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Simple Summary: The process of cell transformation toward a malignant phenotype is generally
due to genetic alterations and/or epigenetic changes, as well as rewiring of cellular signaling and
reprogramming of metabolic pathways. In addition to glucose metabolism, cancer cells can derive
fuel from fatty acid-β-oxidation (FAO), an important alternative bioenergetic pathway that is often
dysregulated in cancer. Moreover, FAO enzymes (particularly components of the carnitine system)
are overactivated in tumors, suggesting that they serve as metabolic signatures in various cancer
cell types. Metabolic changes in carcinogenesis are a focus of current research and have been poorly
studied in canine malignancies. We previously reported that CPT1A, the rate-limiting regulator of
the FAO process, is deregulated in canine mammary tumor tissues and cells. In the present study,
we examined the protein expression of the three remaining components of the carnitine system
(CACT, CPT2, and CrAT) and confirmed their expression and deregulation in canine mammary
tumor tissues and cells. We also found that low expression of carnitine system components was
closely related to the malignancy grade of mammary tumors. Detailed studies to investigate the
role of these components in canine mammary tumors are needed to also improve the therapeutic
approach in dogs.

Abstract: Deregulation of fatty acid catabolism provides an alternative energy source to glycolysis for
cancer cell survival and proliferation. The regulator enzymes of the carnitine system (CS), responsible
for the transport of fatty acids across mitochondrial membranes for β-oxidation are deregulated in
tumorigenesis. Recently, we found that Carnitine Palmitoyl Transferase 1 (CPT1), a crucial regulator
of CS components, is expressed and dysregulated in canine mammary tumor (CMT) tissues and
cells. In this study, we examined the protein expression of the three remaining enzymes of CS
(Carnitine Acylcarnitine Translocase (CACT), Carnitine Palmitoyl Transferase 2 (CPT2), Carnitine
O-acetyltransferase (CrAT), in canine mammary cells and tissues by Western blot and immunohis-
tochemistry. Protein expression of the components of CS was found in normal mammary glands
and a concomitant deregulation of expression in CMT tissues that inversely correlated with the
degree of tumor differentiation. Moreover, the expression and a different deregulation of CS-related
proteins was also observed in CF33, CMT-U27, CMT-U309, and P114 cell lines used as in vitro model.
These results demonstrate for the first time the expression of CS components in CMT tissues and
cancer cells; however, further studies are needed to elucidate their roles in dogs as well.

Keywords: canine mammary tumors; metabolic plasticity; carnitine system; β-oxidation

1. Introduction

Cancer cells maintain their metabolic homeostasis under a variety of unfavorable
conditions to which they adapt and in which they proliferate despite a hostile microen-
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vironment [1]. Under such unfavorable conditions, cancer cells adjust their metabolism
by activating alternative pathways to utilize different energy sources in the microenviron-
ment [2]. One way to compensate for the high energy demand of malignant cell growth is
glucose depletion [3]. Another way is to obtain energy by fatty acid oxidation (FAO) of
lipids from adjacent adipose tissue, lipoproteins and phospholipids [4,5]. Thus, metabolic
plasticity is an indispensable prerequisite for cancer cell growth and enables the activation
of lipolytic and/or glycolytic metabolic pathways [6,7]. Fatty acid oxidation occurs in mito-
chondria and is catalyzed by the carnitine system (CS), which regulates the cytoplasmic
transport of long-chain fatty acids [8]. Four components are involved in this transmem-
brane transport: (1) Carnitine Palmitoyl Transferase 1 (CPT1), which converts acyl-CoAs to
acylcarnitine, (2) Carnitine Acylcarnitine Translocase (CACT), which catalyzes the exchange
of acylcarnitine and carnitine between outer and inner mitochondrial membranes (3) Car-
nitine Palmitoyl Transferase 2 (CPT2), which converts acyl carnitine back to acyl CoAs for
oxidation [9] and (4) Carnitine O-acetyltransferase (CrAT), which closes the carnitine cycle,
catalyzes the addition or removal of carnitine from medium and short chain acyl-CoAs and
regulates acetylcarnitine efflux from the mitochondrial matrix [10]. It has been suggested
that these alterations and adaptations of cellular energy metabolism in neoplasms can
be considered as “hallmarks” of malignancy [11]. Indeed, a link between mitochondrial
dysfunction and malignancy has been established in several types of neoplasms, and CS
appears to be an important player in malignant transformation [12–15]. Canine mammary
tumors (CMTs) are the most commonly diagnosed neoplasms in intact females and not
infrequently present a clinical challenge to veterinary oncology [16]. Several biomarkers
for mammary gland neoplasms have been investigated to facilitate early tumor detection
and have prognostic value [17]. In addition, CMTs represent a useful spontaneous animal
model for human breast cancer because they share many biological, histological and molec-
ular aspects [18–20]. In our recent study [21], we previously reported CS features of CMTs
and investigated the expression of CPT1A, demonstrating deregulation of its expression
in CMT cells and CMT tissues. Here, we used immunohistochemistry to examine the
expression of the remaining three components of CS (CACT, CPT2, and CrAT) in a series of
32 spontaneous CMTs and compared their expression with the degree of tumor malignancy.
The expression of CS proteins was also studied in CMT cells and tissues by western blot.

