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Abstract

The red-necked longhorn beetle Aromia bungii (Faldermann, 1835) (Coleoptera: Cerambycidae) is native to east Asia, where
it is a major pest of cultivated and ornamental species of the genus Prunus. Morphological or molecular discrimination of
adults or larval specimens is required to identify this invasive wood borer. However, recovering larval stages of the pest from
trunks and branches causes extensive damage to plants and is timewasting. An alternative approach consists in applying non-
invasive molecular diagnostic tools to biological traces (i.e., fecal pellets, frass). In this way, infestations in host plants can
be detected without destructive methods. This paper presents a protocol based on both real-time and visual loop-mediated
isothermal amplification (LAMP), using DNA of A. bungii extracted from fecal particles in larval frass. Laboratory valida-
tions demonstrated the robustness of the protocols adopted and their reliability was confirmed performing an inter-lab blind
panel. The LAMP assay and the gPCR SYBR Green method using the F3/B3 LAMP external primers were equally sensitive,
and both were more sensitive than the conventional PCR (sensitivity > 10? to the same starting matrix). The visual LAMP
protocol, due to the relatively easy performance of the method, could be a useful tool to apply in rapid monitoring of A.
bungii and in the management of its outbreaks.
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Introduction

Accession numbers: Not applicable. Aromia bungii (Faldermann, 1835) (Coleoptera: Ceramby-

cidae), the red-necked longhorn beetle, is an important pest
of fruit and ornamental plants of the genus Prunus, both
in native areas of east Asia and in newly invaded areas of
Europe and Japan (EFSA 2019; EPPO 2020; CABI 2020).
A. bungii can infest healthy or weakened host species and
complete several overlapping generations in the same tree
(Ma et al. 2007). The larvae bore galleries in the trunk and
main branches, causing structural weakness, dieback, and
finally tree death. Biological parameters of A. bungii evalu-
ated in the Italian population showed remarkable fertility
and longevity (Russo et al. 2020).
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A. bungii is in the list of priority pests in the European
Union (EU 2019) and quarantine measures have been
applied in Germany and Italy to eradicate this invasive pest
(Horren 2016) or to contain the risk of further outbreaks
(Carella 2019). These quarantine measures can have a strong
impact on nurseries and farmers.
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Early detection supported by rapid diagnostic protocols
can help to identify the presence of A. bungii on plants irre-
spectively of the developmental stage of the pest, so that
the efficacy of the phytosanitary monitoring in the field and
at points of entry is enhanced. In the latter case, possible
import delays can be avoided (Blaser et al. 2018; Poland
and Rassati 2019).

The high specificity and sensitivity of DNA-based tech-
nologies allows the detection of harmful organisms even
at low concentrations of DNA extracted from plant tissues
(Aglietti et al. 2019; Rizzo et al. 2020a). Among the most
versatile, sensitive and specific methods, loop-mediated
isothermal amplification (LAMP) can be used as a field-
friendly and cost-effective diagnostic tool (Notomi et al.
2000, 2015). Several LAMP tests have been used both in the
field and in laboratories, in particular for human and animal
diseases (Lucchi et al. 2010), in food safety controls (Abdul-
mawjood et al. 2014), as well as in identifying plant patho-
gens (Aglietti et al. 2019; Luchi et al. 2020; Blaser et al.
2018) and invasive insect pests (Huang et al. 2009; Hsieh
et al. 2012; Fekrat et al. 2015; Przybylska et al. 2015; Ide
et al. 2016a, b; Blaser et al. 2018; Sabahi et al. 2018; Rizzo
et al. 2020b). LAMP is a highly specific and robust identi-
fication method for species with previously known DNA or
RNA sequences and suitable for on-site application because
it can be performed in a laboratory-free environment after
minimal training (KogovSek et al. 2015).

This paper presents a reliable and sensitive diagnostic test
for the rapid diagnosis of A. bungii frass using the LAMP
technique. The quality of this method is compared to the
conventional PCR end point method and a qPCR protocol
recently developed for the identification of A. bungii from
frass (Rizzo et al. 2020a).

Materials and methods
Biological samples

The target samples included adults, larvae, and frass of A.
bungii. Adults and larval specimens were supplied by the
Department of Agricultural Sciences of the University of
Naples “Federico II” and the Plant Health Service of the
Campania region. In some farms situated in the pest out-
break area around Naples (Campania, Italy), where A. bungii
is considered as established (Carella 2019), frass samples
(Fig. 1) were collected at the trunk base of Prunus plants and
individually labeled as in Rizzo et al. (2020a).

The non-target samples consisted of a set of DNA sam-
ples from the entomological biomolecular collection of the
phytopathological laboratory of the Phytosanitary Service
of the Tuscany Region. The non-target DNA samples were
listed in a previous paper (Rizzo et al. 2020a) and included
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Fig. 1 Sample of Aromia bungii frass collected in the field

a total of 62 samples belonging to 26 species. They were
used for testing the diagnostic specificity of the protocols.
The non-target samples included, depending on the species,
adults and/or larval specimens and frass samples in the case
of some xylophagous species. Among the non-target species,
a subset of six xylophagous species producing frass (Anop-
lophora chinensis (Forster), An. glabripennis (Motschulsky),
Cerambyx cerdo Linnaeus, Cossus cossus Linnaeus, Sesia
sp. Fabricius, and Zeuzera pyrina Linnaeus) was chosen and
DNA was extracted de novo from their frass for this study.
These DNA samples will be hereafter be referred to as non-
target frass samples.

DNA extraction

The DNA extraction procedure was the same for real-time
and visual LAMP protocols but had some changes in rela-
tion to the matrix (frass or larvae/adults). The extraction was
carried out on A. bungii frass and larvae or adults following
the CTAB extraction method suggested in Li et al. (2008)
with slight modifications. Specifically, in the extraction
from insect frass, about 1 g of matrix was homogenized in
a 10-mL stainless steel grinding jar along with a Tissue-
Lyzer (Qiagen, Hilden, Germany) for 10 s at 2000 opm.
Each larva/adult was ground and homogenized individu-
ally using nylon mesh U-shaped bags (Bioreba, Reinach,
Switzerland). Variable volumes (10 mL for insect frass and
1 mL for larvae) of 2% CTAB buffer (2% CTAB, 1% PVP-
40, 100 mM Tris—HCI, pH 8.0, 1.4 M NaCl, 20 mM EDTA,
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and 1% sodium metabisulfite) were added immediately after
grinding.

