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Abstract

Thanks to innovative sample-preparation and sequencing technologies, gene expression in individual cells
can now be measured for thousands of cells in a single experiment. Since its introduction, single-cell RNA
sequencing (scRNA-seq) approaches have revolutionized the genomics field as they created unprecedented
opportunities for resolving cell heterogeneity by exploring gene expression profiles at a single-cell resolu-
tion. However, the rapidly evolving field of scRNA-seq invoked the emergence of various analytics
approaches aimed to maximize the full potential of this novel strategy. Unlike population-based RNA
sequencing approaches, scRNA seq necessitates comprehensive computational tools to address high data
complexity and keep up with the emerging single-cell associated challenges. Despite the vast number of
analytical methods, a universal standardization is lacking. While this reflects the fields’ immaturity, it may
also encumber a newcomer to blend in.
In this review, we aim to bridge over the abovementioned hurdle and propose four ready-to-use pipelines

for scRNA-seq analysis easily accessible by a newcomer, that could fit various biological data types. Here we
provide an overview of the currently available single-cell technologies for cell isolation and library prepara-
tion and a step by step guide that covers the entire canonical analytic workflow to analyse scRNA-seq data
including read mapping, quality controls, gene expression quantification, normalization, feature selection,
dimensionality reduction, and cell clustering useful for trajectory inference and differential expression. Such
workflow guidelines will escort novices as well as expert users in the analysis of complex scRNA-seq datasets,
thus further expanding the research potential of single-cell approaches in basic science, and envisaging its
future implementation as best practice in the field.
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1 Introduction

Throughout the last decade, population-based RNA sequencing
approaches (aka bulk RNA-seq) have played a significant role in
deciphering genome-wide transcriptome variations across a broad
range of fields, including cancer biology, developmental biology,
and cellular homeostasis [1–3]. However, as bulk RNA-seq data
represents an average of gene expression across individual cells, it
may mask the transcriptional trends of distinct subpopulations with
the most abundant cell types or states (Simpson’s paradox [4]).

Single-cell RNA sequencing (scRNA-seq) bridged over this
hurdle, providing unprecedented opportunities for exploring
gene expression profiles at a single-cell resolution. Since its first
introduction in 2009 [5, 6], scRNA-seq opened a new avenue to
uncover the underlying cellular heterogeneity of composite sys-
tems. However, the practical procedures were arduous, time-
consuming, cost-intensive, and heavily relied on a single-sourced
set of equipment. At present, with the emergence of efficient and
low-cost technologies (Table 1 [7]), a typical lab bench suffices for
building sequencing libraries amounting to thousands of cells [8–
10], thus encouraging the use of single-cell technology as a stan-
dard procedure.

These technical advancements enabled the discovery of novel
cell types [11, 12] and the study of cellular dynamic processes at a
previously unattainable spatial and temporal resolution [13–16],
featuring in-cell variation such as gene interaction, allelic expres-
sion, and novel RNA processing in the field of molecular cell
biology [17, 18]. Moreover, scRNA-seq became a key ingredient
in the rapidly evolving field of precision medicine [19, 20]. The
profound amount of new information obtained with scRNA-seq
holds the potential of reshaping our understanding of developmen-
tal biology, gene regulation, and cell heterogeneity in health and
disease.

2 The Laboratory Workflow of scRNA-seq

At present, all scRNA-seq laboratory methods rely on six main steps
(Fig. 1): (I) preparation of a viable single-cell suspension, (II)
assessment of cell viability, (III) lysed cell removal, (IV) individual
transcriptome barcoding, (V) cDNA generation, and (VI) sequenc-
ing library generation [21]. As for instrument implementation, one
of the most popular sequencing platforms is the Illumina® series
due to its cost-effectiveness and high-quality outputs. A relatively
new introduction in the field is the BGI sequencing portfolio,
which allows equipotential sequencing results even in single-cell
studies [22].
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Barcoding the transcriptome of individual cells is a key step in
all available single-cell protocols, and exemplifies the main differ-
ence from bulk RNA-seq. Two barcoding strategies are suggested,
either (1) the addition of a cell-specific barcode to each transcrip-
tome following cell isolation, or alternatively (2) the addition of a
unique index combination to each cell transcriptome without phys-
ical partitioning (e.g., split-Seq [23]). Both strategies can be fur-
ther classified into subcategories with different advantages and
drawbacks (Table 1, Supplementary). However, all scRNA-seq
strategies rely on high-quality input material, requiring the optimi-
zation of any dissociation and thawing protocol to maximize cell
viability [24–26].