2. Materials and Methods
2.1. Cell Cultures

The cell lines used were described in our previous study [21]. CMT-U309 and CMT-
U27 cells were cultured in Roswell Park Memorial Institute (RPMI) medium (Euroclone,
Milan, Italy); P114 cells were maintained in Dulbecco’s Modified Eagle’s medium/Nutrient
Mixture F-12 Ham (DMEM/F12) (Euroclone); and CF33 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Euroclone). All cell lines were supplemented with
10% fetal bovine serum (Euroclone), 100 IU/mL penicillin/100 µg/mL streptomycin (Euro-
clone), and 2 mM L-glutamine (Euroclone), and grown in an atmosphere of 5% CO2 and
95% humidity at 37 ◦C. All cell lines were routinely tested for mycoplasma contamination.

2.2. Mammary Tissue Samples

Mammary tissue samples were obtained from 32 bitches with malignant mammary
tumors. The bitches underwent surgery at the Veterinary Teaching Hospital of the De-
partment of Veterinary Medicine and Animal Production of Naples Federico II University.
All specimens were from the pathology laboratory archives and had been previously used
for diagnostic purposes. In addition, six macroscopically and histologically normal mam-
mary tissue specimens were used as controls. These specimens were from cases in which
the entire mammary gland chain had been removed according to the hospital’s surgical
protocol. All samples were routinely divided into two aliquots and stored under appro-
priate conditions according to the diagnostic analyses to be performed. Histology and
immunohistochemistry were performed on specimens fixed in 10% neutral buffered forma-
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lin and embedded in paraffin. For western blot analysis, samples were weighed, washed in
phosphate buffer saline (PBS), and stored at −80 ◦C. Histologic diagnosis was performed
on slides stained with hematoxylin and eosin (Supplementary Materials Figure S1) accord-
ing to the updated classification and criteria of the Davis-Thompson DVM Foundation [22].
Histological grading of the tumor was performed according to the criteria proposed by
Pena (2013) [23]: evaluation of tubule formation, nuclear pleomorphism and number of
mitoses per 10 high power field (HPF). According to this criteria, malignant tumors were
classified into three groups: 11 well differentiated (G1), 10 moderately differentiated (G2),
and 11 poorly differentiated (G3).