A volume of 0.5-1 mL of lysate was then incubated at
65 °C for 10 min, 1 volume of chloroform was added, stirred
by inversion and TissueLyzer centrifuged at 13,000 rpm for
10 min. An aliquot of 600 uL was then taken from the super-
natant and an equal volume of isopropanol was inserted,
mixed by inversion and centrifuged at 13,000 rpm for 5 min.
The resulting pellet was dried by speed vacuum (Eppendorf,
Milan, Italy) for 5 min, then resuspended in 100 pL of ster-
ile, ultra-pure water and incubated at 65 °C for 5 min and
used for LAMP/qPCR/conventional PCR reactions immedi-
ately or stored at — 20 °C until use.

This extraction protocol was used on A. bungii samples
(larvae and frass) and non-target frass samples in triplicate.
The amount of DNA (ng/pL) and the A5 ratios were
evaluated for each sample using the QIAxpert spectropho-
tometer (Qiagen, Hilden, Germany). To detect biological
traces of insects (feces, etc.) in the frass samples, the quality
of the extracted DNA was estimated using a dual-labeled
qPCR targeting a highly conserved region of the 18S rDNA
(Ioos et al. 2009).

LAMP reaction targeting the cytochrome ¢ oxidase subu-
nit I (COI) gene was also performed on frass samples to
assess the amplifiability of the extracted DNA from wood
(Tomlinson et al. 2010b).

Design of A. bungii LAMP and conventional PCR end
point primers

In the LAMP reaction, six primers (F3/B3, FIP/BIP and
LoopF/LoopB) were designed to specifically target a frag-
ment of the cytochrome oxidase subunit I (COI) gene of A.
bungii (accession n. KF737790). The primers were designed
using the LAMP Designer software (OptiGene Limited,
Horsham, UK) and synthesized by Eurofins Genomics
(Ebersberg, Germany). The sequences of the primers are
shown in Table 1.

ncbi.nlm.nih.gov/BLAST; Altschul et al. 1990). A. bungii
LAMP homologous sequences were downloaded from Gen-
Bank and used for alignments to test the in silico specificity
of the designed primers. The alignments were performed
using the MAFFT software implemented in Geneious 10.2.6
(Kearse et al. 2012), set with the default parameters (Fig. 2).

To evaluate and compare the analytical sensitivity, speci-
ficity and reliability of the developed real-time and visual
LAMP protocols, conventional PCR (end point) assays for
the diagnosis of A. bungii were designed (Table 2) using
the OligoArchitect™ Primers and Probe Online software
(Sigma-Aldrich, St. Louis, USA) with the following specifi-
cations: a 100-380 bp product size, a Tm (melting tempera-
ture) of 55-65 °C, primer length of 18-26 bp, and absence
of secondary structure when possible.

LAMP assay and conventional PCR end point
optimization

Real-time LAMP. The real-time LAMP reactions were per-
formed using the Isothermal Master Mix (ISO-001) pro-
duced by OptiGene Limited (Horsham, UK) on a CFX96
thermocycler. Each isothermal reaction was performed in
duplicate, in a final volume of 20 pL and using 2 pL of
DNA. Negative controls (NTC—no template control) were
included for each reaction. At the end of the LAMP reac-
tions, a melting curve was generated by increasing the tem-
perature from 65 to 95 °C with a 10-s interval every 0.5 °C
(Abdulmawjood et al. 2014). In real-time LAMP amplifi-
cation, raw data were analyzed using CFX Maestro v. 1.0
(Biorad, Berkeley, CA, USA). Real-time LAMP products
were checked on a 1.7% agarose gel stained with Gel Red
(Biotium, Fremont, CA, USA).

The LAMP protocol optimization considered the fol-
lowing variables: isothermal amplification time, primer
concentration and annealing temperature through a thermal
gradient. Once the LAMP reaction had been optimized, the
reactions were carried out using a second portable thermo-
cycler, Genie® 11 (Optigene, Ltd, Horsham, UK) to evaluate

Table 1 Aromia bungii-The

. ; Primer name Length (nt)  Sequence 5'-3' Nucleotide position

loop mediated isothermal

amplification (LAMP) method Abungii_F3 20 CTGGAACTGGATGAACAGTT 365-384
primers designed in this Abungii_B3 20 AATGGCTCCTGCTAATACTG 618-599
study. For each primer, the

nucleotide position related Abungii_FIP(Flc+F2)  23+21 AATTAACGGCACCGAGGATTGAA 490468
the the reference sequence is CCATGGAGGATCTTCAGTAGA 411-431
reported. The product sizes Abungii_BIP(Blc+B2) 25+22 ACTGTTATTAATATGCGCCCTTCCG  499-523
are 254 bp (F3-B3) and 165 CTGTAATAACAACAGCTCACAC 575-553
bp (F2-B2). The reference Abungii_LoopF 25 GAGATTCCTGCTAGATGAAGTCTAA 467443
sequence is KF737790. Abungii_LoopB 2 GGATAAGTCCAGATCGTATACCTT 524547

The specificity of the primers was further tested using
BLAST® (Basic Local Alignment Search Tool: http:/www.

their reproducibility.

pisllase ol ay .
e e O) Springer


http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/BLAST

85 Page4of12

3 Biotech (2021) 11:85

LAMP amplicon

50 80 90 160 e

-GGIGG_G-G—”G—G-G_GG
L~ 4

Fic

Aromia bungii MN$05189.1

Aromia bungii DQ223728.1

Aromia bungii DQ223728.1

Aromia bungii KM443233.1

Aromia bungii KM443233.1

Aromia bungli MN662926.1

Aromia bungii MT371041.1
Chloridolum thaliodes AB457202.1
Chloridolum thaliodes AB457202.1
Chloridolum sieversi MN$05197.1
Chlorldolumjapomcum MN905196 1
Mycteridae sp. KR4&(

