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In this work, we explored the feasibility of predicting the structural drift from the first
seconds of P-wave signals for On-site Earthquake Early Warning (EEW) applications. To
this purpose, we investigated the performance of both linear least square regression (LSR)
and four non-linear machine learning (ML) models: Random Forest, Gradient Boosting,
Support Vector Machines and K-Nearest Neighbors. Furthermore, we also explore the
applicability of the models calibrated for a region to another one. The LSR and ML models
are calibrated and validated using a dataset of ∼6,000 waveforms recorded within 34
Japanese structures with three different type of construction (steel, reinforced concrete,
and steel-reinforced concrete), and a smaller one of data recorded at US buildings (69
buildings, 240 waveforms). As EEW information, we considered three P-wave parameters
(the peak displacement, Pd, the integral of squared velocity, IV2, and displacement, ID2)
using three time-windows (i.e., 1, 2, and 3 s), for a total of nine features to predict the drift
ratio as structural response. The Japanese dataset is used to calibrate the LSR and ML
models and to study their capability to predict the structural drift. We explored different
subsets of the Japanese dataset (i.e., one building, one single type of construction, the
entire dataset. We found that the variability of both ground motion and buildings response
can affect the drift predictions robustness. In particular, the predictions accuracy worsens
with the complexity of the dataset in terms of building and event variability. Our results
show that ML techniques perform always better than LSR models, likely due to the
complex connections between features and the natural non-linearity of the data.
Furthermore, we show that by implementing a residuals analysis, the main sources of
drift variability can be identified. Finally, the models trained on the Japanese dataset are
applied the US dataset. In our application, we found that the exporting EEW models
worsen the prediction variability, but also that by including correction terms as function of
the magnitude can strongly mitigate such problem. In other words, our results show that
the drift for US buildings can be predicted by minor tweaks to models.
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INTRODUCTION

Seismic risk is one of the main concerns for public authorities in
seismic prone regions. Earthquake Early Warning Systems
(EEWSs) are complex infrastructures that can mitigate the
seismic risk of citizens and losses by the rapid analysis of
seismic waves (Gasparini et al., 2011). Typically, EEWS
analyzes seismic data in real-time for automatically detects
and predict the earthquake size using the first seconds of
P-wave signals. Generally, by these pieces of information,
EEWSs attempt predicting the ground motion (e.g., Peak
Ground Acceleration, PGA) at specified targets. Hence,
EEWSs disseminate alerts to targets where the shaking
intensity is expected to overcome a damage threshold.

There are two main families of EEWS: on-site and regional
systems (Satriano et al., 2011). The on-site approaches use a single
station, or a small seismic network, installed near the target. On
the other hand, in regional systems, a seismic network is placed
near the seismogenic zone, which normally is placed sufficiently
far from the target area to protect. Furthermore, on-site systems
use P-waves information to directly predict ground motion
through empirical scaling laws, while regional ones exploit
primarily P-waves, but also S-waves information, from stations
close to the epicenter for estimating the source location and
magnitude, which in turn are feeding GMPEs (Ground Motion
Prediction Equation) for predicting the ground motion at targets.

A fundamental EEWS parameter is the time available to
mitigate the seismic risk at a target before damaging ground
motion related to S-waves or surface waves reach it (hereinafter
called “lead-time”). Depending on the hypocentral distance
between seismic source and target, the lead-time of the EEWS
approaches is different: at higher distances, the lead-time is
greater for regional systems; at shorter distances, on-site
EEWSs are faster and can provide useful alerts when the
regional systems fail (Satriano et al., 2011).

In the last 2 decades, several works have proposed the use of
P-wave features in on-site EEW framework. Wu and Kanamori
(2005) proposed the inverse of the predominant period, τc,
measured on the first 3s of P-wave waveforms to predict the
magnitude. The same authors have also proposed the Peak of
Displacement, Pd, on 3s window to predict the Peak Ground
Velocity, PGV (Wu and Kanamori, 2008). Brondi et al. (2015)
used the Pd and the Integral of squared Velocity, IV2 to predict
the PGV and the Housner Intensity, IH. Spallarossa et al. (2019)
and Iaccarino et al. (2020) explored the use of Pd and the IV2 and
for predicting PGV and the Response Spectra of Acceleration,
RSA, amplitudes at nine periods, respectively, using a mixed-
effect regression approach aiming to account for site-effects.

Besides the ground motion in free field, recently, efforts to
predict the structural response in EEWS applications have also
been proposed (i.e., applications where the Structural Health
Monitoring, SHM, meets the EEWS goal to disseminate real-
time alerts). The outputs of these methods can, for instance,
trigger automatic isolation systems (Chan et al., 2019; Lin et al.,
2020) based on damage level predictions through Engineering
Demand Parameters (EDP). For example, Picozzi (2012)
proposed to combine P-wave features with the structural

building response retrieved by interferometry and a multi-
sensors system (Fleming et al., 2009) to predict both the
earthquake parameters and the structural response. Kubo et al.
(2011) proposed a built-in EEWS for buildings that is able to
automatically stop the elevator, start an acoustic alert at each
floor, and predict displacement intensity and story drift angle at
each floor. In perspective, the use of new advanced technologies,
such as Internet of Things and 5G, will significantly facilitate for
the easy and huge implementation of such systems (D’Errico
et al., 2019).

This work aims to explore the use of P-wave parameters
(i.e., Pd, IV2 and the integral of squared displacement, ID2) to
predict the structural response in on-site EEWS applications. In
particular, following Astorga et al. (2020), we considered the drift
ratio (Dr.) as a robust and reliable parameter to link in the
building response. The parameter Dr. is computed as the relative
displacement between two sensors in the building (one placed at
the top floor and the other at the bottom floor of the building)
divided by the height difference between the sensors.

To this purpose, we investigated the performance of different
algorithms to develop robust empirical model between our EEWS
parameters and Dr Specifically, we explored both Least Square
Regression (LSR) and Machine Learning (ML) techniques. Since
Mignan and Broccardo (2019) have demonstrated that complex
MLmodels are often overused, one of our goal is to verify whether
MLs, considering their complexity and the difficulties in a suitable
training, provide advantages or not with respect to simpler linear
models in EEW applications.

We investigated four different machine learning regressors:
Random Forest (RF, Breiman, 2001), Gradient Boosting (GB,
Friedman, 2001), Support Vector Machine (SVM, Cortes and
Vapnik, 1995) and K-Nearest Neighbors (KNN, Altman, 1992).
These MLs are used to parameterize models aiming to predicting
log10Dr from the three P-wave proxies and three time-windows
(i.e., 1, 2, and 3 s). For each regressor, we tune two hyper-
parameters by comparing the results of K-fold cross-validation
(with K � 5) using the training set (Stone, 1974). Then, the best
hyper-parameters set is used to train the ML algorithms with the
entire training set (i.e., 80% of the data), and finally, we test their
performance with a testing set (i.e., 20% of the data). This
procedure allows us to assess in a robust way the regression
performance. In parallel, we calibrated models also using linear
least square regressors (LSR). To this aim, we used two strategies:
we calibrated LSR models for single P-wave features (i.e., three
P-wave proxies times three time-window lengths); we used all the
features together for calibrating LSR models, mimicking what is
done for ML. Therefore, we compare the ML performance with
the LSR models.