Among the more recent advancements in the field,
microfluidic-based scRNA-seq technologies have gained popularity
due to their cost-effectiveness, high efficiency, and moderate data
size requirements for preserving data integrity and coherence
[27, 28]. Generally, microfluidic technologies, such as Chromium
[10], inDrop [9], and Drop-seq [8], rely on passive coflow of cells,
microparticles (i.e., beads) and a lysis buffer that produces water-in-
oil droplets, thus encapsulating precisely one cell and one bead. The
transcriptional content of each cell is captured and amplified by
unique primers attached to the surface of a single microparticle.

Fig. 1 Single-cell RNA sequencing workflow. The scRNA-seq procedure consists of six key steps. (I ) Samples
are dissociated into a single-cell suspension. (II) As lysed cells might bias the data and cause high noise
interference, it is essential to maximize the quality of the input material and assess cell viability. (III) If the
viability is lower than 90%, dead cells should be filtered either by centrifugation (i.e., density gradient) or
immunodepletion (i.e FACS or magnetic sorting). (IV) Single cells are captured and isolated in different ways,
depending on the technique of choice. Microfluidics-based scRNA-seq technologies encapsulate single cells
within water-in-oil droplets together with unique primers attached to microparticle surface and lysis buffer.
Then, each lysed cell’s mRNA content is captured by the poly-A tail domain of a single primer and labeled with
UMI and cell-specific barcodes. Several errors can occur during this step, like multiple cells or microparticles
captured in a single droplet (i.e., multiplets), and sub-Poisson loading trade-offs, such as empty barcoded
drops. (V ) Captured mRNA transcripts from droplets are then collected, reverse-transcribed, and (VI) amplified
in pools to be used for standard sequencing platforms. During library construction, cDNA molecules are tagged
with sample-specific indexes allowing multiplexing of different captures in the same sequencing run. Further
computational demultiplexing will use such barcode information to sort samples, cells, and transcripts
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Such primers share the same underlying three-tuple structure,
including (1) a cellular barcode, a short sequence common to all
primers on a single microparticle, with the purpose of identifying all
transcripts belonging to the same cell; (2) a unique molecular
identifier (UMI), a molecular transcript-specific tag which secures
read’s integrity by identifying PCR duplicates [29]; (iii) a poly-T
tail, for the capture and amplification of the 30END of each
transcript.

Ideally, each droplet should encapsulate a single cell and a
single bead. However, as in practice the encapsulation step follows
a Poisson distribution, the capture rate of one bead and one cell
within a single droplet follows a double Poisson distribution. Ergo,
many droplet-based approaches yielded large numbers of empty
droplets and inefficient data assemblage.

The limitation of Poisson statistics has been tackled by inDrop
and Chromium technologies. Through close-packed ordering of
deformable particles, both methods instrument a sub-Poisson dis-
tribution [30], thus achieving controllable encapsulated particle
quantities, with a single bead occupancy of about 80%. Hence,
the main differences among the three platforms, inDrop, Chro-
mium, and Dop-seq, is their respective capture efficiency, largely
dependent on beads types at use [31]. While Drop-seq, inDrops,
and Chromium capture about 5–12%, 75%, and 65% of the input
cells, they also require >2 � 105, 2 � 103–104, and >103 input
cells, respectively.

Hence, choosing the appropriate technique is crucial, and
pends on a particular field of study and research requirements.
When investigating highly heterogeneous samples, like tumors
and tissues, high-throughput methods are advisable. Nevertheless,
high-sensitivity strategies are best suited either when analyzing low
expressed genes or classifying rare cell populations [32].

