, clay, concrete, has been tried out. The results have often been encouraging, especially for masonry mortars. Nevertheless, very few attempts have been made to place this type of products on the market. Moreover, the "younger" building materials such as Autoclayed Aerated Concrete have not been fully investigated in their potential use as recycled aggregates. The goal of this research was to evaluate the characteristics of mortars packaged with different percentages of production waste of Autoclaved Aerated Concrete components as aggregates, in order to assess the possible use of these conglomerates as masonry mortars or as plasters. The first campaign included tests for determining mechanical resistance, density, capillary water absorption, adherence to substrate, resistance to carbonation. The tested mortars had satisfactory mechanical characteristics and generally exhibited a good capacity to withstand the actions of atmospheric agents. Finally, the results highlighted the direct connection between Autoclaved Aerated Concrete percentage and mechanical and durability properties.

Keywords: Building Materials Production Waste, Carbonation, Lightweight Aggregates, Recycled Conglomerates, Sustainability.

1 Introduction

The reuse of building waste materials in sustainable concretes or mortars has raised over the last years due to the environmental impact of building constructions. Building materials production waste is preferred rather than Construction and Demolition one due to its controlled chemical composition. The replacement of ordinary aggregates with production waste ones generally affects the mechanical performances of concretes or mortars owing to the low density of recycled aggregates (de Brito *et al.*, 2005; Ćosić *et al.*, 2015).

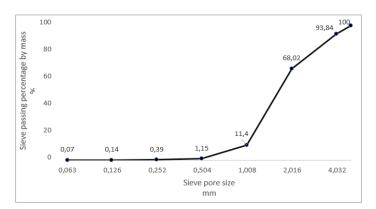
Nepomuceno, Isidoro and Catarino (2018) suggested a 30% threshold value of volume-replacement percentage of natural coarse aggregate with recycled ceramic in case of structural concrete. Actually, an increase of porosity and of average pore diameter is observed when the recycled aggregates are used (Anastasiou *et al.*, 2018; Dang *et al.*, 2019). The accretion of

doi:10.23967/dbmc.2020.157

macropores and the reduction of micropores increases the resistance to external sulphate attack as a consequence of the lower capillary pores transport phenomena (Coppola *et al.*, 2018). Moreover, the porosity improves the thermal insulation performances of mortars (Khan, 2002; Mendes *et al.*, 2019).

Despite the raising interest on recycled lightweight aggregates, it is presently unclear whether the high porous structure of the recycled conglomerates affects their durability due to the microstructural changes induced by the aggregates. In particular, the relation between recycled mortars morphology and their carbonation resistance has not been fully investigated.

In order to analyze the effects of the use of a production waste lightweight material on the physical, the mechanical and the resistance to carbonation properties of conglomerates, five groups of mortars packaged with an increasing percentage by mass of Autoclaved Aerated Concrete (AAC) recycled aggregates were tested and compared. The changes in density, porosity, water adsorption, mechanical strengths and carbonation depths were measured.


The results of this study may be used to define the threshold of AAC aggregate percentage with the respect to the application of conglomerate as masonry mortars or as renderings and plasters.

2 Materials and Methods

2.1 Materials

The tested mortars were packaged with natural hydraulic lime (NHL 5 according to UNI EN 459-1:2010 standard) supplied by TSCcalce.

A natural siliceous sand and a recycled Autoclaved Aerated Concrete were used as aggregates. The natural sand was provided by Bacchi s.p.a and its apparent density, stated by the manufacturer, was 1460 kg/m³. The recycled aggregate was supplied by Bacchi s.p.a, resulted from the production waste of Autoclaved Aerated Concrete (AAC) wall components. The particles size distribution of the recycled aggregate was measured through the dry sieving method according to UNI EN 933-1: 2012 and it is shown in Figure 1.

Figure 1. Particle size distribution of Autoclaved Aerated Concrete recycled aggregates according to the sieving test method.

The particle density and the water adsorption of AAC aggregates were analyzed according to UNI EN 1097-6:2013 pycnometer method for aggregate particles passing 4 mm test sieve and retained on the 0,063 mm test sieve. The outcomes are shown in Table 1.

Table 1. Particle density and water adsorption of Autoclaved Aerated Comcrete recycled aggregates.