The calibration and performance analysis are carried out by
progressive steps, where the complexity of the dataset is increased
at each step. In the first analysis, we focused on the Shiodome
Annex (ANX) building, a Japanese Steel-Reinforce-Concrete
(SRC) building. With its 20 years-long history of earthquakes
recording, ANX represents the perfect starting case study to
understand the capabilities of the methods.

In the second step, we considered all the Japanese SRC
buildings. The rationale in this choice is that, even if they are
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of the same typology of ANX, we expect that the combination of
the buildings response with different site conditions can
contribute to inflate the drift variability.

Finally, in the third step we used the complete Japanese dataset,
and we performed a residuals analysis de-aggregating them for
building and earthquake characteristics. The aim of this last analysis
is to explore the possibility of retrieving correction factors that in future
EEW applications can be used for improving the drift predictions.

Finally, we verified the validity of the ergodic assumption for
the EEWS calibrated models, a typical problem in seismology
when models calibrated for a region are applied to data in other
areas. To this aim, we applied the models calibrated using the
Japanese dataset to the waveforms recorded in U.S. buildings.

DATASETS AND METHODS

Datasets
We consider 3-components waveforms recorded at Japanese and
U.S. buildings (Astorga et al., 2020). The considered buildings
belong to three different types of construction (Table 1): steel
(ST), reinforced concrete (RC) and steel-reinforced concrete
(SRC, only Japanese buildings). All buildings have one sensor
at the ground floor and one at the top floor. We measure P-waves
EEW parameters (Pd, IV2, ID2; hereinafter we refer to them in
general way as XP parameters) for different signal lengths (i.e., 1,
2 and 3 s) from the station at the ground level, while Dr. is
measured using both sensors.

The Japanese dataset (Figure 1A) is made up by 5,942
waveforms collected from 2,930 earthquake recorded at 34
buildings. The magnitude of the events, from the Japan
Meteorological Agency (JMA), ranges from MJMA 2.6 to MJMA

9, and the epicentral distances vary between 2.2 and 2,514 km.
The US dataset (Figure 1B) is formed by 240 waveforms from

90 events recorded at 69 buildings. The magnitude of these events
ranges from Mw 3.5 to Mw 7.3, while the epicentral distance
ranges from 2.7 to 391 km.

Table 1 presents the buildings classification according to
construction material and height. The largest set of data is
available for ANX (Figure 1A), an SRC building in Japan that
includes 1,616 waveforms recordings. Since the height is
considered important in determining the buildings response,
we used the number of floors to divide the dataset into two
categories: 1) low-rize buildings when the number of floors is less
than eight; 2) high-rize buildings for the others. This classification
is similar to the one done in Astorga et al., 2020, but, here, low-
rize and mid-rize categories are merged in the low-rize category.

P-Wave Features
Waveforms are filtered using a narrow bandpass Butterworth
filter between the frequencies 0.5 and 2 Hz. This choice was made
following Astorga et al. (2019) and is motivated by the aim of
selecting signals that are strongly related to the structural
response. Indeed, for the building as those considered in this
study the co-seismic fundamental frequency is usually within this
range (Astorga et al., 2020).

Since our objective is to calibrate models for on-site EEW
application, we considered as proxy of drift parameters estimated
from P-wave signal windows of limited lengths (i.e., 1, 2 and 3 s
after the P-waves first arrival). The rationale behind this choice is
that the three time windows can allow to capture the temporal
evolution of the drift, and also to assess the consistence/
robustness of the estimates in time. Furthermore, selecting a
fixed time window length in EEW systems is not a trivial task.
Indeed, two contrasting effects play a role in taking this decision.

TABLE 1 | Dataset summary.

Japanese dataset US dataset

Low-rize High-rize Low-rize High-rize

RC 10 3 13 9
SRC 5 7 0 0
ST 1 8 28 19

FIGURE 1 |Map of the dataset used in the study. The stars indicate the events, the color and the size refer to the magnitude following the legends in the figure. The
black squares indicate the buildings, the green one in figure a) is the ANX building.
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From one hand, the signal windows should be as shorter as
possible to increase the lead-time. On the other hand, since the
rupture duration increases with magnitude, selecting too short
time-windows lead to the saturation of the prediction, which
results in wrong prediction for large earthquakes (i.e., in analogy
with the typical magnitude saturation problem in seismology). In
this study, using time windows withmaximum length equal to 3 s,
we expect our P-wave proxies to saturate around magnitude Mw
7 (e.g., Yamada and Mori, 2009).

To assess the structural response, we consider the
dimensionless structural drift, Dr., defined as (Astorga et al.,
2020)

Dr � (PTD − PGD)/h (1)

where PTD is the Peak of Displacement in the top of the building,
PGD is the Peak of Displacement at the ground level of the
building and h is the distance between the two sensors.

Concerning the P-waves features, we rely on the peak of
displacement (Pd), the integral of the squared velocity (IV2)
and the integral of the squared displacement (ID2).

These features are computed on the vertical component
following Iaccarino et al. (2020).

ID2 � ∫tp+τ

tp

d2(t) dt (2)

IV2 � ∫tp+τ

tp

v2(t) dt (3)

Pd � max
tp ≤ t ≤ tp+τ

|d(t)| (4)

where tp is the first arrival time, t is the window length, d(t) is the
displacement, and v(t) is the velocity. Pd is measured in cm, IV2 in
cm2/s and ID2 in cm2·s. Since we measure these three XPs on
three different windows, we have a total of nine different features:
ID2

1s, ID
2
2s, ID

2
3s, IV

2
1s, IV

2
2s, IV

2
3s, Pd1s, Pd2s, Pd3s.

Case Studies
The availability of two rich datasets, relevant to two countries
with different building typology and tectonic contexts, motivated
us to explore the effect of the dataset complexity in the robustness
of EEWmodel predictions. It is quite common in seismology, and
especially in EEW applications, to use an ergodic approach in the
use of EEWmodels. In other words, models calibrated combining
datasets from different regions are exported to further areas
assuming that regional effects do not play role in the model
uncertainty (Stafford, 2014). However, results of recent EEW
studies (e.g., among others Spallarossa et al., 2019; Iaccarino et al.,
2020) have shown the opposite; that is to say, regional
characteristics can play an important role in the robustness
and accuracy of the EEW predictions, leading to increase the
epistemic uncertainty (Al Atik et al., 2010). For this reason, we
proceeded setting four different case studies using datasets of
increasing order of heterogeneity. We started calibrating EEW
models from a specific building (i.e., ANX in Japan); then, we
moved forwards including more buildings from the same
typology and region (i.e., SRC from Japan); and then, the
same region but with different construction typology. Finally,

we applied the models calibrated with Japanese data to those
recorded at U.S. buildings. Our strategy of assessing the
performance of LSR and ML models in progressively harder
conditions (i.e., varying dataset size and composition) aims to
unveil eventual drawbacks and limitations in their use.