Corticarina sp. KR489393 'I

Corticarina caw‘col“s MG059512.1
Corticarina truncatella KM446106.1
Corticaria elongata MG054666.1
Bruchidius afrasperae KP682831 1
Enduslomus sp. 6

Chloridolum viride LC1 99296 1
Acmaeops marginatus KM286367.1
Acmaeops septentrionis K|962493.1
Acmaeops proteus MF638522 1
Dinoptera minuta KU188499,
Stictoleptura trisignata KM285845 1
Anastrangalia sanguinolenta KM444762.1
Leptura subhamala KR124363.1
Psenocerus supernotatus KR125214.1
Anoplophora chinensis KX099762.1
Anoplophora chinensis EU14812.1
Anoplophora glabripennis AB439153.1
Anaplophora glabripennis DQ026057 1
Monochamus alternatus JQ015143,
Monochamus galloprovincialis KV357733 1
Manochamus sartor KM452394.1
Monochamus saltuarius KY683636.1
Monochamus sutor KY773689.1
Trirachys orientalis KF737798.1

Sesia melanocephala KT782660.1

Sesia ommatiaeformis JF858051.1
Sesia spartani MH592749,1

Sesia tibialis MH592880.1

Cerambyx cerdo KF247263.1
Cerambyx cerdo KM285966.1

Cossus cossus MF053472.1

Cossus cossus HM391953.1
Xylosandrus crassiusculus MN620070.1
Xylosandrus crassiusculus HQ983913.1
Zeuzera pyrina MF051262.1

Zeuzera pyrina GU706606.1

LAMP amplican

Aromia bungii MN905189.1

Aromia bungii DQ223728.1

Aromia bungii DQ223728.1

Aromia bungii KM443233.1

Aromia bungii KM443233.1

Aromia bungii MN652926 'I

Aromia bungii M

Chloridolum thal{odesABAS?ZOZ 1
Chloridolum thaliodes AB457202.1
Chloridolum sieversi MNS05197.1
Chloridolum japonicum MN905196.1
Mycleridae sp. KR486216.1

Corticarina sp. KR489393.1

Corticarina cavicollis MG059512.1
Corticarina truncatella KM446106.1
Corlicaria elongata MG054666.1
Bruchidius afrasperae KP682831.1
Endustomus sp. MK155661.1
Chiaridolum viride LC139296.1
Acmaeops marginatus KM286367.
Acmaeops septentrionis Kj962453 1
Acmaeops proteus MF63852.

Dinoptera minuta KU188499. 1
Stictoleptura trisignata KM285846.1
Anastrangalia sanguinolenta KM444762.1
Leptura subhamata KR124363.1
Psenocerus supernotatus KR125214.1
Anoplophora chinensis KX099762.1
Anoplophora chinensis EU314812.1
Anaplophora glabripennis AB439153.1
Anoplophora glabripennis DQ026057.1
Monochamus alternatus |Q015143.1
Monochamus galloprovlnclalls KY357733.1
Maonochamus sartor KM452354,
Monochamus saltuarius KY683636.1
Monochamus sutor KY773689.1
Trirachys orienlalis KF737798.1

Sesia melanocephala KT782660.1

Sesia ommatiaeformis JF858051.1
Sesia spartani MH592749.1

Sesia libialis MH592880.1

Cerambyx cerdo KF247263.1
Cerambyx cerdo KM285966.1

Cossus cossus MF053472.1

Cossus cossus HM391953.1
Xylosandrus crassiusculus MN620070.1
Xylosandrus crasslusculus HQ9539|3 1
Zeuzera pyrina

Zeuzera pyrina Gu7ossos |

Fig.2 Alignment of the LAMP amplicon of A. bungii and the
sequences belonging to the most taxonomically related species
(included the non-target xylophagous species used in the assays)
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o 200