M1	M2	M3	M4	$ ho_{ m rd}$	$\rho_{ m ssd}$	$\rho_{\rm a}$	W
(g)	(g)	(g)	(g)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(%)
77,93	477,73	452,29	45,11	860	1480	2290	72,76

M1, saturated and surface dried mass in air; M2, mass of pycnometer containing the saturated aggregate sample and the water; M3, mass of pycnometer filled with water only; ρ_{rd} , oven dried particle density; ρ_{ssd} , saturated and surface dried particle density; ρ_a , apparent particle density; W, water adsorption.

The chemical composition of the recycled aggregates was determined by a ThermoGravimetric Analysis (TGA) using a Netzsch- STA 409 PC Luxx apparatus. The mass losses of an AAC aggregate sample of 20 mg were monitored over time as the sample was heated in a controlled atmosphere. The temperature ranged from 23° to 1200° with a 10°/min heating rate. The mineralogical composition of AAC aggregates was analyzed by X-ray Diffraction (XRD) technique using a Philips X'pert PRO multipurpose powder diffractometer with X-ray wavelength of 1,54 Å. The outcomes were compared with the standard patterns of the International Centre for Diffraction Data database. The main mineralogical phases were Silicon Oxide, Calcium Carbonate, Calcium Hydroxide Hydrated Silicates and Calcium Sulfate Hydrated. A distilled water was used as kneading water.

Five groups of mortars with five specimens in each group were analyzed. All the tested specimens were packaged using the hydraulic lime and a binder-aggregate ratio of 1:3 by mass. The first group – noted 1 - was taken as reference and it was composed of mortars with 100% natural aggregate percentage. In the other four groups – noted 2,3,4,5 - the natural sand was gradually replaced with an increasing percentage by mass of recycled aggregate from 12,5% to 50%. The water – binder ratio of 2,3,4,5 was adjusted due to AAC aggregate water adsorption. Table 2 shows the compositions of the tested mortars.

 Table 2. Compositions of tested mortars.

	HL (g)	SS (g)	AAC (g)	W (g)	W/B	RA (%)
1	450	1350	0	225	0,50	0
2	450	1181,25	168,75	337,5	0,75	12,5
3	450	1012,50	337,50	450	1,00	25
4	450	843,75	506,25	562,5	1,25	37,5
5	450	675	675	675	1,50	50

HL, hydraulic lime; SS, siliceous sand; AAC, Autoclaved Aerated Concrete recycled aggregates; W, kneading water; W/B, water/binder ratio; RA, AAC percentage by mass on the total aggregates.

2.2 Methods

2.2.1 Mixing procedure of mortars and testing program of physical, mechanical and resistance to carbonation properties

Physical, mechanical and resistance to carbonation tests were performed on prismatic specimens according to UNI EN 196-1:1996 specifications. The natural sand and the recycled

aggregates were dry premixed before they were blended with the hydraulic lime and the kneading water. The specimens were molded in prismatic casts (40x40x160 mm) and cured in a climatic chamber (MSL Humichamber EC 125) under controlled conditions according to UNI EN 1015-11:2007. Three specimens of each group were tested for density, porosity, water adsorption, compressive and flexural strength, two specimens of each group were tested for resistance to carbonation.

2.2.2 Apparent and bulk dry densities, open porosity and water adsorption

The tests were conducted according to UNI EN 1936:2007 specifications. The prismatic specimens were dried in an oven at 70±5° temperature until a constant mass was recorded.

As the mass was stabilized, the three specimens of each group were weighted and their dry mass M1 was recorded. Then the dry specimens were stored for 24h under vacuum in a vessel in which the pression was gradually lowered to 15±5 mmHg. After this period a volume of water was introduced in the vessel so that the specimens were immersed for at least 5 mm. The specimens were kept under vacuum and immersed in water for 24h with the same pression of 15±5 mmHg. Finally, the pression was returned to the atmospheric value and the specimens were left immersed for other 24h. After the 72h storage the immersed specimens were weighted and the M2 value was recorded. The mortars were then wiped with a cloth and the mass of the saturated specimens, noted M3, was measured.