2.3. Sample Preparation, Protein Extraction and Western Blot Analysis

Fresh tissue samples from normal canine mammary glands (NMGs) or mammary
carcinoma tissues (CMTs) were cut into small pieces and homogenized in a lysis buffer
containing: 25 mM Tris-Cl pH 7.4, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxy-
cholate, 0.1% sodium dodecyl sulfate, and 1× protease/phosphatase inhibitors (Roche,
Basel, Switzerland), using an Ultra Turrax™ (Ika-Werke GmbH, Staufen, Germany). The
tissue lysates were then sonicated three times for 15 s and centrifuged at 16,000× g for
20 min. Cell lysates were homogenized in the same lysis buffer, sonicated three times for
15 s and centrifuged at 16,000× g for 20 min. Protein concentration was determined using
the BCA protein assay (Pierce, Rockford, IL, USA). Lysates were boiled for 5 min at 95 ◦C
in β-mercaptoethanol-containing Laemmli Sample Buffer (Bio-Rad, Hercules, CA, USA)
and separated by 8–10% SDS-PAGE before being electrotransferred onto nitrocellulose
membranes (BioRad). Blot membranes were cut based on standard band positions and
then incubated with the appropriate antibodies. Membranes were incubated overnight
with the primary antibodies against SLC25A20 (CACT) (NBP1-86690, Novus Biological,
Littleton, CO, USA), CPT2 (NBP1-85471, Novus Biologicals), CrAT (ab153699, Abcam).
β-actin (sc-47778, Santa Cruz Biotechnology, Dallas, CA, USA) was incubated for 60 min
at room temperature. Subsequently, the membranes were washed three times with the
solution tris buffered saline containing 0.05% Tween® 20. Immunoreactive bands were
visualized by incubation with secondary horseradish peroxidase-conjugated antibodies for
60 min at RT using an enhanced chemiluminescence kit (Thermo Scientific, Rockford, IL,
USA). Densitometry was performed using ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

2.4. Immunohistochemistry

Tissue sections were deparaffinized in xylene, dehydrated in graded alcohols, and
washed in 0.01 M PBS pH 7.2–7.4. Endogenous peroxidase was blocked with 0.3% hy-
drogen peroxide in absolute methanol for 30 min. The immunohistochemical procedure
(streptavidin-biotin peroxidase method LSAB kit; Dako, Glostrup, Denmark) has been
described elsewhere [24]. Primary antibodies against SLC25A20 (CACT) (NBP1-76 86690,
Novus Biological), CPT2 (NBP1-85471, Novus Biologicals), CrAT (ab153699, Abcam) were
diluted 1:100 in antibody diluent (Dako) and applied overnight at 4 ◦C. The immunola-
beling procedure included negative control sections incubated with normal serum IgG
(Dako) in place of the primary antibody. A sample of canine duodenum was used as a
positive control. A mixture of biotinylated anti-mouse and anti-rabbit immunoglobulins
(LSAB kit; Dako) in PBS was used as secondary antibody and applied for 30 min. After
washing in PBS, the sections were incubated with streptavidin conjugated to horseradish
peroxidase in Tris-Cl buffer containing 0.015% sodium azide (LSAB kit; Dako) for 30 min.
For the detection of immunolabeling, diaminobenzidine tetrahydrochloride was used as
the chromogen and hematoxylin as counterstain.

Scoring of Immunoreactivity

Immunoreactivity was assessed by two pathologists (BR and MS) in a blinded semi-
quantitative manner, taking into account, first, the number of positive cells in 10 high-power
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fields (samples were divided into 4 grades: grade 0: no positive cells, grade 1: <10%; grade 2:
10–30%; grade 3: 31–60%; grade 4: >60%) and, second, the intensity of staining, which was
classified as weak (1), moderate (2), or strong (3). Then, a combined immunoreactivity
score (IRs) between 0 and 12 was calculated for each sample by multiplying the values of
these two classifications according to Burrai and colleagues [25].

2.5. Statistical Analysis

All data are expressed as mean ± standard error of the mean (S.E.M.). Comparisons
were made using the Student’s t-test or one-way analysis of variance followed by Tukey’s
post hoc test where appropriate. Statistical analyses were performed using GraphPad Prism
v7.0 software (La Jolla, CA, USA), and differences were considered statistically significant
when p < 0.05.

3. Results

We examined the expression profile of the components of CS in seven CMT tissues
compared with three NMGs by western blot (WB) to assess antibody cross-reactivity and
target specificity.