10 a0 90

CT
CTTCATEMTAGCAGGAGTTCTTC

TATTTCAACTGTTATTAATATGCGCCCTTCCGGGATAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGTTGTTATTACAGCAGTTCTTCTCTTATTATCTCTACCAGTATTAGCAGGAGCCATT
TATTTCAACTGTTATTAATATGCGCCCTTCCGGGATAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGTTGTTATTACAGCAGTTCTTCTMTTATTATCTCTACCAGTATTAGCAGGAGCCATT
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TATTTCAACTGTTATTAATATGCGCCCTTCCGGGATAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGT TTATTACAGCAGTTCTTCTCTTATTATCTCTACCAGTATTAGCAGGAGCCATT
TATTTCAACTGTTATTAATATGCGCCCTTCCGCGATAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGTTGTTATTACAGCAGTTCTTCTCTTATTATCTCTACCAGTATTAGCAGGAGCCATT
TATTTCAACTGTTATTAATATGCGCCCTTCCGGGETAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGTTGTTATTACAGCAGTTCTTCTCTTATTATCTCTACCAGTATTAGCAGGAGCCATT
TATTTCAACTGTTATTAATATGCGCCCTTCCGGGATAAGTCCAGATCGTATGCCTTTATTTGTGTGAGCTGTTGTTATTACAGCAGTTCTTCTCTTATTATCTCTACCAGTATTAGCAGGAGCCATT
TATTTCAACTGTTATTAATATICGEICCT TCRGGEATAAGECCAGATCGTATGCCRTTATT TG TRTGGGCRGTTGTTATTACAGCERTTCTTCTCTTATTATCTCTACCMGTATTAGCAGGEGCHATT
TATTTCAACTGTTATTAATATIBCGEICCTT GBATAAGECCAGATCGTATGCCATTATTTGTATGGGCAGTTGTTATTACAGCEATTCTTCTCTTATTATCTCTACCMGTATTAGCAGGEGCHMATT
TATTTCAACTGTTATTAABATIBCGEICCTT GBATAAGTCCAGATCGTATGCCATTATTTGTRATGAGOAGTTGTTATTACAGCIATECTTCTCTTAMTATCTCTACARGTATTAGCAGGGCIATT
TATTTCAACTGTTATTAATATGC GIIC CHEl ATAAGECCAGATCGTATGCCRTTATTTGTGTGAGCHMGTTGTTATTACAGCA CTTC TATTATCTC THC GG TIT TAGCAGGAGCCATT
TATTECHACTGTTAT TAATATGCGRCCTT GATCGRATACCTTTATTTGTHTGAGURGTIRG TTATTACHGCEG TR TRC TATTATCTCTEICCMGTATTAGCAGGAGCIATT
TATTERCHACARGTTATTAATATIACGACCTG ATCEBATACCTTTATTTGTHTGAMCAGT TGTTATTACMGCARTTCT TMTATTATTGTCTCTACCNGTIMT TAGCAGGAGCHMATT
TATTRCHACAGTTATTAATATIC GIRC CTGCIMGGATAANBCEMGATCIBATACCTTTATTTGTTGARCRGTTGTTATTACMGCARTTCTTMTRTTATTATCTCTACCHGTIMT TAGCAGGAGCATT
TATTECEACGGTTATTAATATEC GECCTGCHGGRATAANGEEAGATCEBATACCTETATTTGTITGABCTGTTGTTATTACAGCHRT T TECTETTATTATCTETACCHMGTATTAGCAGGAGCIBATT
TATTECHACEGTTAT TAATA TICGRCCTG! AT ATE THEEAGATCIRIBA TACCTTTATTTGTRTGAICRGT TG TMATTACAGCES T TR TR TR T TATTATCTETACCAGTATTAGCHGGAGCEATT
TATTECHACKGTEAT TAATATIEC GAC ORI MGATAAGGCENGARC G.ATAC(TTTATTTC-TGAGC.GT.GTTATTAC.G(AITTCTT(T.TTA-TATCT.TACCAGT.TTAG(AGLJAG(-ATT
T ATAAI GATCGEATACCTTTATTTGTETGAGCOAGTIG TATTACIIGCAGTRCTTC ATTATCAC TMICCAGTATTAGCGGGAGCHEATT
ATAABTCCHMIGATCGRATGCCTTTGTTT 1TIT('ACC-(‘TTITTATTA(‘A('(‘_TTCT-TITTATTATC-TA('CA('TATT GCAG ATT
SHATAABE TERERGA TCGTATACCTRTETTTGTRTGAGCRGT TG TBATTACAGCABTTCTT 5

SHATAARTENGABCGTATACCTRTGT T TGTHTGAGORGTTGTATTACAGCARTTCTTCTETTATTATCTETACCAGTIT TAGCEMGGAGCEMATT

THMTT

THTT

TT

TGTMTGAGCTGTTGTIMAT TACIMGCAI TTCTTCT.TTATTATCT.TACCAGT-TTAGCAGGAG(-ATT
TATTECAACAGTHRAT TAATATIC GIIC CHRIAEAG G ATAAB TINRRGA TC GRATACCT T

TATTBRCAACTGTTATTAATATIEC GINC CRGIIEIGGA T AARBCCAGANCIREATACCRET GAG
TATTBCEACTGT TAT TAATA TIC GIC C TGCIG G T AABEC CIIGARCEBA TACCET TATTTGTETGAGC TGTIG TRATTACEGCAGTTCTTCTCEIMTTATC TITACCHG THETAGCHGGAGCBATT
TATEACAACTGTERATIEAATATINC GAC CBACAGGEATAAGTCCAGATCGRATACCTETATTEGTETGAGCTGT TG TINATACGGC@ATTCTTCTMT T AGTMT CTMTACCBGTATTAGCAGGAGCAATT
TATTECAACAGTIAT TAATATIEC GIC C TGAG Gl T A ARATNINN G ABC GAI TACCTTTATTTGTITGAGCTGT TIBBMAT TACAGCIATEC T TCTIETIM T TATCTMTACCHGTMT TAGCHGGAGCHATE
TATTBCAACEGTEAT TAATATISC GISC C TIISBG GRATAAB TIBIAGATCGRI TACCTTTATTTGTITGAGCHG T THIMBA T TACIGC]
AACEGTHAT TAATA TIC GEC C TIRIBEGGBA TAAR TIIAGA TC GBI TACCTTTATTTGTRTGAGCRG T TIRISBA TTACHGC
TTBRCAACTGTRATTAATATIRC GAC CRARAGAA A TIAK TANAGATCRAN TACCTTTATTTGTATGAGCAG TARARATTACHGC
TATTACAACTGTEATTAATATISC GISC CIBRR ATIABTATAGATCRAN TACCTTTATTTGTATGAGCAG THRARAATTACHGC
TATTECAACTGTTATTAATATEC GGC C TR TAARTEERAGATCGTETACCTTTATTTGTITGAGCIG THEBEBA T T ACHGC.
TTBCAACTGTAT TAATATIC GECCT] TAABTEEAGATCGTITACCTTTATTTGTETGAGCAG THRIMAEA T TACHGC
TATTECAACTGTIATTAATATINC GINC C TH ATAARTEMAGABCGTETACCTTTATTTGTETGAGCIRG THINNEA T TACHGCEATECTTCTH
TATTBCAACEGTTATTAATATAC GISC C TRGIG Gl AT A ARIGINE AGATCGTITACCTTTATTTGTITGAG CIG TIRRAIA TTACHGCIATTCTTCTMTTATTAT CBC TACCAGTATTAGCHGGMGCHATT
TATTBCAACEGTTATTAATATC GIC C TIGEG Gl AT A ARBBEN AGATCGTETACCTTTATTTGTHTGAGCING THBIRIA T TACIIGCIATTCTTCTTTATTATCBCTACCAGTATTAGCIGGGCIATT
EATTTCHACEGT TAT TAABA THC GBCC /\T/\AlTr_clw\rco IT/\(_LTIT‘ITTT(:TIT(:/\C:(_T(zTI(:TI/\TT/\C/\(:L/\ITTITI(_T-T.TT/\T(JLTALCI(;TI\TTGGC/\(:(:GG(_I/\T-
IA‘HICIAC.IIMIAATATICGCCC_ GTMTGABMCTGTTGGTATTACAGC lllAIClCIl(.r_lulAlIAGCAuGAoCIAlI
TICIACTITTATTAATATICGCCCT_ATAA_GATC_ATACCTTTATTTGTITGAGCTGTIGGTATTACAGC TCORC
TATT‘ICIAC-TTATTAATAT‘ICC‘CCT—ATAA_GATC-ATACCTTTATTT‘IT‘ITGAGCT(TTGGTATTACAGC
TATTERCEACTRTEATTAATATGC GINC CHMBIREIRIN /\ 5
EATTTCHACTGT TAT TAABA THC GAC CARRAG GE
-ATTTCIACTGTTATTAAIATICC.CC_GGI