The apparent (\mathcal{P}_a) and the bulk (\mathcal{P}_r) densities, the open porosity (p) and the water adsorption (W) were finally calculated using the UNI EN 1936:2007 equations.

2.3 Mechanical Properties

The compressive and the flexural resistance tests were performed according to UNI EN 1015-11:2007 procedure using the Alpha Technologies Tensometer 2020 machine. The compressive load cells were of three types: groups 3,4,5 were tested with 5kN, group 2 with 10kN and group 1 with 15kN. The flexural load cells were 5kN for groups 4,5 and 10kN for groups 1,2,3.

2.3.1 Adherence on substrates test

The adhesive strength of mortars on substrates was measured according to UNI EN 1015-12:2016 procedures. Three different substrates - brick, tuff and lapil-cement - were tested and their fracture patterns were compared.

2.3.2 Resistance to carbonation

The resistance to carbonation test and the analysis of the results were conducted according to UNI EN 13295:2005 indications. The carbonation depth was measured according to UNI EN 14630:2003 procedures. The measurement was repeated only two times - on 15th and on 30th day- because all the specimens were fully carbonated after thirty days.

3 Results

3.1 Apparent and Bulk Dry Densities, Open Porosity and Water Adsorption

The apparent and the bulk dry densities, the open porosity and the water adsorption of the tested

mortars are shown in Table 3. The mean values for the three specimens of each group are reported. The reference mortar -1- exhibited an apparent density 66% higher than the group 5.

The open porosity and the water adsorption of group 5 were respectively twice and three times as high as group 1.

Table 3. Apparent and bulk dry densities, open porosity and water adsorption. Mean values of the three specimens of each group are reported.

	ρ_a (g/cm ³)	$\rho_{\rm r}({\rm g/cm^3})$	p (%)	W (%)
1	1,75	2,24	22	12,58
2	1,51	2,13	29	19,35
3	1,27	1,95	35	27,12
4	1,20	1,91	37	31,07
5	1,05	1,87	44	41,53

 ρ_a , apparent dry density; ρ_r , bulk dry density; p, open porosity; W, water adsorption

3.2 Mechanical Properties

The mean values of flexural and compressive strength are reported in Table 4. The flexural resistance of group 4 was tested only on two specimens due to the breakage of one sample during the curing period. The group 5 exhibited a flexural and a compressive resistance fifteen and ten times, respectively, as low as mortars of group 1.

Table 4. Flexural and compressive strength. Mean values of the three specimens of each group* are reported.

	σ _f (MPa)	σ _c (MPa)
1	2,62	6,93
2	1,54	4,53
3	0,67	1,49
4	0,13	0,90
5	0,17	0,57

^{*} Except for flexural resistance of group 4 (mean values of two specimens); σ_f , flexural resistance; σ_c , compressive resistance.

The compressive strength values were compared to UNI EN 998-2:2016 and to UNI EN 998-1:2016 specifications with respect to the classes of masonry and rendering or plastering mortars, respectively. The classification of the tested mortars is reported in Table 5.

3.3 Adherence on Substrates Test

The adhesive strength of mortars on each of the tested substrates is shown in Table 6. Mean values of recorded resistance are reported along with UNI EN 1015-12:2016 fracture pattern classification. The A, B, C pattern types referred to an adhesion fracture at the interface between mortar and substrate, to a cohesion fracture in the mortar itself and to a cohesion fracture in the substrate material, respectively.

Table 5. Classification of the tested mortars according to UNI EN 998-1,2:2016.

	UNI EN 998-2	UNI E	EN 998-1
	Table 1	Table 1	Table 2
1	M5	CS III/ IV	GP-LW-CR-OC
2	M2,5	CS II/ III	GP-LW-CR-OC-R-T
3	M1	CS I	GP-LW-CR-OC-T
4	/	CS I	GP-LW-CR-OC-T
5	/	CS I	GP-LW-CR-OC-T

/ not classified; GP general purpose; LW lightweight rendering/plastering; CR coloured rendering mortar; OC one coat rendering mortar for external use; R renovation mortar; T thermal insulation mortar

Table 6. Adhesive strength on substrates. Mean values of resistance and fracture pattern type are reported.