To set a robust assessment of the models calibrated by
different approaches (i.e., ML and linearized algorithms) and
datasets (i.e., #1 ANX, #2 SRC-JAPAN, #3 all JAPAN buildings,
#4 U.S. buildings), we define a training set (80% of the data) and a
testing set (20% of the data) for each of the case studies. In all
cases, the data for training and testing are selected by randomly
splitting the dataset. The training set is used to tune the model
parameters. Then, the trained model is used to predict the drift of
the testing set. This will provide a trustworthy way to compare
LSR and ML models. This procedure will avoid any bias in the
evaluation of the models.

Case 1. The ANX building is considered for a building specific
analysis (i.e., the same site conditions and building features
characterize all the data). Therefore, the variability of data in
terms of amplitude and duration length is, in this case, due to only
the within-event and aleatory variability (Al Atik et al., 2010).
Case 2. In the second step of our analysis, we considered the
dataset formed by all the data from SRC buildings in Japan.
This second dataset is made up by 3,086 waveforms from 2,034
events and 12 buildings (of course including also ANX). This
analysis, thus, allows us to study the variability related to
different site conditions and building responses.
Case 3. We considered the complete Japanese dataset. With
respect to the previous one, this dataset also includes the
complexity due to differences in the seismic response between
different types of construction.
Case 4. We studied the implications of exporting the retrieved
model for Japan to another region. To do this, we apply the
models trained on the Japanese dataset to the U.S. dataset.
Clearly, this application is expected to be the more difficult
since different aspects can play a role in degrading the model
prediction capability. First of all, there are well-known tectonic
and geological differences between Japan and California. The
main difference is that the former is a subduction zone with a
prevalence of thrust earthquakes, while, in the latter, most of
the earthquakes are associated to strike-slip faults. Another
important aspect to account for is that differences may exist
within the building type of construction, due to different
building design codes between Japan and United States.

Linear Least Square Regression
The selected nine XPw (see P-Wave Features) are strongly
covariant, since they are relevant to the same P-wave signals
observed in different domains (i.e., displacement, and velocity)
and time (i.e., 1, 2 and 3 s). While ML techniques can address this
issue, the LSR approaches are prone to problems in cases where
the dependent variables are correlated each other. For this reason,
we applied the LSR in two different ways.

In the first approach, we used the features separately. This
leads us to have nine different linear models that, for the sake of
simplicity, have the same functional form, as:
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log10Dr � a + bplog10XPw (5)

where XPw can be any of the P-wave parameters (Eqs 2–4) at a
specific window-length w (i.e., 1, 2 or 3 s). We will refer to these
models as “LSR XPw”.

For all these techniques, we calibratedMLmodels by adopting an
approach that mimics increase of information with time typical of
EEW applications (i.e., the temporal evolution of time-windows in 1,
2, and 3°s). In particular, for the first time-window (1 s), we use only
the 3 P-wave parameters available at that time. For the second time-
window (2 s), we consider the information available at this moment
(i.e., the features at 1 and 2 s, for a total of 6 features). Finally, for the
3 s window, we use all nine features.

In the second approach we mimic the increasing of
information with time typical of EEW applications (i.e., the
temporal evolution of time-windows in 1, 2, and 3 s). In
particular, for the first time-window (1 s), we use only the 3 P-
wave parameters available at that time. For the second time-
window (2 s), we consider the information available at this
moment (i.e., the features at 1 and 2 s, for a total of 6
features). Finally, for the 3s window, we use all nine features.
We will refer to three combined models as “LSRw”.

In total, we will compare 12 linear models.

Machine Learning Regressors
As previously said, we use four different ML techniques: Random
Forest (RF, Breiman, 2001), Gradient Boosting (GB, Friedman,
2001), Support Vector Machine (SVM, Cortes and Vapnik, 1995)
and K-Nearest Neighbors (KNN, Altman, 1992). In this section,
we shortly present them focusing on hyper-parameters tuned by a
K-fold cross validation. Of course, we refer to the referenced
works for their deeper understanding.

RF Regressor
RF regressor (Breiman, 2001) is an ensemble of a specified
number of decision tree regressors (Ntr). A decision tree
regressor works as a flow-chart in which, for each node, a
feature is selected randomly to subdivide the data in two
further nodes through a threshold. This latter is chosen to
minimize the node impurity, as follows:

I � 1
N

∑N
i�1

(yi − ŷ)2 (6)

where N is the number of the training data in the node, yi is the
real value of the target for the ith datum and ŷ is the predicted
value of the end node in which the ith point is assigned. The
predicted value of the end node is simply the mean value of the
data in the end node itself. The depth of the trees is controlled by a
tolerance factor that stops the subdivision procedure if the gain in
impurity is not enough, or by reaching a maximum depth value
Mdep. The final regression is given by the average prediction of all
the trees. We select Ntr andMdep as the hyper-parameters to tune.

GB Regressor
In a similar way to RF, the GB regressor is an ensemble of Ntr

decision tree regressors (Friedman, 2001). The main difference

between the two is that in GB the steepest descent technique is
applied to minimize a least square loss function. In this algorithm,
each decision tree plays the role of a new iteration, while the
procedure is controlled by the hyper-parameter learning rate (Lr).
From preliminary studies, we decide to fix Ntr � 300 and we tune
Mdep and Lr.

SVM Regressor
The SVM regressor searches the best hyperplane to predict the
target value also minimizing the number of predictions that lies
outside an ε-margin from the hyperplane (Cortes and Vapnik,
1995). The result is achieved solving the problem:

min
ω,b,ξ

⎡⎣1
2
ωTω + C∑

i

(ξi + ξpi )⎤⎦ (7)

whereω ∈ Rp and b ∈ R are the linear regression parameters for p
features, C is a penalty factor, and ξi , ξpi are positive slack
variables representing the distance from the lower or the
upper margins. It is worth to note that the slack variables
(ξi and ξpi ) are both non-zero only if the datum lies inside the
margins. Furthermore, to include any nonlinear trends, we used a
Gaussian kernel with σSVM as variance. In summary, the main
hyper-parameters for this technique are ε, C and σSVM. Looking at
preliminary testing results, we fixed ε � 0.1 and we tuned C
and σSVM.

KNN Regressor
Finally, the KNN regressor predicts the target of a certain datum
as the weighted average of the KN nearest data target, where the
weights are the opposite of the distance (Altman, 1992). This
technique is a lazy learner because the training step consists only
in the memorization of a training set. We use the Minkowski
distance of order p (van de Geer, 1995). We use KN and p as
hyper-parameters to tune.

For all these techniques, we calibrated ML models by adopting
an approach similar to the one adopted for combined LSR
models. That is to say, we will use all the available features at
each second (i.e., 3 features at 1s, 6 at 2s and, finally, nine features
at 3s) to calibrate the ML models. In this way, we have three
configurations for each ML regressor with a total of 12 ML
models. Hereinafter, we will refer to these models as MLw,
where ML can be RF, GB, SVM or KNN, and w is the time
window used.