THC TIC TN T AR THI T CHll TGC CIIG THIE T AGCAGGGGCIA TE
TECTACTINGET ARTIT CBMTGC GG TIMET AGCAGGGGCHATE
TR TAC TRT ABTATCBCTACCAGTIT TAGCGGGAGCIATT

CIAG AT GATCRBATACCTTTATTTGTRTGGGCEG TR TANTATTABTMTCTCTACCAGTIT TAGCHGGGGCHMATT
TATETCAACKET TAT TAATATGORCC CBTCEGGGA TAARRCCIMGCANCAGE TEIC TETATT TABATGAGCRG T TRISEA T TACAGCEATTCT I TAETEETATCEC TACCHG TMT TAGCAGGAGGEATT
BATTTCAACAATTATTAATATIRCAMC CATCAGGRATAARGCCAGARCAANETANCABTIT T TAMATGAGORGT TAMAA THACGGCIATTCT T TABTH T TATCTCTHCCHGTMT TAGCAGGHGGEATT
TATTRCEA TATTAATATIRC GCC C TININMRESNE A T ANNNANNRN G A TCRRA TACCTTTATTTGTRTGAGCTGT TGGMATACAGCARNTECT T TAETIM THT CBC TACCMGTATTAGCAGGAGCATT
TATTECEHAC TATTAATATEC GEC C TIRREINSEN A T A ATSINENGATCEREATACCTTTATTTGTETGAGCTGTRGGTATTACAGCABTRCT TIITAETINE THT CHC THC (MG TIT TAGCEGGAGCIATT

amplicon (yellow areas); the correspondent primers are reported in
blue. The nucleotides which differ from the reference sequence are
highlighted with different colors according to the specific base

present in GenBank. The reference sequence is the A. bungii LAMP

The optimal reaction mix for the real-time LAMP assay
consisted of 10-pL Isothermal Master Mix OptiGene (ISO-
001), 0.2 uM of F3/B3, 0.4 uM of LoopF/LoopB, 0.8 pM
of FIP/BIP and 2 pL of template DNA (5 ng/pL) in a final
volume of 20 pL. The melting peak for A. bungii samples
was 83.5+0.5 °C (Fig. 3).

Visual LAMP. To develop an alternative and easy-to-use
protocol to detect the A. bungii DNA from collected sam-
ples, a visual LAMP approach based on the primers designed
for the real-time LAMP assay was also tested. The Bst 3.0
DNA polymerase kit (New England Biolabs Ltd., UK) was
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used for LAMP reactions on A. bungii DNA from frass with
the same six LAMP primers used in the real-time LAMP
test. Hydroxynaphthol Blue (HNB) was included in the reac-
tion mixture (Goto et al. 2009) and the color change (from
purple to blue) was evaluated at the end of the reaction.

To optimize the visual assay conditions, the same param-
eters considered for the real-time LAMP were assessed. The
following reagents were optimized in their quantities and/
or concentrations: buffer, ANTPs, Betaine, MgSO4, HNB
and primer concentration and Bst 3.0 DNA polymerase. The
reaction was performed at 65 °C for 30 min, followed by an
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Table 2 Basic parameters of the methods compared to the LAMP assay

Primers Sequence (5'-3") Length (bp) Anneal- Protocol Reference

ing (°C)
Abungii_F3 (Outermost primers of LAMP protocols in this study) 254 60 End-point PCR This study
Abungii_B3 gPCR SYBR Green This study
Abungii_285_F CAGCAGTTCTTCTTTTATTATC 199 58 gqPCR Probe Rizzo et al. (2020a)
Abungii_484_ R GGTGTCCAAAGAATCAAA
Abungii_309_P FAM-TACCAGTATTAGCAGGAGCCATTACG-BHQI1
Abungii_436F TAACTTCCGTCTATTAGATGTA 157 55 gPCR SYBR Green Rizzo et al. (2020a)
Abungii_592R  GCTAACTTGGTTGATTCG
Abungii_51_F TCTATACTTTATCTTCGGTGCATGA 318 55 End-point PCR This study
Abungii_368_R CCAGCACCCCTTTCTACGATT
Abungii_ 28_F = ACCAACCATAAAGATATTGGAACTC 462 54 End-point PCR This study

Abungii_489_ R ATTAACGGCACCGAGGATTGA
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Fig. 3 Real-time LAMP amplification curves (a) and melting curve (b) and peak (c¢) from larva (squares), adult (triangles), and frass (circles) of
Aromia bungii and NTC (no template control) (diamonds); d agarose gel showing the amplification product

additional cycle of 80 °C for 2 min. Isothermal amplifica-
tions were analyzed with a QIAxcel Capillary Electrophore-
sis System (QIAgen, Valencia, CA, USA) with the inclusion
of a 25 bp DNA marker. The QIAxcel system uses Screen-
Gel software, which determines the base pair number of each
amplicon in individual amplification reactions.

The 20-pL optimal visual LAMP reaction mixture con-
sisted of 2 pL of Isothermal Buffer 10X, 0.6 mM of dNTPs,
2 mM of MgSO,, 0.15 mM of HNB, 0.2 M of Betaine, 0.32
U/pL of Bst 3.0 and final concentrations of the LAMP prim-
ers equal to 0.2 uM for F3/B3, 0.4 pM for LoopF/LoopB,
0.8 pM for FIP/BIP. 2 pL. of DNA template (5 ng/pL) was

considered. The visual LAMP protocol was carried out on
A. bungii and non-target DNA from frass of An. chinensis,
An. glabripennis and C. cossus (Fig. 4).