	Brick		Tuff		Lapil-cement	
<u>-</u>	f _u (MPa)	FP	$f_u(MPa)$	FP	$f_u(MPa)$	FP
1	0,24	A	0,29	B/C	0,56	A
2	0,34	A	0,34	B/C	0,26	В
3	0,30	В	0,04	B/C	0,14	В
4	0,16	В	0,05	A	0,12	В
5	/	/	/	/	0,09	В

f_u, adhesive strength; FP, fracture pattern; / it was not possible to measure the strength

3.4 Resistance to Carbonation

The results of the resistance to carbonation test are shown in Figure 2. On the 15^{th} day the group five was carbonated twice as high as the reference mortar whereas all the specimens were fully carbonated on the 30^{th} day.

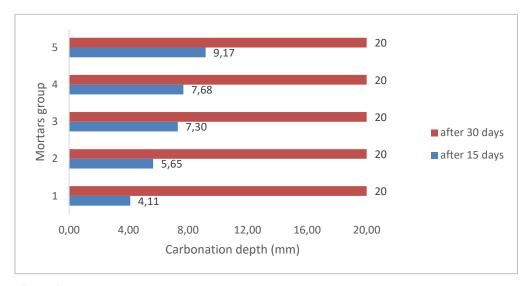


Figure 2. Resistance to carbonation test. Carbonation depth on 15th and 30th day are reported.

4 Discussions and Conclusions

The aim of the research was to investigate the influence of Autoclaved Aerated Concrete waste production aggregates on the mechanical and the durability properties of mortars, with specific respect to the resistance to carbonation. Results indicate that the replacement of the ordinary siliceous sand with AAC aggregate impacts on the hard-state properties of mortars.

The density and the mechanical properties – compressive and flexural strengths – and the adhesive strength to substrates decreased as the recycled aggregate percentage grew. Concerning the adhesive strength to substrate, the adherence to tuff rapidly lowered as the sand was replaced with AAC. Moreover, the open porosity and the water adsorption increased as AAC replaced the natural sand. Actually, the mortars with a higher percentage of AAC needed more kneading water due to the AAC adsorptive properties. Finally, the highest AAC mortar exhibited a short-term low resistance to carbonation, whereas the same value of carbonation depth was observed on 30th day measurement for all the specimens.

Similar trends were reported by Blanco *et al.* (2000) who recorded a strong correlation between the use of lightweight aggregates and the physical and the mechanical properties of concretes. Moreover, the discussed results are consistent with Zhao *et al.* (2015) who measured the reduction of flexural and compressive strength of concretes due to the use of recycled aggregates. Tewar *et al.* (2017) also investigated the substitution of natural sand with AAC waste production aggregates and they reported the growing of kneading water mass and the lowering of compressive strength as AAC percentage was kept higher. Finally, the higher porosity of recycled-aggregates conglomerates was found responsible for a higher CO2 uptake, similar to Evangelista *et al.*,(2010); de Oliveira Andrade *et al.*,(2018).

However, the tested mortars were packaged with only one type of binder and one particle sizes distribution of aggregates, mainly ranged between 2 and 4 mm. Therefore, further studies are necessary to find if the type of binder and the packing of aggregates can modify the discussed results. The resistance to carbonation test needs to be repeated with a shorter time interval between the measures in order to better evaluate the evolution of the phenomenon. Finally, a mechanical test on the carbonated specimens has to be executed to investigate the effects of CO2 diffusion on the compressive and the flexural strength of the mortars.

In conclusions, the substitution of natural sand with AAC aggregates seems to be useful to package both masonry and rendering or plastering mortars. Moreover, the increased porosity and the reduced density of higher AAC percentage mortars suggest their potential thermal insulating properties. Conversely, a threshold for AAC percentage is necessary for masonry mortars packaged with hydraulic lime due to the reduction of mechanical performances and resistance to carbonation.