Validation Process
For all ML methods, we apply the logarithm base 10 to all the
features and then we standardize them to have a unit variance.
For each ML algorithm, we apply a K-fold cross-validation
(Stone, 1974) on the training set with K � 5 for each set of
hyper-parameters. We use the coefficient of determination R2 as
comparative score, so as to find the optimal configuration for
each model. This effort is done to avoid two critical issues that are
well-known with ML techniques: underfitting and overfitting
(Dietterich, 1995; Hawkins, 2004; Raschka and Mirjalili, 2017).
A model is underfitted when it is too simple and is not able to
retrieve good predictions even on the training set (e.g., this can
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happen also when LSR is performed on strongly non-linear
databases). On the other hand, a model is overfitted when it
performs very well on the training set but presents a lack of
accuracy on the testing set. This problem arises when a model is
so complex that it results too linked with the training data
variability.

ANX AND SRC ANALYSIS

In this section, we analyze the EEW models calibrated
considering the ANX and SRC buildings subsets.

Least Square Regression Models
As said above, we develop 12 linear models (i.e., derived
combining three P-wave proxies and three different windows,
and the combined LSR models) for the two datasets. As example,
we show in Figure 2 the results of the regression performed for Pd
considering the three windows on the ANX (similar figures are
shown for IV2 and ID2 as supplementary information,
Supplementary Figures S1, S2). Figure 2 shows that both the
training set (gray circles) and testing set (green triangles) have the
same variability around the fit. We report the results of all the
linear regressions, for ANX in Table 2, and for SRC in Table 3,
whereas the first two columns report the regression parameters as

in Eq. 5 (for LSRw models, we reported the regression coefficients
in Supplementary Table S1). Moreover, the third column, σtrain,
contains the standard deviation of the residuals for the training
set, while the fourth column, σtest, contains the same but for the
testing set. Finally, in the last two columns, we report the R2 value
for training and testing sets.

Looking at the results shown inTable 2 (i.e., ANX), themodels
perform slightly better on the testing set both in terms of σ and R2.
This difference is probably due to the different amount of data
within the two sets. It is worth to note that the prediction
improves with the increasing of the window length for all the
models, i.e., looking at Pd, σtest is 0.52 at 1 s, 0.47 at 2 s and 0.44 at
3 s. In the end, comparing XPs, we note that IV2 and Pd have
similar performances, while ID2 is the worst. The combined
models perform always better than the single-feature models
looking window-by-window. LSR3s provides the best
performances with σtest � 0.39 and R2

test � 0.60 (these values
are bolded in Table 2).

From Table 3, we can note that the performance of the LSR
models for the Japanese SRC buildings is always slightly worse
than that for ANX. This result is probably due to the increase
in the between-buildings variability of the observations, that
can also be affected by different site conditions (we will focus
on this important aspect in the following section). An
improvement of predictions with the time window lengths

FIGURE 2 | Dr. vs. Pd (cm) of the ANX dataset for three different windows. Gray dots refer to train set data. Green dots refer to test set data. The red lines are the
least square regression performed for the train set. The black lines, instead, represent the ±σtrain confidence level. The equation of this line is written in the upper part of
each figure with its own test residual variability, σtest.

TABLE 2 | Least square regression results, ANX dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.41 0.21 0.56 0.54 0.22 0.25

ID2
2s −3.13 0.27 0.51 0.49 0.35 0.39

ID2
3s −3.01 0.31 0.48 0.46 0.43 0.46

IV21s −3.56 0.22 0.54 0.52 0.27 0.31
IV22s −3.42 0.27 0.49 0.47 0.40 0.43
IV23s −3.34 0.30 0.46 0.44 0.46 0.49
Pd1s −3.22 0.47 0.54 0.52 0.26 0.29
Pd2s −2.94 0.60 0.49 0.47 0.39 0.43
Pd3s −2.77 0.67 0.46 0.44 0.47 0.50
LSR1s 0.53 0.51 0.30 0.34
LSR2s 0.44 0.43 0.51 0.53
LSR3s 0.41 0.39 0.57 0.60

TABLE 3 | Least square regression results, SRC dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.25 0.22 0.53 0.54 0.32 0.33

ID2
2s −3.17 0.26 0.50 0.51 0.41 0.40

ID2
3s −3.14 0.28 0.47 0.48 0.47 0.46

IV21s −3.49 0.22 0.53 0.54 0.34 0.33
IV22s −3.47 0.25 0.49 0.51 0.42 0.41
IV23s −3.47 0.27 0.47 0.48 0.47 0.47
Pd1s −3.18 0.47 0.52 0.54 0.35 0.33
Pd2s −3.08 0.54 0.49 0.51 0.43 0.39
Pd3s −3.03 0.58 0.46 0.49 0.49 0.45
LSR1s 0.52 0.54 0.36 0.33
LSR2s 0.46 0.49 0.49 0.45
LSR3s 0.44 0.46 0.54 0.51
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is again observed. In this case, the combined models improve
the predictions only for 2 s, and 3 s windows. Finally, we
obtain again the best results for LSR3s with σtest � 0.46 and
R2
test � 0.51 (bolded in Table 3).
We show, in Figure 3, the predicted Dr. vs. the real Dr. using

the LSR model calibrated using the combined model LSRw for the
three windows on the ANX (Figures 3A–C) and SRC (Figures
3D–F) testing datasets as red triangles. We also plot the standard
deviation references as red dashed lines. From these results, we

can see the improving of the performances due to the increasing
of the window length.

Machine Learning Regression
Tables 4, 5 report the results for 12 ML regression models (see
Linear Least Square Regression) for the ANX and SRC datasets,
respectively. In these tables, each row refers to a different MLw.
The parameters σtrain and R2

train are the mean of the same
parameters obtained by the K-fold cross-validation on the

FIGURE 3 | Predicted Dr. vs. Real Dr. for three different windows for ANX dataset (A–C) and for SRC dataset (D–F). Red triangles refer to the prediction made least
square regression using combined LSR for both datasets measured at the reference window. Blue squares refer to the predictions of the SVM regressor at the reference
window. The black line Real Dr. � Predicted Dr. reference line. The dotted lines represent ±σtrain confidence level for LSR (red) and ML (blue) models.

TABLE 4 | ML regression results, ANX dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.49 0.49 0.38 0.38
RF2s 0.44 0.42 0.51 0.53
RF3s 0.42 0.39 0.55 0.60
GB1s 0.50 0.49 0.36 0.38
GB2s 0.44 0.42 0.50 0.53
GB3s 0.43 0.39 0.53 0.59
SVM1s 0.49 0.47 0.39 0.43
SVM2s 0.42 0.40 0.54 0.57
SVM3s 0.40 0.37 0.58 0.64
KNN1s 0.49 0.50 0.37 0.35
KNN2s 0.44 0.42 0.51 0.54
KNN3s 0.42 0.39 0.56 0.59

TABLE 5 | ML regression results, SRC dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.50 0.51 0.41 0.40
RF2s 0.46 0.46 0.50 0.51
RF3s 0.44 0.43 0.54 0.57
GB1s 0.50 0.51 0.40 0.40
GB2s 0.46 0.46 0.50 0.51
GB3s 0.44 0.44 0.54 0.55
SVM1s 0.49 0.50 0.42 0.41
SVM2s 0.45 0.45 0.52 0.53
SVM3s 0.42 0.42 0.57 0.58
KNN1s 0.50 0.51 0.39 0.39
KNN2s 0.46 0.47 0.49 0.49
KNN3s 0.43 0.44 0.55 0.55
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training set. After the training, we apply the calibrated models to
the testing dataset.