However, if on one side scRNA-seq allows to dissect cellular
heterogeneity at high-resolution, it also carries two key drawbacks.
The first one is a low gene retrieval yield, with usually a 1–5% of
transcripts per cell representing highly expressed genes (about
5000 genes per cell), thus leading to significant observational
uncertainty. This drop-out effect introduces a high cell-to-cell
variability and low signal-to-noise ratio (SNR) [33]. A further
drawback is evidently the cost burden of scRNA-seq commercial
technologies, while noncommercial platforms (inDrop, Drop-seq)
require considerable operator expertise. Consequently, the imple-
mentation of scRNA-seq techniques is still not broadly accessible
for many laboratories in the field [34, 35]. However, these obsta-
cles shall not hold the promise of scRNA-seq to expand beyond the
genomic research frontier, as overcoming the current challenges
will widen the future outlooks for medicine and biological studies.
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3 The Computational Workflow of scRNA-seq

Unlike previous genome-wide transcriptomic assays, scRNA-seq
necessitates innovative analysis tools to address the emerging
single-cell associated challenges, including large-scale data and
high levels of noise interference due to dropout events
[33, 35]. Indeed, more than 600 standalone tools are available to
analyze and explore single-cell transcriptomic data [36], but with
the lack of universal standardization [37, 38], a newcomer to
blend in.

The challenge in achieving standardized pipelines stems from
several reasons, including the relative immaturity of the field.
Depending on the platform of choice, individual procedural steps
may be processed differently, resulting in inconsistent downstream
analysis outputs for the same entry dataset [6]. In addition, the
choice of a specific analytic tool is largely swayed by a programming
language preference such as R or Python, and thus restricting their
usage to a narrower audience specialized in a specific programming
language. A further, and probably the most significant hurdle, is the
need to find a common analytic strategy that could fit various
biological data types (cell lines, cancer cells, stem cells, etc.). How-
ever, due to their high diversity and distinct biological inquiries at
hand, ad hoc computational strategies might be needed.

In this review we aim to address all the above-mentioned
challenges, outlining a standardized workflow that will guide the
reader through the key steps of scRNA-seq data analysis, regardless
of specific tools and different biological data types. Herein, we
propose four ready-to-use computational pipelines, which include
raw counts normalization, feature selection, dimensionality reduc-
tion, and clustering (Fig. 2). Completing these steps enables the
users to analyze their respective data without any loss of informa-
tion. The proposed pipelines cover both R and Python program-
ming languages, and employ Seurat (R) [39], Scanpy (Python)
[40], Monocle (R) [41, 42], and gf-icf (R) [43] platforms, which
are all easily accessible for a newcomer.

A case study employing the four proposed pipelines is demon-
strated using a subset of Tabula Muris [44] public dataset retrieved
by the Chromium technology, outlining the different steps with
plots and command lines, all available on github [45]. As the
proposed pipelines might be permissive or too restrictive for a
given assay, we offer guidelines for tailoring the analytic settings
to meet user’s data requisites.
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4 Raw Reads Demultiplexing, Alignment, and Expression Quantification

Captured transcript fragments that are processed by sequencers,
termed “reads,” are stored into a text-based format called FASTQ
[46]. FASTQ files contain both nucleotide sequence reads and their
corresponding quality scores encoded as ASCII (American Stan-
dard Code for Information Interchange) characters.

While the majority of bulk approaches are suitable for the
preprocessing of full-length scRNA-seq datasets, 30-end scRNA-
seq protocols require distinctive analytic tools. The preprocessing
workflow of 30-end scRNA-seq raw data includes three steps,
(1) assigning captured RNA fragments to their associated sample
and store them in FASTQ files (i.e., demultiplexing); (2) aligning
the reads to a reference genome; (3) quantifying UMI per gene and
assigning them to their associated barcode (i.e., cell). Eventually,
each sample compiles into gene/barcode matrices that can be
further filtered and analyzed.