ORCID

Maurizio Nicolella: http://orcid.org/0000-0002-7140-6759 Claudio Scognamillo: https://orcid.org/0000-0002-0954-7323 Federica Vitale: https://orcid.org/0000-0003-4297-3372

References

Anastasiou, E., Papachristoforou, M., Anesiadis, D., Zafeiridis, K. and Tsardaka, E. C. (2018). Investigation of the use of recycled concrete aggregates originating from a single ready-mix concrete plant. *Applied Sciences* (*Switzerland*), 8(11). https://doi.org/10.3390/app8112149

- Blanco, F., Garciéa, P., Mateos, P. and Ayala, J. (2000). Characteristics and properties of lightweight concrete manufactured with cenospheres. *Cement and Concrete Research*, 30(11), 1715–1722. https://doi.org/10.1016/S0008-8846(00)00357-4
- Coppola, B., Courard, L., Michel, F., Incarnato, L., Scarfato, P. and Di Maio, L. (2018). Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates. *Construction and Building Materials*, 170, 200–206. https://doi.org/10.1016/j.conbuildmat.2018.03.083
- Ćosić, K., Korat, L., Ducman, V. and Netinger, I. (2015). Influence of aggregate type and size on properties of pervious concrete. *Construction and Building Materials*, 78, 69–76. https://doi.org/10.1016/j.conbuildmat.2014.12.073
- Dang, J. and Zhao, J. (2019). Influence of waste clay bricks as fine aggregate on the mechanical and microstructural properties of concrete. *Construction and Building Materials*, 228, 116757. https://doi.org/10.1016/j.conbuildmat.2019.116757
- de Oliveira Andrade, J. J., Possan, E., Squiavon, J. Z. and Ortolan, T. L. P. (2018). Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. *Construction and Building Materials*, *161*, 70–83. https://doi.org/10.1016/j.conbuildmat.2017.11.089
- Evangelista, L. and de Brito, J. (2010). Durability performance of concrete made with fine recycled concrete aggregates. *Cement and Concrete Composites*, 32(1), 9–14. https://doi.org/10.1016/j.cemconcomp.2009.095
- M.I. Khan. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. *Building and Environment*, *37*, 607–614.
- Mendes, J. C., Barreto, R. R., de Paula, A. C. B., Elói, F. P. da F., Brigolini, G. J. and Peixoto, R. A. F. (2019). On the relationship between morphology and thermal conductivity of cement-based composites. *Cement and Concrete Composites*, 104(October 2018), 103365. https://doi.org/10.1016/j.cemconcomp.2019.103365
- Nepomuceno, M. C. S., Isidoro, R. A. S. and Catarino, J. P. G. (2018). Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste. *Construction and Building Materials*, 165, 284–294. https://doi.org/10.1016/j.conbuildmat.2018.01.052
- Tewar, B., Shah, P. M. and Patel, P. B. (2017). Effect of Partial Replacement of Sand with Wastage of Manufactured AAC Block in Concrete. *Materials Today: Proceedings*, 4(9), 9817–9821. https://doi.org/10.1016/j.matpr.2017.06.273
- Zhao, Z., Remond, S., Damidot, D. and Xu, W. (2015). Influence of fine recycled concrete aggregates on the properties of mortars. *Construction and Building Materials*, 81, 179–186. https://doi.org/10.1016/j.conbuildmat.2015.02.037
- UNI EN 13295:2005. Products and systems for the protection and repair of concrete structures. Test methods. Determination of resistance to carbonation
- UNI EN 1015-11:2007. Determination of flexural and compressive strength of hardened mortars
- UNI EN 1936:2007. Determination of real density and apparent density, and of total and open porosity
- UNI EN 14630:2007. Products and systems for the protection and repair of concrete structures. Test methods. Determination of carbonation depth in hardened concrete by the phenolphthalein method
- UNI EN 196-6:2010. Methods of testing cement Part 6: Determination of fineness.
- UNI EN 459-1:2010. Building lime Part 1. Definitions, specifications and conformity criteria
- UNI EN 933-1:2012. Tests for geometrical properties of aggregates Part 1: Determination of particle size distribution sieving method
- UNI EN 1097-6:2013. Tests for mechanical and physical properties of aggregates Part 6: Determination of particle density and water absorption
- UNI EN 998-1:2016. Specification for mortar for masonry Part 1: Rendering and plastering mortars
- UNI EN 998-2:2016. Specification for mortar for masonry Part 2: Masonry mortar
- UNI EN 1015-12:2016. Methods of test for mortar of masonry Part 12: Determination of adhesive strength of hardened rendering and plastering mortars on substrates.