Looking at Table 4, σtest and R2
test are in general equal or

slightly better than the values for the training set. A similar result
has been observed also in the least square regression analysis
(Table 2). Since our predictions do not worsen on the testing set,
we are confident that we are avoiding overfitting. Furthermore,
applyingML analyses, the prediction performance is improved by
using the longest time window available. Lastly, SVM3s is the best
ML among the tested ones, with σtest � 0.37 and R2

test � 0.64
(bolded in Table 4).

As for the least square regression analysis results, also in this
case we observe that drift prediction worsens increasing the
building numbers (i.e., going from ANX to SRC buildings).
This result shows us that despite buildings are of the same
construction typology, the varying site conditions can play a
significant role in increasing the drift estimates variability. As for
the ANX analysis, the SVM technique provides the best Dr.
predictions; in particular, SVM3s provides the best model with
σtest � 0.42 and R2

test � 0.58.
Figure 3 shows the comparison between the best LSR model

(i.e., combined LSR for both datasets, red triangles) and the best
ML technique (i.e., SVM for both datasets, blue squares). As
expected, we observe for both datasets that the model prediction
improves with the time window length (i.e., predictions and
observations get closer to the 1:1 reference line; black line),
especially for higher Dr. values.

Our results highlight also that the SVM technique provides
slightly better predictions than LSR models for both ANX and
SRC datasets. Indeed, the variability of prediction for SVM is
smaller than that from the linear regression models. This effect is
even more evident looking at low and high Dr. values (Figure 3),
for which the linear regression models lead to higher variability in
the prediction (i.e., especially for SRC buildings, panels d–f).

Such underestimation increases with drift amplitude, which is
clearly function also of the events magnitude. For this reason, we
hypothesize that the drift underestimation is due to two main
effects: 1, for larger magnitude earthquakes (i.e., Mw > 7.5) the
moment rate function is longer than 3 s, leading the maximum
time-window (3s) to saturate, which in turns makes it difficult to
predict Dr.; 2, differently from most of the datasets, the
waveforms of large magnitude events are recorded at very

large hypocentral distances and can be dominated by high
amplitude surface waves. The dominance of surface waves in
such signals can pose a problem to our analyses, because our
dataset is mostly dominated by moderate to large magnitude
events (the 90% of the Japanese data is between Mw 3.6 and 7.0)
and the larger ground motion is related to the S-waves. Therefore,
models calibrated for estimating the drift associated to S-waves
are not efficient in predicting Dr. associated to very large
magnitude earthquakes at large hypocentral distances
generating high amplitude surface waves.

The analysis on the ANX and SRC datasets suggest us that it is
possible to predict in real-time Dr. using P-wave parameters. The
best predictions are obtained using the 3stime-windows and
using ML models (i.e., the model SVM3s).

JAPANESE DATASET ANALYSIS

In this section, we discuss the development and testing of
prediction models considering the entire Japanese dataset.

Least Square Regression Laws
Table 6 reports the results for LSR models calibrated on the
Japanese dataset. In this case, we observe that the performances
on training and testing set are very similar. Again, we notice an
overall worsening of both the scores with respect to the ANX
(Table 2) and SRC buildings (Table 3). Clearly, this outcome was
expected, given that the Japanese dataset includes more variability
than the other two datasets.

In this case, all the P-wave proxies (XPs) show basically the
same results in terms of σtest and R2

test for the same windows. On
the other hand, combined LSR models perform slightly better at 2
and 3s. We have the best results for LSR3s, as in the other cases,
σtest � 0.48 and R2

test � 0.41. Despite such low fitting score can
generate skepticism about these LSR models utility, in the
following Residual Analysis, we will show that by a residual
analysis we can identify some of the component generating
the large variability of predictions.

Machine Learning Regression
Table 7 is the analogue of Tables 4, 5 for the Japanese dataset. As
for the previous cases, MLs perform better than LSR for the same

TABLE 6 | Least square regression results, Japanese dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.52 0.18 0.54 0.54 0.23 0.24

ID2
2s −3.46 0.21 0.52 0.52 0.29 0.30

ID2
3s −3.41 0.23 0.50 0.50 0.33 0.34

IV21s −3.75 0.17 0.54 0.54 0.22 0.24
IV22s −3.72 0.20 0.52 0.52 0.28 0.29
IV23s −3.71 0.22 0.51 0.50 0.32 0.34
Pd1s −3.48 0.37 0.54 0.54 0.23 0.24
Pd2s −3.38 0.43 0.52 0.52 0.30 0.29
Pd3s −3.32 0.48 0.50 0.50 0.35 0.34
LSR1s 0.54 0.54 0.23 0.25
LSR2s 0.50 0.50 0.35 0.34
LSR3s 0.47 0,48 0.41 0,41

TABLE 7 | ML regression results, Japanese dataset.

MLw σtrain σtest R2
train R2

test

RF1s 0.52 0.52 0.28 0.29
RF2s 0.48 0.48 0.39 0.39
RF3s 0.46 0.46 0.43 0.46
GB1s 0.52 0.52 0.28 0.29
GB2s 0.49 0.49 0.38 0.38
GB3s 0.47 0.46 0.43 0.44
SVM1s 0.52 0.52 0.27 0.31
SVM2s 0.49 0.48 0.38 0.40
SVM3s 0.46 0,45 0.43 0,47
KNN1s 0.53 0.53 0.26 0.28
KNN2s 0.48 0.48 0.38 0.40
KNN3s 0.46 0.45 0.43 0.46
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time window. In this case also, the best model is SVM3s, with σtest
� 0.45 and R2

test � 0.47. In Figure 4, we compare the predictions of
LSR3s for one of the best LSR models (Table 5) with that of
SVM3s. This comparison clearly shows us that the cloud of SVM3s

estimates is thinner than that for LSR. Despite that, both models
seem to saturate above Dr. equal to 4*10–4.

The performances of the calibrated models seem to be worse
than those proposed by on-site EEW studies (among others,
(Olivieri et al., 2008; Wu and Kanamori, 2008; Zollo et al., 2010;
Brondi et al., 2015; Caruso et al., 2017). A direct comparison
among different approaches is however unfair. Indeed, despite
the appearance, we must consider that generally on-site EEW
studies focus on the prediction of ground motion parameters
(e.g., peak ground acceleration, PGA) using data collected in free
field. On the contrary, in this study, we predict an engineering
demand parameter (Dr.) using data from in-building sensors.
Our approach is certainly challenging because building responses
inflate the variability of our predictions. Furthermore, we must
also consider that recent studies (Astorga et al., 2020; Ghimire
et al., 2021) explored the prediction of drift from PGA measures
using the same dataset considered here and found a prediction
variability similar to that of our models. Moreover, other studies,
such as Tubaldi et al., 2021, pointed out that event-to-event
variability contributes significatively to the uncertainties in the
damage prediction, even for single structure models.