Fig. 2 Computational analysis of single-cell RNA sequencing. ScRNA-seq analysis embraces six underlying
steps, including raw-data preprocessing, filtering via QC covariants, normalization, feature selection, linear
dimensional reduction, visualization, and clustering: (I ) Raw reads are processed and quantified to generate
gene/barcode matrices. (II) Cells in the count matrix are then filtered to avoid misinterpretation of ambient
gene expression, apoptotic cells, and multiplets. (III) Count reads normalization is required, as the analysis is
disrupted by low input and weak SNR, following which data is primed for downstream analysis. (IV) A lesser
number of highly variable features are selected for the purpose of realizing a faster and accurate procedure.
(V ) Based on the designated genes, a PCA is performed to lower data dimensionality. (VI) Clustering and
nonlinear dimensionality reduction steps utilize a subset of significant principal components to overcome data
noisiness. Subsequently, cells are clustered and visualized based on their PCA scores
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4.1 Demultiplexing Herein, we employ a commonly used subpipeline of the CellRanger
platform [10], namely, mkfastq, exclusively designed for prepro-
cessing raw data obtained from the 10x-Genomics® platform.
Although CellRanger offers additional analytical tools for cluster-
ing and gene expression analysis, we have narrowed its use only to
the preprocessing steps.

As input, CellRangermkfastq uses raw sequencer’s reads in the
form of BCL files. Providing sample index sequences,mkfastq will
demultiplex the raw data into sample-specific FASTQ files using the
sample indexes.

4.2 Mapping

and Expression

Quantification

Before quantifying gene expression, the raw reads are first aligned
to a reference genome, grouped by genes, and assigned to their
original cellular barcode. These steps can be applied either by
CellRanger-count for data retrieved via the 10�-Genomic® plat-
form, or through the STARsolo tool [47, 48] for all other
protocols.

Both tools require the raw FASTQ files obtained by the demul-
tiplex step as input, and perform: (1) error correction of cell bar-
codes using a predefined whitelist; (2) mapping using STAR
aligner; (3) correction and deduplication of UMI, and finally
(4) quantification of gene expression per cell by counting the
number of unique UMI per gene (i.e., transcripts).

Through the mapping step, read alignment assigns raw
sequences to the most proper position in a reference genome.
Although the alignment can employ a transcriptional reference, it
is preferable to use a whole-genome reference, as it allows easier
removal of “off-target” captured sequences that are not forced to
be aligned on a transcriptional reference, but filtered out (seeNotes
1 and 2).

Next, inconsistent cell barcodes and UMIs are filtered to avoid
data misrepresentation. During this step, the presence of each
barcode is verified in a predefined list of known cell barcode
sequences provided by the single-cell platform. Accordingly,
incompatible cell barcodes are either discarded or corrected by
the most abundant barcode separated with a single editing distance.
Similarly, CellRanger and STARsolo will assess the quality of UMIs
and correct a single mismatch to a higher count UMI sequence if
they both share a cell barcode and gene sequence.

Both CellRanger and STARsolo output two count matrices,
filtered and unfiltered, so the user can choose which to include in
the downstream analysis. The filtered count matrix consists of
barcodes/identifiers that represent genuine cells and the expression
levels for each gene. Differently from STARsolo, last CellRanger
versions (above 3.1) employ a statistical method called EmptyDrop
[49] to distinguish cells from empty barcoded drops. In this review,
we will demonstrate how to apply EmptyDrop autonomously using
the unfiltered count matrix, as it is common to both STARsolo and
Cellranger outputs.
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5 Quality Control and Cell Filtering: How to Identify Viable Cells

Current limitations of scRNA-seq are mainly related to low capture
efficiency that can result in an increased level of technical noise. As
of today, even the highly sensitive scRNA-seq protocols produce a
small portion of low-quality barcodes due to lysed or apoptotic
cells. Therefore, before proceeding with the downstream analysis,
cellular barcodes that do not correspond to viable cells must be
filtered out. These cells are usually recognized by detecting outliers
in the distribution of QC covariates and filtered out by threshold-
ing (see Notes 3 and 4). This step is common to all scRNA-seq
pipelines and based on the analysis of three QC covariates distribu-
tion: (1) the number of captured genes per cell barcode; (2) the
fraction of mitochondrial reads per barcode to identify dying cells;
and (3) the number of unique UMIs per barcode (i.e., coverage
depth of a cell).