Immunoreactive CACT bands with the predicted molecular weight and different
signal intensity were detected in both normal and mammary tumor tissues (Figure 1A).
However, densitometric analysis of the bands revealed that CACT protein expression
was higher in CMT tissues than in NMG tissues, regardless of tumor malignancy grade
(Figure 1A). CACT protein expression levels also differed when endogenous CACT levels
were examined by WB on CMT cells. CMT-U27 expressed abundant CACT, whereas CF33,
CMT-U309, and P114 expressed low levels of this protein (Figure 1B).

Immunoreactive CPT2 bands were detected in both normal and mammary tumor
tissues with the expected molecular weight and varying signal intensity (Figure 1C).
Densitometric analysis revealed that the CPT2 protein was slightly more highly expressed
in CMT tissue extracts than in NMG tissue (Figure 1C). In lysates of CMT cells, CPT2
expression was detected in all four malignant cell lines, with the lowest expression observed
in P114 cells (Figure 1D).

In NMG and CMT tissues, immunoreactive CrAT bands with the expected molecular
weight and different signal intensities were observed (Figure 1E). Densitometric analysis
revealed an increase in CrAT in CMTs compared to NMGs (Figure 1E). Similarly, WB
analysis performed using whole cell lysates revealed bands of similar intensity in all four
CMT cell lines used (Figure 1F).

In light of our findings on canine mammary tissues and cancer cells, we also investi-
gated the protein expression of the components of CS in a series of CMT tissues and NMG
tissues by immunohistochemistry (IHC). The results of IHC are summarized in Table 1. No-
tably, CACT, CPT2 and CrAT proteins were expressed only by ductal and lobular epithelial
cells in both NMG and CMT. Myoepithelial cells were consistently negative.
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tissues and seven CMT tissues. β-Actin was used as a control to check the same protein loading. The graph shows the 
mean ± SEM of relative CACT, CPT2, and CrAT protein expression in CMT compared with NMG. (B,D,F): Representative 
Western blot showing CACT, CPT2, and CrAT protein expression in four CMT cells of different tumor origin (CF33: mam-
mary adenocarcinoma; CMT-U27: simple ductal carcinoma; CMT-U309: spindle cell carcinoma; and P114: anaplastic car-
cinoma). Plots show densitometric analysis of CACT, CPT2 or CrAT protein expression expressed as CACT, CPT2 or 
CrAT/β-actin densitometry ratio for each cell line. β-Actin was used as a loading control to verify equal protein loading. 
Note that β-actin was identical for CACT and CPT2 in tissues and cell lines. See Materials and Methods and Supplemen-
tary Materials Figure S2. 
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Figure 1. Expression of CACT, CPT2 and CrAT in Normal Mammary Gland (NMG) tissues, Canine Mammary Tumor (CMT)
tissues and CMT cells: (A,C,E) Western blot analysis of CACT, CPT2 and CrAT protein expression in three NMG tissues and
seven CMT tissues. β-Actin was used as a control to check the same protein loading. The graph shows the mean ± SEM
of relative CACT, CPT2, and CrAT protein expression in CMT compared with NMG. (B,D,F): Representative Western
blot showing CACT, CPT2, and CrAT protein expression in four CMT cells of different tumor origin (CF33: mammary
adenocarcinoma; CMT-U27: simple ductal carcinoma; CMT-U309: spindle cell carcinoma; and P114: anaplastic carcinoma).
Plots show densitometric analysis of CACT, CPT2 or CrAT protein expression expressed as CACT, CPT2 or CrAT/β-actin
densitometry ratio for each cell line. β-Actin was used as a loading control to verify equal protein loading. Note that
β-actin was identical for CACT and CPT2 in tissues and cell lines. See Materials and Methods and Supplementary Materials
Figure S2.