Residual Analysis
As we saw in Tables 6, 7, the fitting scores for all the methods are
generally rather low. This can be due to numerous factors. One

reason can be the lack of information of the EEW input features
that, as said, are extracted from p waves, while the final building
drift is related to S and surface waves. Anyway, this effect is
unavoidable in onsite EEW and also difficult to quantify. Instead,
we can try to assess which other factors influence the variability of
our methods. So, to better understand the strengths and
weaknesses of the calibrated models, we performed a residual
analysis (Al Atik et al., 2010). To this purpose, we disaggregate the
residuals (predicted minus real Dr. values) by site and event
characteristics. In Figure 5, we compare the testing set residuals
for the LSR model considering Pd3s (red error-bars) and the
equivalent for SVM3s (blue error-bars). For each group, we show
the mean and the standard deviation of residuals. In all sub-plots
of Figure 5, we also show the ±σtrain references for both methods
(i.e., 0.50 for Pd3s represented as red lines, and 0.46 for SVM3s

represented as blue lines).
Figure 5A presents the residuals grouped by buildings, which

are ordered by the mean of the residuals for the two methods. We
colored the labels of the buildings by type of construction (pink
for RC, light green for SRC, blue for ST) and the edge of the label
by the height (brown for low-rize, green for high-rise). At first
glance, we observe that the two methods show similar
performance in terms of mean of the residuals for all the
buildings. Looking at residual variability, however, we observe
that in most of the cases ML performs better than LSR, especially
for two buildings “YKH1” and “SKS”.

A more detailed examination to residuals variation for
different buildings suggests conclusions similar to those of Al
Atik et al. (2010) for ground motion prediction equations
(GMPEs). These authors, indeed, explored the epistemic
uncertainty by splitting it into source, path, and site
contributions. If we consider one or many of these factors in
our model, we are relaxing the ergodic assumption which states
that the variability of the dataset is completely aleatory. The
variability of the residuals in Figure 5A is the result of the site-
effect, which in our particular case is a term used to describe the
response of the soil-structure system that can lead to a very
complex behavior. Nevertheless, the full investigation and
explanation of the causes of these site conditions is beyond the
aim of this paper. In our opinion, the significant variation in
residuals shown in Figure 5A is not surprising, being in
agreement with other studies (Spallarossa et al., 2019;
Iaccarino et al., 2020); which have recently discussed how to
reduce the prediction variability considering site-effect terms in
EEW model using the mixed-effect regression approach
(Pinheiro and Bates, 2000).

As second step, we analyze the residuals grouping them for
building characteristics and height (see Table 1 and Figure 5B).
Our results show that themean of residuals for all building groups
are close to zero, except for low-rize ST buildings. This latter class,
however, includes only the building KWS, that also in the
previous analysis showed a peculiar response (Figure 5A).
Being the average of residuals consistent with zero, the
predictions seem independent from the type of construction
and the height of the buildings.

In Figures 5C,D, we show the residuals vs. the event
parameters magnitude and distance. It is worth noting that

FIGURE 4 | Predicted Dr. vs. Real Dr. of the test set for the Japanese
dataset for 3s windows. Red triangles refer to the predictions with LSR3s. Blue
squares refer to the predictions of the SVM3s model. The black line Real Dr. �
Predicted Dr. reference line. The dotted lines represent ±σtrain
confidence level for LSR (red) and ML (blue) models.
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these are not “sufficiency analysis” as intended by Luco (2002).
Indeed, in the sufficiency analysis a cinematic parameter is
defined as sufficient for predicting an engineering demand
parameter (e.g., Dr.) if the predictions are independent from
magnitude and distance. To confirm this property, a probabilistic
analysis would be needed (Ghimire et al., 2021), but that is
beyond the aim of this study.

Figure 5C shows the error bars, the residual mean and
standard deviation in bins of 1 unit centered on the
magnitude value. From these results, we can clearly see that
the magnitude has a great effect on the prediction. In particular,
we see that the predictions are good between magnitude 4 and 7,
while we overestimate Dr. at lower magnitudes and
underestimate Dr. at higher magnitudes. The overestimation at
magnitudes lower than 3.5 is probably due to the fact that the
predominant frequencies of such events are too high to stimulate
an effective response of the building (i.e., we consider a
frequencies range between 0.5 and 2 Hz). On the other hand,
as previously discussed, the underestimation for magnitude
greater than 7.5 is likely due to: 1) the window length of 3 s,
which is too small compared to the rupture duration and lead to
saturation problems of the prediction; 2) the measured Dr. can be
affected by the presence of surface waves associated to large
magnitude events. Measures of Dr. form signals dominated by

surface waves, indeed, might add non-linear terms to the
equation between our XP and Dr. itself. The underestimation
at high magnitudes can be also caused by the lower number of
recordings in the dataset with respect to those for the smaller
magnitudes, i.e. a typical problem for all the EEWS (Hoshiba
et al., 2011; Chung et al., 2020). Moreover, another possible bias
that big events can introduce are the non-linear responses of site
and buildings, especially during long sequence of earthquakes
(Guéguen et al., 2016; Astorga et al., 2018). The saturation of Dr.
predictions for earthquakes with M > 7.5 is certainly a big issue
for the application of the calibrated models in operational EEW
systems in areas where very large earthquakes are expected, and
further studies are necessary to deal with it. Nevertheless, our
results indicate that the calibrated models can be useful in
countries characterized by moderate to large seismic hazard
(e.g., Italy, Greece, Turkey; where the seismic risk is high due
to high vulnerability and exposure). A more in-depth analysis of
the performances for EEW systems using the models calibrated is
beyond the aim of this study, because it would require target
dependent economic cost-benefit analyses (Strauss and Allen,
2016; Minson et al., 2019).

Interestingly, SVM3s seems providing better results than LSR
for both for lowest and highest magnitude events. In our opinion,
this result suggests a higher performance of non-linear models.

FIGURE 5 | Decomposition of the residuals of Dr. prediction for Japanese test set. The residuals are computed as real Dr. - predicted Dr., so positive values mean
overestimation, and negative residuals mean underestimation. In each panel we show the residuals for two different models: LSR3s with circles representing the single
prediction and red errorbars representing the mean prediction of the group; SVM3s with stars for the single prediction and blue errorbars for the group mean. Red and
blue lines represent the ±σtrain for LSR3s and SVM3s, respectively. The labels in panels (A) and (B) are colored by construction type and height: pink for RC; light
green for SRC; blue for ST; brown edges for low-rize; green edges for high-rize. In panel (A) we decompose the residuals by buildings. In (B) we group them by building
type of construction and height. In panel (C) we use the magnitude to decompose residuals, the groups are evenly spaced and the errorbars are placed in the center of
the bin. In panel (D) the residuals are grouped by distance in km, the groups are evenly spaced and the errorbars are placed in the center of the bin.
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Finally, Figure 5D shows the residuals grouped by the
distance, using 6 bins evenly spaced in logarithmic scale from
100.5 to 103 km. The mean of residuals and the associated
standard deviation are plotted at the center of each
corresponding bin. We observe that all the residuals are close
to zero. Nevertheless, we observe a small overestimation of the
prediction at distances lower than 20 km. This effect is partially
connected to the overestimation seen for low magnitudes
(Figure 5C), because in this range of distances the magnitude
is limited between 2.6 and 5.2. In this case too, the machine
learning seems able to learn how to solve the bias.