5.1 Identify Empty

Barcoded Drops

It is common to have empty drops when using droplet-based
technology, as cells are highly diluted in order to yield a single-
cell scaling. Empty drops might be contaminated with free RNA
molecules, also called “ambient” RNA [37], that originated from
cell lysis, which can be wrongly considered as cell-specific tran-
scripts. To avoid misleading results, empty barcoded drops should
not be included in downstream analysis. A recent method for
identifying and filtering out empty drops is through the aforemen-
tioned emptyDrops function, provided by the DropletUtils pack-
age [49]. EmptyDrops is a function designed to test how
significantly the barcode expression profile deviates from the ambi-
ent one using a Dirichlet-multinomial model. As input, it takes an
unfiltered feature-barcode matrix and returns a data frame, where
each barcode is associated with a p-value, obtained by permutation
testing, and its relative FDR correction. Putting a threshold to this
latter parameter allows the identification of ambient profiles with a
significant deviation from cell-containing droplets, which are then
considered as genuine cells. Here we show how to read data gen-
erated from the cellRanger count pipeline and detect empty dro-
plets in the case of Tabula Muris dataset (Fig. 3a), where read data
have been originally generated with the cellRanger count pipeline.
Notably, since significance is retrieved by using permutations, a
seed needs to be set.

5.2 Multiplet

Identification

Multiplets occur when two or more cells are captured in a single
drop and thus assigned to the same cell barcode [50]. This error
may be misinterpreted as higher gene counts in an individual cell.
Thereby, doublets can be simply filtered by identifying outliers in
the count depth distribution. In the case of datasets generated by
the aggregation of different samples and with different depth of
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coverage among them, it is essential to perform multiplets filtered
separately (Fig. 3b, seeNote 5). Although a thresholding approach
is usually sufficient to identify cell multiplets, new specific tools have
been developed recently, offering more elegant and potentially
better solutions [50–52].

5.3 Cells Lysis Cell barcodes associated with transcripts originated by lytic cells are
usually characterized by low count depth with few detected genes
(Fig. 2c) and a high fraction of mitochondrial reads. In this case,
unlike cytoplasmic RNA, most mitochondrial RNA is conserved
thanks to undamaged mitochondrial membranes. Hence, it is
acceptable to filter out barcodes with more than 10% of
mitochondrial-associated reads. However, when setting a thresh-
old, the biological property of the dataset should always be consid-
ered, therefore the threshold for an acceptable percentage of
mitochondrial reads may vary according to the biological model
of study. For cancer cells or specific cell types with increased respi-
ratory or metabolic processes, the high levels of mitochondrial
RNAs are inherent to the model itself [53] (see Note 6).

6 Start Working with the Scanpy, Seurat, Monocle, and gf-icf Pipelines

With the outburst of single-cell sequencing technologies, numer-
ous statistical methods have been developed to address distinct
steps of scRNA-seq analysis. Different toolkits like Seurat, Monocle
3, Scanpy, and gf-icf assembled these standalone methods to offer a
single workflow. One of the most popular code-based platforms is
Seurat, which offers a wide range of tutorials and analytical tools

Fig. 3 Cell QC on Tabula Muris dataset. (a) Detection of empty droplet by using emptyDrop function from
DropUtils R package on Tabula Muris dataset. (b) Identification of cell multiplets in each independent run of
Tabula Muris Dataset. (c) Distribution number of detected genes across the cells in the Tabula muris dataset.
(d) PCA components as a function of their percentage of explained variance on Tabula Muris dataset (elbow
plot)
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[54]. An additional well-adapted platform is Monocle, which
largely facilitated the trajectory inference field since its first intro-
duction [41]. The latest version, Monocle 3, provides both pseu-
dotemporal ordering and the basic scRNA-seq clustering pipeline
for user convenience [42]. Scanpy, a relatively new addition in the
field, allows for analyzing large size datasets up to one million cells
and more, as it has improved the computational scaling. Here we
also tested a recently introduced method named gf-icf, which is
based on a data transformation model called term frequency-
inverse document frequency (TF-IDF) that has been extensively
used in the field of text mining, where sparse and zero-inflated data
are common [55]. For downstream analysis, each pipeline employs
either R or Python programming language. In order to interpret
outputs and understand the basics of the analytical tools, each step
will be examined and compared in all four pipelines.