CACT expression was found in all tissue types: NMGs (n = 6/6 100%; mean IRs =
5.5 ± 0.957, range 1–8), G1 carcinomas (n = 11/11 100%; mean IRs = 8 ± 0.907, range
4–12), G2 carcinomas (10/10 100%; mean IRs = 6 ± 1.454, range 1–12) and G3 carcinomas
(n = 9/11 82%; mean IRs = 1.6 ± 0.491, range 0–6). In NMGs, CACT immunoreactivity was
moderate and characterized by few and small cytoplasmic granules (Figure 2A), whereas
in CMTs 88% of G1 carcinomas had strong CACT immunostaining diffusing through the
cell cytoplasm (Figure 2B), while CACT immunoreactivity decreased from G1 to G3 and
from G2 to G3 carcinomas (Figure 2C–E).
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Table 1. Main characteristics of normal and neoplastic canine mammary gland tissue and immunostained (IS) CACT, CPT2,
and CrAT cells, staining intensity and immunoreactive (IR) score 1.

Normal Mammary Glands

Case
Num-

ber
Breed Age

(Years)
Histotype

CACT CPT2 CrAT

IS Cells
(%)

Staining
Inten-
sity

IR
Score

IS
Cells
(%)

Staining
Inten-
sity

IR
Score

IS Cells
(%)

Staining
Inten-
sity

IR
Score

1 Epagneul
Breton 10 5 1 1 4 1 1 11 2 4

2 Mixed Breed 13 74.2 2 8 3 1 1 38.3 1 3

3 Yorkshire
Terrier 8 38 2 6 12 1 2 18.4 2 4

4 Mixed Breed 10 31.3 2 6 36 3 9 64.8 2 8
5 Mixed Breed 9 49.4 2 6 9 1 1 11.9 1 2
6 Cocker 7 59.4 2 6 9 1 1 61.9 2 8

Well Differentiated G1 Carcinomas

1 Mixed breed 14 Tubular carcinoma 31.4 3 9 49 3 9 45.9 3 9
2 Mixed breed 11 Tubular carcinoma 37.9 3 9 18.2 3 6 13.9 3 6

3 Yorkshire
terrier 13 Complex carcinoma 11.9 2 4 17.6 3 6 48.7 3 9

4 Yorkshire
terrier 8 Complex carcinoma 38.1 2 6 24.5 2 4 22.7 2 4

5 Mixed breed 7 Tubulopapillary
carcinoma 87.1 3 12 67 3 12 84.5 3 12

6 Maltese 7 Mixed carcinoma 13.4 2 4 38.6 3 9 29.4 1 2
7 Mixed breed 13 Tubular carcinoma 24 3 6 60 2 8 38.7 3 9
8 Cocker 10 Tubular carcinoma 56.4 3 9 54.6 3 9 55 3 9