Conventional PCR. The conventional PCR reactions were
performed in 20-pL reaction volumes containing 1X Master
Mix PerfectTaq Hot Start SPrime (Eppendorf, Milan, Italy),
0.4-uM forward and reverse primers, and 2 pL of DNA tem-
plate in a MyCycler thermocycler (Biorad, Berkeley, CA,
USA). Cycling conditions consisted of 3 min at 94 °C, fol-
lowed by 40 cycles of 94 °C for 30 s, annealing (see Table 2)
for 30 s and 72 °C for 45 s, with a final extension step of
7 min at 72 °C. PCR products were visualized on a 1.7%
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Fig.4 Visual LAMP reaction tubes visualized by means of HNB
(Hydroxynaphthol Blue) coloration. Positive samples are blue, and
negative are purple. The assay was performed on DNA extracted
from (left to right): tubes 1 and 2, Aromia bungii larvae; tube 3, Ano-

agarose gel using a 10-pL aliquot of PCR reaction or using
a QIAxcel Capillary Electrophoresis System.

Performance characteristics of the LAMP assay

Sensitivity, specificity and accuracy of the real-time and
visual LAMP assays were evaluated after the optimization
of the LAMP protocols on DNA samples of target and non-
target species (62 samples belonging to 26 species). Samples
with a time amplification value (Tamp, min:s) (Aglietti et al.
2019) greater than 30 min were not considered. In the visual
LAMP, the diagnostic specificity was verified by the naked
eye assessing the color change of the reaction mixture. These
parameters were calculated according to the EPPO stand-
ards on diagnostics PM7/76-4 (EPPO 2017) and PM7/98-4
(EPPO 2019).

Blind panel validation of the assays

A blind panel test was performed on six frass samples of A.
bungii, two of Anoplophora chinensis, two of An. glabrip-
ennis and two of C. cossus. The test was carried out in two
different laboratories (IPSP-CNR, Sesto Fiorentino, Italy
and the Laboratory of the Plant Protection Service of Tus-
cany, Pistoia, Italy) applying the above-mentioned LAMP
(real-time and visual) protocols. All DNA samples had been
diluted at a final concentration of 5 ng/uL. Samples were
tested in duplicate; negative controls (NTC—no template
control) were included. Based on the blind panel results,
the true positives, false negatives, false positives and true
negatives were evaluated according to the EPPO require-
ments outlined in PM7/76-4 (EPPO, 2017) and PM7/98-4
(EPPO 2019).

piglhse clallal .
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plophora chinensis frass; tube 4, A. bungii frass; tube 5, An. glabrip-
ennis frass; tube 6, Aromia bungii frass, tube 7, C. cossus frass and
tube 8, A. bungii frass. The circles show the tubes containing A.
bungii samples

Repeatability and reproducibility

The repeatability and reproducibility tests were carried out
on ten samples of A. bungii DNA extracted from frass. The
intra-run variation (repeatability) and inter-run variation
(reproducibility) were estimated by standard parameters,
such as the average Tamp and standard deviation (SD). Ten
samples in triplicate, diluted to a final concentration of 5 ng/
uL, were tested in two separate series for repeatability. The
reproducibility of each protocol was assessed in the same
way as carried out for the repeatability by comparing the
data of two series of samples by two different operators on
different days (Dhami et al. 2016; Koohkanzade et al. 2018).

Limit of detection (LoD)

For each methodology used in the experimental design,
LoD was estimated using a tenfold 1:4 serial dilution using
an “artificial” frass DNA (100 ng/uL), obtained by adding
frass of another species (An. glabripennis, in this case) with
10 ng/uL of A. bungii DNA from larvae. All experiments
were conducted in triplicate. To evaluate the influence of
the initial matrix in defining the analytical sensitivity of the
method under examination, the LoD verified with pure larva
DNA extract and DNA extract from A. bungii artificial frass
were compared. The comparison between the LoDs of the
end point PCR and LAMP protocol was carried out by elec-
trophoretic runs in 1.7% agarose gel stained with Gel Red
(Biotium Inc., Fremont, CA, USA). In parallel, a QIAxcel
Capillary Electrophoresis System (QIAgen, Valencia, CA,
USA) was used with the inclusion of a 25-bp DNA marker.
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Comparison with conventional PCR and qPCR (SYBR
Green)

To compare the sensitivity and performance of the assay,
frass was used as the matrix with other molecular tech-
niques, traditional end point PCR and qPCR (both hydroly-
sis probe and SYBR Green), performed with the parameters
reported in Table 2.

The F3 and B3 primers, which are "external" to the ones
used in the LAMP assay, were used in both conventional
PCR and in qPCR SYBR Green.

Results
Nucleic acid extractions from frass and insects

The amplifiability of the DNA extracted from target and
non-target frass samples (Table 3) gave satisfactory results.
The Tamp average value of COX gene (LAMP protocol) was
12.3+2.4 (min). The verification of amplifiability with the
gPCR probe on insect extracts showed average values of Cq
equal to 18.64 +3.6.

Diagnostic sensitivity, specificity, and accuracy
of the LAMP assay

None of the tests carried out on target and non-target sam-
ples showed any non-specific amplification, and only A.
bungii produced amplification curves. A unique peak at
83.5+0.5 °C, resulting from the melting curve analysis, was
visualized for each A. bungii sample, regardless of the start-
ing matrix and confirming the specificity of the real-time
LAMP assay. In the case of the visual LAMP assay, only A.
bungii samples (adult, larvae, and frass) were detected by
the LAMP reaction, while none of the non-target samples
(62 samples) was amplified. For both protocols, diagnostic
sensitivity, diagnostic specificity, and relative accuracy were
100%.