7 Gene Filtering: How to Remove “Noisy” Genes

A scRNA-seq dataset often includes over 25,000 genes measured
across thousands of cells, many of which might be uninformative as
they mostly contain zero counts, and should be filtered out before
starting the downstream analysis. Gene filtering can help to speed
up data processing by dipping its dimensions and reducing the
excess of zeros counts, consequently improving the data normali-
zation step and all downstream analysis. Usually, a fixed threshold is
defined, whereby genes detected in a small number of cells are
removed (see Notes 7 and 8).

8 Data Normalization: How to Make Gene Expression Comparable Across
Individual Cells

Data normalization addresses the unwanted biases arisen by count
depth variability while preserving true biological differences. The
quantity of mRNA captured from each cell may diversify due to
either biological variability or technical effects inherited through-
out the scRNA-seq procedure, including single-cell preparation,
library construction, and sequence steps [56–58]. With normaliza-
tion, the expression of each gene is rescaled, considering the abun-
dance of mRNA molecules that have been captured for each cell, in
order to make gene expression comparable across individual cells.
The way in which this scaling factor is estimated for each cell mainly
differs across the plethora of currently available normalization
methods.

As discussed above, scRNA-seq data is usually sparse due to
both biological and technical reasons (dropouts). Hence, normali-
zation methods adopted from bulk RNA-seq, such as TMM [59]
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and DESeq [60], might be biased by zero inflation. To address this
issue, single-cell normalization procedures have evolved in recent
years [61, 62]. However, at present, the most commonly used
method for scRNA-seq data normalization is count per million
(CPM), a linear global scaling approach that has been inherited
from bulk RNA-seq.

An additional source of variation not related to the biological
process under study can result from handling samples in different
batches. The batch effect may arise when an experiment with
identical cells is repeated independently, for example, by different
operators or sampling different experimental time-lines. Standard
normalization procedures do not correct for batch effect,
compromising the analysis of the real biological effects. Several
methods have been recently developed to account for the batch
effects in scRNA-seq data [63], although ComBat [64], a method
originally developed for microarray data, performs well also for
single-cell experiments of low-to-medium complexity [65].

All four pipelines proposed here account for the normalization
step through the CPM method. Seurat, Monocle, and Scanpy use
log transformation of the CPM to reduce cell depth variability (see
Notes 9–11) and few advanced options to rescale the data for some
sources of variation, including the effect cell cycle [39]. With the
gf-icf pipeline, genes are rescaled by their inverse cell frequency and
cells are rescaled to have Euclidean norm equal to one
(L2 normalization), in order to account for cell depth variability.

9 Feature Selection: How to Discard “Uninformative” Genes

A large-scale scRNA-seq dataset can easily include over 25,000
genes measured across more than 10,000 cells, with many of
these genes being uninformative because mostly containing zero
counts.

Feature selection aims to detect genes with relevant biological
information, while excluding the uninformative ones. ScRNA-seq
data dimensions can remain quite high, with a large number of
genes (>10,000) still retained even after gene filtering. Feature
selection can largely speed up the processing as it reduces data
dimensionality by filtering “uninformative” genes. This is usually
accomplished by selecting a limited number of highly variable genes
(HVG) to direct further analysis. HVG are highly informative as
they have a significant impact on the data configurations, and
therefore allow to preserve the integrity and reproducibility of the
data. Usually, 1000–5000 HVG are selected depending on the size
of the assay (see Note 12). Each pipeline implements a unique
method for the detection and selection of HGVs. Using Scanpy,
genes are binned by their mean expression, and genes with the
highest variance-to-mean ratio are selected as HVGs in each bin.
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Seurat, on the other hand, first modeled the mean-variance rela-
tionship using a local polynomial regression function. Then, given
the expected variance by the fitted curve and the observed mean,
the feature values are standardized, and for each gene, the variance
across all cells is computed [66] (see Note 13). Unlike Seurat and
Scanpy, Monocle does not cover this step, while gf-icf feature
selection is performed only when differentially expressed genes
across clusters need to be identified. Although with few differences,
also in gf-icf the feature selection is performed by modeling the
mean/variance relationship as proposed by Chen et al. [67]. The
feature selection in gf-icf pipeline is built in the normalization step
when gene expression is rescaled by their inverse cell frequency
[43], and the total number of filtered genes is considered for the
dimensionality reduction step.