9 Cocker 9 Tubulopapillary
carcinomay 74 3 12 75.2 3 12 72 2 6

10 Mixed breed 9 Tubular carcinoma 70.1 3 12 53.9 3 9 66.5 3 9
11 Beagle 6 Tubular carcinoma 57.1 3 9 78.6 3 12 65.3 3 9

Moderately differentiated G2 carcinomas

12 Shih tzu 11 Tubular carcinoma 6.2 1 1 2.4 1 1 59 2 6

13 Epagneul
breton 10 Tubulopapillary

carcinoma 39 1 3 2.8 1 1 53.8 2 6

14 Cocker
spaniel 10 Tubular carcinoma 58.3 3 9 64.1 2 8 24.7 2 4

15 Mixed breed 9 Solid carcinoma 78.4 3 12 1.3 1 1 9.3 2 2
16 Mixed breed 13 Tubular carcinoma 97.3 3 12 23 2 4 12.7 1 2

17 Mixed breed 9 Tubulopapillary
carcinoma 3.7 1 1 3.2 1 1 1.2 1 1

18 Mixed breed 10 Tubulopapillary
carcinoma 13.5 3 6 33.9 2 6 23.4 2 4

19 German
sheperd 8 Tubulopapillary

carcinoma 77 3 12 40.5 2 6 59.4 2 6

20 Mixed breed 8 Tubulopapillary
carcinoma 14 1 2 26.2 1 2 33.4 1 3

21 Mixed breed 7 Mixed carcinoma 35.2 2 6 83 1 4 24.7 1 2

Poorly differentiated G3 carcinomas

22 Greyhound 8 Tubular carcinoma 19.3 2 2 19.2 1 2 52.3 2 6
23 Mixed breed 10 Tubular carcinoma 3 1 1 2.5 1 1 4.5 1 1
24 Shih tzu 9 Tubular carcinoma 1.4 1 1 3.3 1 1 1.5 1 1
25 Greyhound 9 Tubular carcinoma 19.3 2 2 19.6 1 2 19.3 2 4
26 Mixed breed 9 Solid carcinoma 0.6 1 1 0 0 0 24.3 2 4
27 Mixed breed 13 Complex carcinoma 0 0 0 0 0 0 14.2 1 2
28 Mixed breed 13 Mixed carcinoma 1.4 2 2 32.8 2 6 0 0 0
29 Mixed breed 6 Complex carcinoma 4 2 2 53.3 2 6 12.5 1 2
30 Mixed breed 8 Tubular carcinoma 11.2 3 6 28.3 2 4 10.2 2 4
31 Poodle 15 Complex carcinoma 0 0 0 0 0 0 0 0 0
32 Mixed breed 9 Tubular carcinoma 3 1 1 25.9 1 2 10.3 2 2

1 The immunoreactive (IR) score ranges from 0 to 12 and is obtained by multiplying the percentage of immunostained CACT, CPT2, and
CrAT cells (score: 0–4) by the staining intensity score (0–3). See Section 2 for more details.
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(n = 8/11 73%; mean IRs = 2.18 ± 0.671, range 0–6). CPT2 immunoreactivity was weak in 
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plasmic CPT2 immunostaining (Figure 3B). In G2- and G3-carcinomas, CPT2 protein ex-
pression was restricted to regions where mammary gland morphology was still preserved 

Figure 2. Immunohistochemical labeling of CACT in normal and neoplastic canine mammary glands:
(A) Normal mammary gland (NMG), case number 4, IRs = 6: moderate CACT immunoreactivity,
characterized by few and small cytoplasmic granules, is detectable in 31.3% of epithelial cells.
(B) Well differentiated (G1) tubulopapillary carcinoma, case number 11, IRs = 12: strong CACT
immunostaining is through the cell cytoplasm in 87.1% of neoplastic epithelial cells. (C) Moderately
differentiated (G2) tubulopapillary carcinoma, case number 23, IRs = 1: weak CACT immunostaining
is detectable in the cell cytoplasm of 3.7% of neoplastic epithelial cells. (D) Poorly differentiated (G3)
tubular carcinoma, case number 30, IRs = 1: weak CACT immunoreactivity diffused through the cell
cytoplasm is detectable in 1.4% of neoplastic epithelial cells. (E) Graph shows the mean ± SEM of
immunoreactive (IR) score for the expression of CACT in normal and tumoral samples with different
malignancy degree. **** p < 0.0001 G1 vs. G3 carcinomas; ** p < 0.01 G2 vs. G3 carcinomas. NMGs,
normal mammary glands; G1, grade 1 carcinomas; G2, grade 2 carcinomas; G3, grade 3 carcinomas.