Table 3 Quantification of DNA extract from frass of Aromia bungii
and non-target frass samples

Species DNA concentration Ango/an80 Tatio
(ng/pL) (mean+SD)  (mean=+SD)
Aromia bungii 85.10+4.00 1.94+0.16
Anoplophora chinensis 101.02+2.60 1.84+0.14
Anoplophora glabripennis 94.14+5.20 1.82+0.18
Cerambyx cerdo 76.56 +2.30 1.76 +0.20
Cossus cossus 89.24+2.30 1.86+0.11
Sesia spp. 68.63+3.20 2.01+0.17
Zeuzera pyrina 62.25+2.90 1.88+0.18

The end point PCR protocols designed to compare the
analytical sensibility (LoD) were also assayed on the same
target and non-target samples, showing a diagnostic specific-
ity of 100%, as in the LAMP assay developed in this study.

Blind panel validation of the assay

The blind panel test performed using the real-time and vis-
ual LAMP protocols showed the amplification only of the
A. bungii frass samples, with a mean Tamp value equal to
18.21 +0.42 min in the case of real-time LAMP, whereas the
non-target frass samples were not amplified. The specific-
ity, sensitivity and accuracy of the data were 100%. In both
laboratories, the results obtained with real-time and visual
LAMP were the same. Only the A. bungii frass samples
amplified, whereas there was no amplification of the DNA
samples extracted from the frass of the xylophagous species
used as comparison (non-target frass samples).

Repeatability and reproducibility of the diagnostic
methods

In terms of repeatability, the Tamp values varied from 10.12
to 13.30 min with a mean value of 10.90 + 1.20 min, and an
average CV% of 11.04.

The standard deviation (SD) of the two replicates of the
same protocol ranged between 0.06 and 3.65. In terms of
reproducibility, the values ranged between 0.10 and 7.24
(Table 4).

Limit of detection (LoD) of the LAMP assay
and comparison with conventional PCR and qPCR

The LoD was obtained both for the real-time LAMP assay
and for the visual LAMP. For the real-time assay, the LoD
was 0.61 pg/uL, with a Tamp value of 24.36 +0.90 min. For
the visual LAMP assay, the LoD was the same as for the
real-time LAMP assay.

Table 5 compares the LoD values obtained in the different
techniques. The data assigned to the PCR protocols (probe
for hydrolysis and SYBR Green) (Rizzo et al. 2020a), have
been omitted in this table.

Figures 5 and 6 show the results of the electrophoretic
runs carried out to compare the LoDs of the conventional
PCR (end point) and LAMP, using 1.7% agarose gel stained
with Gel Red and QIAxcel Capillary Electrophoresis System
(Qiagen, Valencia, CA, USA), respectively.

The comparison of the analytical sensitivity according to
the starting matrix (larva and artificial frass) provided the
data shown in Table 6.
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Table 4 Repeatability and reproducibility of real-time assays evalu-
ated as Cq+SD values

Sample Real-time LAMP amplification

Repeatability Reproducibility

Assay 1 Assay 2
1 17.37+0.06 16.48 +1.20 16.52+1.26
2 19.12+0.66 18.09+2.13 17.62+1.46
3 2428 +3.65 19.16+3.59 21.74+7.24
4 18.85+0.65 18.60+0.29 19.06+0.36
5 17.77+2.03 17.36 +1.45 18.79+0.58
6 17.41+0.83 17.58+0.59 16.99+0.24
7 16.74 +1.25 16.29 +0.62 17.18+0.63
8 18.58+2.18 16.57+1.52 18.11+0.66
9 16.87+2.05 16.28+1.22 17.73+0.83
10 17.66+0.83 17.59+0.74 18.18+0.10
Discussion

Molecular tools for identifying quarantine insect pests are
essential for managing outbreaks, especially in view of the
setup of international shared diagnostic protocols (Augustin
et al. 2012). Of these molecular methods, the LAMP tech-
nique (Tani et al. 2007; Tomlinson et al. 2010a; Moradi et al.
2014; Blaser et al. 2018; Panno et al. 2020) can be used for
a direct diagnosis of insect specimens (adults or larvae),
as well as for an indirect analysis of insect DNA present in

Table5 LoD assay based on artificial frass of Aromia bungii using
1:4 serial dilutions (ranging from 10 ng/uL to 2.38 fg/uL) and the
real-time LAMP protocol. For each dilution different PCR methods
were evaluated. The average Cq/Tamp +standard deviation (SD) was
equal to the average of the three threshold cycles of each dilution (Cq/

residues deriving from the trophic activity (e.g., frass as in
Kyei-Poku et al. 2020).

For frass samples, three critical points must be consid-
ered: (a) the paucity of insect DNA in these samples; (b)
the presence of amplification inhibitors deriving from frass
(Mitchell and Hanks 2009; Schrader et al. 2012; Strangi
et al. 2013; Nagarajan et al. 2020; Rizzo et al. 2020a, b);
and (c) the possibility DNA degradation over time or as an
effect of frass exposition to environmental factors.

We used the LAMP method on A. bungii frass. Our results
show that all three issues (a—c above) were overcome. In all
samples, the DNA quantity was always suitable and amplifi-
able for the LAMP reactions, managing the co-extraction of
inhibitors from the frass samples, and with an A,,g, ratio
of between 1.8 and 2.0. However, the DNA amount extracted
from adults and larvae of A. bungii was higher than in the
frass samples, but with a higher variability in terms of con-
centration, probably related to the specimen size.

Our real-time LAMP protocol on frass gave good results
in terms of specificity, especially given that Aromia mos-
chata, a native species taxonomically related to A. bungii
included in the non-target species assayed, did not respond
to the amplification reaction (Rizzo et al. 2020a). The proto-
col was also sensitive and accurate, and overall, the reaction
demonstrated its robustness when the test was performed
on different thermocyclers and with different operators.
The repeatability and reproducibility data showed SD val-
ues with a relatively high range (Teter and Steffen 2020), of

Tamp) +SD. In the case of qPCR, Cq values above 35 were consid-
ered as negative results. (1) PCR end point (F3/B3, this study); (2)
PCR end point (28F/489R, this study); (3) qPCR SYBR Green (F3/
B3 this study). The + symbol in the visual LAMP column indicates
an uncertain result