The results of the residual analysis suggest: 1) SVM3s is
confirmed as the best model; 2) decomposing the residuals
with respect to buildings, construction type, magnitude, and
distance, we found a broad variation of the mean residuals
with the buildings typology. This result suggests that site-
correction terms should be included in future EEW
application to buildings. 3) The residuals are correlated to the
magnitude, while they seem be much less dependent from the
distance.

US DATASET APPLICATION

In the last part of this work, we apply the models calibrated using
the Japanese dataset to the U.S. dataset. Our aim is to verify if the
usual ergodic assumption often used in EEW application is valid
or not, and eventually to look for strategies that could allow to
successfully export the models from one region to another.

Least Square Regression Laws
Table 8 reports the results for the linear regression performed on
the complete dataset. The most noticeable aspect here is the R2

test

column that presents all negative value. This is due to a quite
important bias in the prediction of Dr. for U.S. building. In
Figure 6, we show the mean residual for U.S. dataset, which are
plotted as orange error bars with the length equal to σtest/σtrain.
Since the residuals are computed as differences between predicted
and observed Dr., the linear regression of the Japanese dataset
underestimates the Dr. of the U.S. buildings of about 1σ. We find
a similar bias also for ML techniques. These observations confirm
that exporting EEW models among different regions,

independently from the algorithm used for their calibration, is
not a straightforward operation.

In the next section, we analyze the causes of this bias, and we
propose a solution.

Bias Analysis
We present here the results of the residual analysis carried out on
the U.S. buildings predictions. Figure 6 shows the results as
orange error-bars for LSR with IV2

2s. We selected this particular
model because, as we will show also later, after the application of a
correction term it becomes the best predictive model for drift on
U.S. buildings.

To correctly evaluate the effectiveness of the method, we
divided the U.S. dataset in two subsets (60 and 40%): whereas
the first subset is used to compute the correction terms and the
second one is used to test the models. The residuals for the
corrected model are plotted as green error-bars for the U.S. train
set and as light blue for the U.S. test set. We report as reference
level the ±σtrain as black lines (see also Table 8).

First, we consider only the uncorrected residuals (i.e., orange
error-bars). In Figure 6A, we plot only the results for U.S.
buildings with at least 3 records, grouping the remaining ones
as “Others”. The buildings are ordered for increasing mean value
of residuals. We observe a general smaller variability of the
residuals with the buildings than for Japanese buildings
(Figure 5A), but at the same time we notice that the majority
of the buildings have predictions underestimated and non-zero
residuals. These results indicate that there is a bias in the global
trend of predictions with respect to the buildings.

Looking at Figure 6B, we can note that, while a small bias is
still present for high-rize buildings, the majority of the bias is due
to low-rize buildings. However, this difference between building
classes is not significant since all the bars are consistent with
each other.

In Figure 6C, as for Figure 5C, we notice a strong correlation
between residuals and magnitude. We can see, indeed, that the
predictions worsen with the increasing of the magnitude.

Finally, in Figure 6D, the residuals for U.S. dataset seem to be
not significantly affected by the distance. Indeed, the residuals
remain equally underestimated but in the second range that goes
from about 6 to 18 km. The anomaly in this range of distances is
probably connected to data distribution. In fact, here we find
events with magnitude between 3.5–4.5 and we can relate this
result with what we observe for low magnitude in Figure 6C.

Bias Correction
In this section, we propose a methodology to account for the bias
observed from the residual analysis applied to U.S. buildings drift
predictions. To this aim, we borrowed the strategy adopted in
seismic hazard studies where the decomposition of the variability
in the ground motion predictions can be used to improve the
estimates (Al Atik et al., 2010).

We consider, as correction terms, the residuals for magnitude
classes, ΔDrM, computed for the U.S. training set (Figure 5C,
orange error-bars). Estimating the magnitude in EEW
applications is a well-established task, with a large number of
operational, reliable algorithms and a wide literature, at least for

TABLE 8 | Least square regression results, complete dataset.

XPw a b σtrain σtest R2
train R2

test

ID2
1s −3.52 0.18 0.54 0.48 0.23 −0.45

ID2
2s −3.46 0.21 0.52 0.46 0.29 −0.37

ID2
3s −3.42 0.23 0.50 0.46 0.34 −0.25

IV21s −3.75 0.17 0.54 0.47 0.23 −0.48
IV22s −3.73 0.20 0.52 0.45 0.28 −0.39
IV23s −3.72 0.22 0.51 0.46 0.33 −0.25
Pd1s −3.49 0.37 0.54 0.48 0.24 −0.44
Pd2s −3.39 0.43 0.52 0.46 0.30 −0.36
Pd3s −3.33 0.47 0.50 0.46 0.35 −0.25
LSR1s 0.54 0.47 0.24 −0.44
LSR2s 0.50 0.46 0.35 −0.35
LSR3s 0.48 0.54 0.41 −0.32
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earthquakes with magnitude smaller than Mw 7.5. For example,
Mousavi and Beroza (2020) showed that by ML approaches
reliable estimation of earthquake magnitude from raw
waveforms recorded at single stations can be obtained
(standard deviation ∼0.2). We thus foresee similar
achievements in EEW in the next future. Here, we considered
suitable to set corrections for our models be magnitude
dependent. Therefore, for the sake of simplicity, we assume
that magnitude estimates are provided in real-time by other
EEW systems and are available as input for our Dr. predictions.

It is worth noting that for very large earthquakes (Mw > 7.5)
the 3-s P-wave windows considered in our study do not include
enough information to estimate the magnitude (Hoshiba et al.,
2011; Chung et al., 2020). Therefore, the proposed magnitude
dependent correction is considered valid only for events smaller
than Mw 7.5.