CPT2 expression was observed in all mammary tissues: in NMGs (n = 6/6 100%; mean
IRs = 2.5 ± 1.31, range 1–9), G1 carcinomas (n = 11/11 100%; mean IRs = 8.55 ± 0.835,
range 4–12), G2 carcinomas (10/10 100%; mean IRs = 3.4 ± 0.819, range 1–6), and G3
carcinomas (n = 8/11 73%; mean IRs = 2.18 ± 0.671, range 0–6). CPT2 immunoreactivity
was weak in NMGs (Figure 3A) and increased in 72% of G1 carcinomas, with strong and
diffuse cytoplasmic CPT2 immunostaining (Figure 3B). In G2- and G3-carcinomas, CPT2
protein expression was restricted to regions where mammary gland morphology was still
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preserved (Figure 3C,D). G2 and G3 tumors had lower mean CPT2 IRs compared with G1
tumors (Figure 3E).
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Figure 3. Immunohistochemical labeling of CPT2 in normal and neoplastic canine mammary glands:
(A) Normal mammary gland (NMG). Case number 6, IRs = 1: Weak CPT2 immunostaining is
expressed by 9% of ductal epithelial cells. (B) Well differentiated (G1) tubulopapillary carcinoma,
Case number 11, IRs = 12: Strong immunostaining diffuses through the cell cytoplasm in 67%
of neoplastic epithelial cells. (C) Moderately differentiated (G2) tubulopapillary carcinoma, case
number 23, IRs = 1: weak CPT2 immunostaining is seen in the cell cytoplasm of 3.2% of neoplastic
epithelial cells. (D) Poorly differentiated (G3) complex carcinoma, case number 28, IRs = 6 moderate
immunostaining is expressed by 32.8% of neoplastic cells. (E) Graph shows the mean ± SEM of
immunoreactive (IR) score for the expression of CACT in normal and tumoral samples with different
malignancy degree. # p < 0.001 G1 vs. NMGs; *** p < 0.001 G1 vs. G2 carcinomas; **** p < 0.0001 G1 vs.
G3 carcinomas. NMGs, normal mammary glands; G1, grade 1 carcinomas; G2, grade 2 carcinomas;
G3, grade 3 carcinomas.

CrAT expression was detected in all tissue samples, in NMGs (n = 6/6 100%; mean
IRs = 4.83 ± 1.05, range 2–8), in G1 carcinomas (n = 11/11 100%; mean IRs = 7.64 ± 0.856,
range 2–12), in G2 carcinomas (10/10 100%; mean IRs = 3.6 ± 0.6, range 1–6) and in G3
carcinomas (n = 9/11 82%; mean IRs = 2.36 ± 0.576, range 0–6). In NMGs, immunoreactivity
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was moderate and characterized by few and small cytoplasmic granules (Figure 4A).
In contrast, 88% of G1 carcinomas showed strong and diffuse cytoplasmic immunoreactivity
(Figure 4B). Moderate CrAT intensity was observed in G2 (Figure 4C) and G3 carcinomas
(Figure 4D), especially in neoplastic cells infiltrating the surrounding tissue (Figure 4D).
The mean CrAT IRs score was higher in G1-, than the G2 and G3-carcinomas (Figure 4E).
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Figure 4. Immunohistochemical labeling of CrAT in normal and neoplastic canine mammary glands:
(A) Normal Mammary Gland (NMG), case number 4, IRs = 8: moderate CrAT immunostaining
is seen in 64.8% of ductal epithelial cells. (B) Well differentiated (G1) Tubular carcinoma, case
number 16, IRs = 9: strong CrAT immunostaining, characterized by small granules, is seen in 66.5%
of neoplastic epithelial cells. (C) Moderately differentiated (G2) tubular papillary carcinoma, case
number 24, IRs = 4: moderate cytoplasmic CrAT immunoreactivity is expressed by 23.4% of neoplastic
epithelial cells. (D) Poorly differentiated (G3) tubular carcinoma, case number 32, IRs =2: moderate
immunostaining is evident in neoplastic epithelial cells infiltrating the surrounding tissue. (E) Graph
shows the mean ± SEM of immunoreactive (IR) score for the expression of CrAT in normal and
tumoral samples with different malignancy degree. ** p < 0.01 G1 vs. G2 carcinomas; *** p < 0.001
G1 vs. G3 carcinomas. NMGs, normal mammary glands; G1, grade 1 carcinomas; G2, grade 2
carcinomas; G3, grade 3 carcinomas.