10 Dimensionality Reduction: How to Summarize and Visualize scRNA-seq Data

10.1 Linear

Dimensional

Reduction: For

the Summarization

of scRNA-seq Data

Dimensionality reduction aims to condense the complexity of the
data into a lower-dimensional space by optimally preserving its key
properties. Dimensionality reduction methods are essential for
clustering, visualization, and summarization of scRNA-seq data.
Linear dimensionality reduction methods are commonly used as a
preprocessing step for nonlinear dimensionality reduction meth-
ods. The most popular linear dimensionality reduction algorithm is
the PCA (Principal Component Analysis) [68]. Usually, 10–50
significant principal components are selected and later used as
input for nonlinear dimensionality reduction methods. Principle
components are highly indicative of primary sources of heteroge-
neity in the dataset.

PCA is used to summarise a dataset throughout the top N
principal components (see Note 14). The number of PCA to use
is usually determined by manually inspecting the elbow plot
(Fig. 3d), in which principal components are plotted as a function
of the variability they account for, and the number of PCA to use is
determined by the point in which an “elbow” is observed. Addi-
tional methods can be used, including jackstraw [69] and heat maps
of leading genes in each principal component. However, when
choosing the significant principal components to use, it is better
to err on the higher side to avoid information loss.

10.2 Nonlinear

Dimensionality

Reduction

for the Visualization

of scRNA-seq Data

Dimensionality reduction for visualization of scRNA-data uses
methods that capture the nonlinearity of the scRNA-seq data,
avoiding the overcrowding of the representation (see Note 15).
The two most commonly used methods are the t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) [70] and the UniformMan-
ifold Approximation and Projection (UMAP) [71]. t-SNE is a
stochastic method that efficiently highlights local data structure in

354 Shaked Slovin et al.



low dimensions, representing cell populations as distinct clusters.
However, t-SNE is not able to preserve the global structure, so the
distance between clusters is meaningless. UMAP is a more recent
nonlinear dimensionality-reduction technique, that is instead able
to preserve both local and global structure of the data outperform-
ing t-SNE also with a shorter run time for really large-scale scRNA-
datasets.

Several additional methods exist for both linear and nonlinear
data dimensionality reduction, but it is out of the scope of this
tutorial to review all the existing methods, while we prefer to focus
on best practices andmethods currently accepted by the scRNA-seq
community. However, a detailed review of linear and nonlinear
methods for dimensionality reduction of single-cell transcriptomic
data can be found in Moon et al. [72].

11 Clustering Analysis: How to Identify Cellular Subpopulations

As transcriptionally distinct populations of cells usually correspond
to distinct cell types, a key goal of scRNA-seq consists in the
identification of cell subpopulations based on their transcriptional
similarity [73]. Thus, organizing cells into groups (i.e., clusters)
can allow for de novo detection of cell types or identification of
different subpopulations in a single cell state (see Note 16).

Clustering is an old unsupervised machine learning problem,
which aims to determine the intrinsic grouping in a set of unla-
belled objects by knowing their similarity score (i.e., distance). A
plethora of distance measures has been proposed in the literature to
compute similarity scores among objects of interest, including
Euclidean distance, Cosine distance, and correlation-based
distances.

Several unsupervised clustering methods have been applied to
partition single-cell data and can be further divided into three
groups: (1) k-means, (2) hierarchical clustering, and (3) community
detection approaches. For single-cell data analysis, all methods are
applied after feature selection and data dimensionality reduction on
the PC-reduced space. The identified clusters of cells are then
overlaid onto the visualization space.

The k-means algorithm uses an iterative approach to partition
cells into a predefined number of clusters (k). At each iteration, cells
are assigned to the closest centroid using the Euclidean distance.
Alternative distances, like correlation-based or cosine distances, can
also be used for single-cell data analysis [74]. The position of the
centroids is recomputed at the end of each iteration, and since the
starting position of centroids is randomly selected, it is common to
run the k-means algorithm multiple times [75]. Although fast, k-
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means requires to know the initial number of clusters (k) in which
to partition cells, which is usually unknown and must be settled
with additional complex analyses.