The ΔDrM terms computed using the EEW magnitude
estimates as input can thus be subtracted to the predicted Dr.
in order to set at zero the mean residual in each magnitude range:
log10Dr

corr � log10Dr − DrM .
Table 9 shows the R2 scores for all the models and time

windows after that we have applied the DrM corrections on the

testing dataset. We observe that, in this case, the 2s predicting
models performs better than the 3s ones. Moreover, LSR3s has still
negative R2 and so the correction in this case is ineffective. It is
difficult to understand if this effect is due to the correction or to
the window that can include more S-wave content at 3s for these
events. The most interesting aspect is that the LSR methods with
single feature perform now better than combined LSR, and ML
models. This result is probably connected to the characteristics of
ML techniques. In fact, ML algorithms are typically less able than
LSR ones to extrapolate the predictions outside the features’

FIGURE 6 | Decomposition of the residuals of Dr. prediction for US dataset using Japanese model. The residuals are computed as real Dr. - predicted Dr., so
positive values mean overestimation, and negative residuals mean underestimation. In each panel we show the residuals for LSR IV22s model in three cases: for the
training set without corrections, with orange tringles representing the single prediction and orange errorbars representing the mean prediction of the group; for the
training set with magnitude dependent correction with green triangles for the single prediction and green errorbars for the group mean; for the testing set with
magnitude dependent correction with light blue triangles for the single prediction and light blue errorbars for the groupmean. Black lines represent the ±σtrain for LSR IV22s.
The labels in panels (A) and (B) are colored by construction type and height: pink for RC; light green for SRC; blue for ST; brown edges for low-rize; green edges for high-
rize. The “Others” label is white. In panel (A)we decompose the residuals by buildings. In (B) we group them by building type of construction and height. In panel (C) we
use the magnitude to decompose residuals, the groups are evenly spaced and the errorbars are placed in the center of the bin. In panel (D) the residuals are grouped by
distance in km, the groups are evenly spaced and the errorbars are placed in the center of the bin.

TABLE 9 | R2 scores for US dataset corrected drift prediction.

Model 1s 2s 3s

LSR-ID2 0.21 0.26 0.25
LSR-IV2 0.27 0,30 0.27
LSR-Pd 0.20 0.24 0.20
Combined LSR 0.22 0.21 −0.03
RF 0.21 0.19 0.09
GB 0.23 0.21 0.08
SVM 0.16 0.21 0.18
KNN 0.10 0.15 0.16
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domain of the training set. In addition, some of them, like RF or
KNN, cannot predict target values outside the target domain for
the training set by construction. Probably, combined LSR models
also suffer of the same problems of ML techniques because of
their complexity.

The best model after the DrM correction is the LSR with IV2
2s.

As anticipated, this is the reason why we plotted the result for this
model in Figure 6.

By construction, after the magnitude correction, the error-bars
(green) have all zero-mean, but we can see that also the residuals
for the test set are consistent with zero (Figure 6C). Figure 6A
now shows that residuals for the training set have the same
number of buildings with underestimated and overestimated
predictions. Moreover, the residuals for the testing set are
consistent the training one, but for three buildings
(i.e., “14,654”, “54,341”, and “58,776”). This variability well
agrees with Figure 5A and as discussed, it depends on site
and buildings effects. In Figure 6B, for both training and
testing set, we find again the difference in mean residuals for
low-rize and high-rize buildings, but this effect is present
especially for ST buildings. Moreover, the drift for high-rize
ST buildings is now meanly overestimated. In the end, in
Figure 6D, we see that, despite some oscillation, the residuals
have not any more dependence with distance, as seen for Japanese
buildings in Figure 5D.

As conclusion of this analysis, we can state that when the
models retrieved considering the Japanese dataset are applied to
the U.S. dataset, the Dr. predictions present a severe bias.
However, by including a magnitude dependent correction term
seems a relatively simple and practice solution to solve the
problem. We have also found that the LSR models, after the
correction, perform better than ML models. The best model, in
this case, is the LSR with IV2

2s.

CONCLUSION

In this work, we tested the performance of several predicting
models for building drift using three different EEW P-wave
parameters computed considering three time-window lengths,
for a total of nine features. We used a dataset of almost 6,000
waveforms from in-building sensors recorded in Japan and
California. We compared linear least square and non-linear
machine learning regressions for a total of 21 different models.
We set up four different case-studies to understand how the data
variability affects the predictions.

Our results can be summarized as follow:
Analyzing a single building (“ANX”) with a very long history

of records, then all the data for the steel-reinforced concrete
buildings (which contains “ANX”), and finally the entire Japanese
dataset, we show that the training and the testing set have the
same kind of variability and ML models perform always better
than least square regression. In particular, MLmodels result more
efficient in dealing with the non-linearity of the problem, likely
because they are able to get more information from features
combining them together. Moreover, the results prove that the
increasing of the time window always improves the predictions.

The results showed us that it is possible to retrieve building
specific EEW models for Dr. prediction. This result is probably
also related to the large size and good quality of the ANX dataset.

The results for the steel-reinforced concrete buildings dataset
show that we can retrieve reliable models also grouping data from
similar buildings. Having a lot of data from more buildings can
help to overcome the problems of a few data from a single
building, but at the price of a decrease in the accuracy of the
predictions. Indeed, we observed a further reduction in accuracy
when we used the entire Japanese dataset. So, increasing in
variability of the dataset lead to models prone to precision of
the predictions problems that should be considered accurately.

To better understand this issue, we used models retrieved on
the entire dataset to explore the residuals correlation with
buildings, types of construction, magnitude, and distance. This
analysis has shown that the prediction residuals are strongly
dependent from buildings and magnitude. In particular, we have
found that some buildings are not well described by the models.
This effect can be considered as a site-effects, which is in this
application due to effects of many combined factors (e.g., 1D-to-
3D soil amplification, soil-structure interaction, building
resonance). Instead, looking at the magnitude, we observed a
drift overestimation at lower magnitude (M < 4) and an
underestimation at higher magnitude (M > 7.5). Such latter
effect is the more worrying for EEW applications and it is
likely due to both the lack of data in this range of larger
magnitude, and to the time window length of 3s that does not
contain enough information about the source size.

We have applied the Japanese models to predict the Dr. in
U.S. buildings, and we have found that in this case the
predictions are biased leading Dr. being underestimated. An
important warning from our study is that EEWmodels for drift
prediction are not directly exportable. This bias may be mainly
due to geological and seismological differences between Japan
and California. An analysis of residuals decomposed for
different factors has shown a strong dependency from site-
effects and magnitude.

We proposed a method to correct the prediction bias resulting
from exporting EEW model to other regions from those of
calibration. We showed that by applying a magnitude
dependent correction terms to the predictions the biases can
be removed. Hence, we showed that by the suggested method, the
predictions become reliable again.

Finally, an interesting result is that, in the particular case of
exporting models to another region, the linear models perform
better than machine learning. This result, despite is not very
surprising since it is well-known that the non-linear models are
less able to extrapolate predictions outside the features’ domain of
the training set, can be a useful warning for the EEWS community
approaching to ML regressors.

Future studies will explore the application of the proposed
methodology considering dataset from different regions. For
those areas characterized by very large earthquakes, as Japan
or Chile, we will explore the use of larger P-wave time-windows.
We believe that this study can stimulate applications of non-
linear ML models in the on-site EEW framework. Indeed, future
studies can use similar approaches for the computation of ground
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motion parameters (i.e., PGV, PGA, etc.), as well as of other
engineering demand parameters.

A final key point coming out from our analysis is the
importance to better understand how the inner variability of a
dataset affects the predictions. Our results suggest in fact that by
increasing the datasets, we can improve the characterization of
the prediction variability ascribed to site effects (e.g. soil-
conditions, building response, soil to structure interaction, etc.).
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