Dilutions 1:4 Diagnostic method

Real-time LAMP Visual LAMP PCR end point (1) PCR end point (2) qPCR SYBR Green (3)
Tamp (min:s) Positive (+)/negative Positive (4)/negative Positive (+)/negative (-) Cq means+SD
mean +SD -) =)
10 ng/uL 14.22+1.49 + + + 18.99+0.84
2.50 ng/uLL 15.24+1.68 + + + 21.02+0.31
0.62 ng/uL 16.59+1.88 + + + 22.82+0.76
0.16 ng/uL 18.59+1.38 + + + 24.60+0.54
0.04 ng/uL.  21.53+3.07 + + + 26.93+0.16
9.76 pg/uL  23.99+0.73 + - - 29.43+0.25
244 pg/uL.  26.84+1.76 + - - 32.31+0.28
0.61 pg/uL 24.36+0.90 + - - 33.44+0.07
0.15 pg/uL - - - - -
38.14 fg/ulL - - - - -
9.53 fg/uL - - - - -
2.38 fg/ul - - - - -
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Fig.5 Electrophoresis capillarity with QIAxcel Capillary Electro-
phoresis System (Qiagen, Valencia, CA, USA). PCR end point with
primers F3 and B3 on serial dilution 1:4 from frass artificial of Aro-
mia bungii. The marker ranged from 25 to 3000 bp (Qiagen, Valen-
cia, CA, USA)
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variability (presumably due to the presence of a high quan-
tity of PCR inhibitors in frass).

The use of LAMP based on a naked-eye detection system
to determine the amplification result is becoming a routine
approach in molecular diagnosis (Blaser et al. 2018). Our
visual LAMP is a further simplification of the real-time
LAMP technology as it does not require sophisticated instru-
ments (which entail large investments, skilled personnel, and
high management costs), is rapid, specific, sensitive and with
a good accuracy, also compared to real-time LAMP. In addi-
tion, the limits of detection are identical to those of real-time
LAMP (LoD of 0.61 pg/uL for the proposed techniques).

The analytical sensitivity of the LAMP (LoD) test com-
pared with conventional PCR (28F/489R and 51F/368R)
was more sensitive (> 10%) to the same starting matrix. The
results show that LAMP assays and qPCR SYBR Green
method (using the F3/B3 LAMP external primers) are
equally sensitive, and they are more sensitive than conven-
tional PCR.

244 061 015 3814 9.53

fg/uL

2.38

NTC
fg/uL

244 0.61
pe/uL pg/ful pg/uL

0.15 38.14
fg/uL

9.53
fg/uL

2.38

NTC
fg/uL

Fig.6 Agarose gels for PCR end point with 51F/368R primers (a) and with 28F/489R primers (b) on serial dilution 1:4 from artificial frass of

Aromia bungii. The ladder weight was 100 bp (Genespin, Milan, Italy)
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Table 6 Analytical sensitivity (LoD) between 1:4 serial dilutions of
Aromia bungii larva DNA extract (10 ng-2.38 fg/ uL) and 1:4 serial
dilutions of Anoplophora glabripennis artificial frass extract to which

10 ng of A. bungii larva extract was added. The + symbol in the A.
bungii visual LAMP column indicates an uncertain result

Dilutions 1:4 DNA extract from A. bungii larva

DNA extract from An. glabripennis artificial frass

Real-time LAMP Visual LAMP

Tamp (min:s) avg+SD

Positive (4)/negative (—)

Real-time LAMP Visual LAMP

Tamp (min:s) avg +SD Positive (+)/negative (—)

10 ng/uL 14.62+0.34 + 14.22+1.49 +
2.50 ng/uL 14.77+1.81 + 15.24+1.68 +
0.62 ng/uL 16.07 +0.15 + 16.59+1.88 +
0.16 ng/uL 16.12+1.30 + 18.59+1.38 +
0.04 ng/uL 16.79 +£0.81 + 21.53+3.07 +
9.76 pg/uL 18.60+1.73 + 23.99+0.73 +
2.44 pg/uL 24.80+10.78 + 26.84+1.76 +
0.61 pg/uL 25.74+13.00 + 24.36+0.90 +
0.15 pg/uL 26.10+4.20 + n/a -
38.14 fg/uL 32.18+4.41 + n/a -
9.53 fg/uL 26.78 +0.46 + n/a -
2.38 fg/uL n/a - n/a -
The analytical sensitivity is affected by the matrix Conclusions

investigated. This was clear when the LoD of a DNA
extract from A. bungii larva serially diluted 1:4 (from
10 ng/L to 2.38 fg/uL) was compared with the values
resulting from the LoD of the LAMP assay on A. bungii
’s artificial frass. The LAMP test studied was 10* (from
0.61 pg/l to 9.53 fg/uL) more sensitive from the “pure”
matrix of A. bungii larva than the corresponding artificial
frass. These values confirm that the starting matrix is dif-
ficult to extract and amplify, but at the same time indicate
the excellent performance of our LAMP assay.

A comparison of the data resulting from similar studies
(Rizzo et al. 2020a), clearly show the greater analytical
sensitivity of our new LAMP approach.

Although LAMP is a powerful method for the screen-
ing of samples and rapid responses, it may not be suitable
when many validation parameters need to be estimated,
as in the case of intra- or inter-lab comparisons (Panno
et al. 2020). Moreover, the LAMP reaction is more prone
to cross-contamination than other amplification techniques
(Karami et al. 2011; Karthik et al. 2014).

The rapidity (less than 2 h) of our tests and, in the case
of visual LAMP, the cheapness of the proposed protocols
suggest their potential in the near future for preventing or
managing outbreaks of A. bungii in areas with a high risk
of introduction, especially if integrated with other moni-
toring tools such as pheromone or allelochemical traps.
A decisive enhancement for making the method simpler
to apply also in the field, could be a simplification of
the DNA extraction from the frass matrix using a crude
extract.
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The efficient management of a quarantine insect pest
is based on detecting outbreaks as quickly as possible.
Among the molecular methods, LAMP is a promising
tool and more simple than the classical morphological
approach, which requires intact samples and highly spe-
cialized skills. This is particularly true for xylophagous
insects, where the sample collection is onerous in terms
of time and costs, but also difficult due to the endophytic
life of the preimaginal stages.
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