4. Discussion

In the tumor microenvironment, cancer cells reprogram their metabolic patterns to
stimulate cell growth and proliferation [1]. Moreover, it has been suggested that the fatty
acid oxidation (FAO) pathway may provide an alternative energy source for anabolic
processes in various tumors; therefore, altering these pathways may be a promising target
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for therapy [26–28]. Our results show for the first time the expression of the components
of CS (CACT, CPT2, and CrAT) in canine mammary tissues and cell lines, although the
number of samples analyzed may seem relatively small in view of the high prevalence
of mammary carcinomas in dogs; this may be a limitation of the study. The catabolic
process by which fatty acids are broken down for energy is β-oxidation. Increased FAO
rates havebeen found in several cancers, including lung, breast, liver [29] and prostate [30],
suggesting that the carnitine shuttle system has an interesting potential that should be
further investigated for diagnostic purposes. In addition, several studies have recently
shown that receptor-positive human breast and prostate cancer cells (MCF-7 and C4-2B
cells) exhibit a faster FAO rate compared to receptor-negative cells (MDA-MB-231 and PC-3
cells) [30,31].

To date, little attention has been paid to the relationship between CACT protein
and cancer development, and only a few studies have described an association between
altered expression of CACT and tumorigenesis [32,33]. We demonstrated that CACT
was expressed in CMT samples and cancer cells. Moreover, by IHC, the strongest CACT
expression was found in G1 carcinomas. CACT expression was negatively correlated
with tumor malignancy, with CACT expression downregulated in poorly differentiated G3
carcinomas compared to NMGs, well-differentiated (G1) and moderately differentiated (G2)
carcinomas. These results are consistent with a previous study in which the authors found
decreased expression of CACT in hepatocellular carcinoma (HCC) cells and a significant
correlation with poor survival in patients with HCC [32]. Consistent with our findings that
CACT expression was downregulated in CMTs, another previous study confirmed that in
human bladder cancer patients, the expression of CACT was significantly deregulated in
cancer tissues compared with healthy bladder tissues [33].

Like CACT, CPT2 was also expressed in both CMT tissues and CMT cells. Similarly,
using IHC, we found that CPT2 expression was increased in G1 carcinomas. Moreover,
CPT2 protein expression correlated with the decrease in tumor differentiation. Little is
known about the deregulation of CPT2 in cancer; however, a recent study reported that
this enzyme can be considered as an independent prognostic factor in colorectal cancer
patients [34]. Our results regarding CPT2 expression, which follows a similar pattern to
CACT, are also consistent with previous findings showing that CPT2 is downregulated in
HCC and is associated with tumor differentiation grade and vascular invasion [35]. Our re-
sults are also consistent with those of Zhang X. and coworkers (2021), who demonstrated
downregulation of CPT2 in ovarian cancer (OC) cells and a poorer prognosis for patients
with OC [36].

We also found altered CrAT expression in CMTs and CMT cells. That is, similar to the
expression patterns of CACT and CPT2, CrAT protein levels also correlated negatively with
an increase in tumor malignancy and had the lowest levels in the most malignant cell types
(G3), again consistent with a previous report in which CrAT expression was significantly
lower in human muscle-invasive bladder cancer compared with normal bladder tissue [33].

Thus, components of CS, including CPT1A, appear to be upregulated in low-grade
mammary carcinomas and progressively downregulated or less expressed as the tumor
becomes more malignant. Since neoplastic cell survival depends on the dynamics of
nutrients present in the microenvironment [37], the adipose-rich mammary gland may
represent a source of fatty acids required for an energy metabolism alternative to glycolysis.
In this context, the components of CS could play an essential role, especially in well-
differentiated (G1) tumors, to generate energy for their rapid growth and proliferation. In
contrast, the loss and/or downregulation of CS components observed in moderately (G2)
and less (G3) differentiated tumors could be due to the unfavorable and hypoxic tumor
microenvironment, which primarily relies on the glycolytic metabolic pathway [38,39].
Thus, the importance of the components of CS in mediating the metabolic flexibility of
CMTs may allow cancer cells to constantly adapt to changing intracellular and extracellular
metabolic conditions.
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5. Conclusions

In summary, the results of our study suggest that, as in humans, the components of
CS are also expressed in CMT cells and deregulated in CMT tissues, confirming the role
of the dog as an animal model for spontaneous neoplastic disease. Although mastectomy
is still considered the most effective treatment, the existence and deregulation of these
components in dogs may also provide new druggable targets for the prevention and
treatment of canine mammary cancer. To this end, further studies are needed to also clarify
their role also in dogs.
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