Hierarchical clustering is a partitioning method that seeks to
build a hierarchy of clusters, and it is generally divided into two
types, namely agglomerative or divisive. An agglomerative hierar-
chical clustering technique follows the “bottom-up” approach,
where initially each cell represents an individual cluster, and gradu-
ally similar clusters are merged until getting a unique cluster. On
the other hand, a divisive hierarchical clustering follows the “top-
down” approach, where all cells start from a single cluster and are
then progressively split. Hierarchical clustering produces a dendro-
gram where clusters are obtained by cutting the tree at a predeter-
mined distance that can heuristically be settled using bootstrap
approaches [76]. Examples of the application of hierarchical clus-
tering in scRNA-seq data can be found in CIDR [77], SINCERA
[78], and pcaReduce [79]. However, hierarchical clustering meth-
ods generally work slower than k-means, and do not perform well
on a large-scale scRNA-seq dataset.

Community detection techniques are scalable clustering
approaches, which are appropriate for large-scale graphs and can
be used to cluster a hundred thousand or even millions of cells
efficiently. By definition, a graph G ¼ (V,E) consists of a collection
of nodes V (i.e., cells) and edges representing the degree of similar-
ity between pairs of cells. This graph of cells can be built using the
K-Nearest Neighbors (KNN) algorithm [80] applied on the
PC-reduced space, where each cell is connected to its Kmost similar
cells. Then, edge weight between any two cells is refined by Jaccard
similarity, by using the proportion of neighbors they share.

Finding communities means gathering cells into groups, with a
higher density of edges within groups than between them [81]. A
measure of the community structure of a graph is modularity [82],
namely, the fraction of edges that fall within the given groups minus
the expected fraction if edges were randomly distributed. Modu-
larity is based on the idea that a random graph is not expected to
have a cluster structure. The most popular detection algorithm
based on modularity is Louvain, which was introduced by Pheno-
Graph and also used by Seurat, Scanpy, and gf-icf.

When running a graph-based clustering, it is necessary to set
the resolution parameter for the community detection algorithm
based on modularity optimization. The resolution parameter is
correlated to the scale of observing communities. In particular,
the higher is the resolution parameter, the larger is the number of
smaller communities. In our pipelines, we set the resolution param-
eter to 0.5, which usually represents a good trade-off.
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12 Differential Expression: How to Annotate Cell Populations

Characterization and annotation of the groups of cells identified by
a clustering algorithm can be managed by identifying marker genes
(i.e. cluster gene signature) via differential expression analysis.
Marker genes are identified by comparing cells of every single
cluster to all other cells. Some differentially expressed testing meth-
ods have been developed specifically for handling the presence of
dropout elements in scRNA-seq data, including the Bayesian
approach [83] and MAST [84], but they are not computationally
efficient when considering large-scale scRNA-seq datasets. Hence,
faster tests are used for detecting differentially expressed genes, like
Wilcoxon rank-sum test implemented in Seurat, Scanpy, and gf-icf,
while Monocle uses a generalized additive model (VGAM). Addi-
tional complex tests are also provided by Seurat, Scanpy, and Mon-
ocle. Once gene signatures of each cluster have been identified,
additional analysis including Gene Ontology Enrichment Analysis
(GOEA) and Gene Set Enrichment Analysis (GSEA) [85] can be
used to identify the biological processes active in each cell’s cluster.

13 Results Evaluation and Comparison Among the Implemented Pipelines

To evaluate the performance of the four pipelines in identifying
groups of cells (Fig. 4a–d), we calculated the agreement across
clusters produced by the different methods, by using the average
Jaccard coefficient [86] among each pair of clusters (Fig. 4e). We
then used the retrieved clusters from each method to hierarchically
cluster cell types (Fig. 4f), and showed that the different methods
produce biologically meaningful partitions. We also observed that
cells in the same cluster belong to the same lineage but with
different levels of granularity, which can be tuned by changing the
resolution parameter used to identify cell clusters.

14 Additional Analyses: How to Reconstruct Cell Transcriptional Dynamics

Depending on the biological question to address, one may think to
investigate further single-cell data leveraging other existing tools
that may provide other levels of information. Biological mechan-
isms are highly dynamic processes and thus cannot always be well
described by using a discrete approach, such as clustering. Cells can
transit across several transcriptional states governed by environ-
mental changes and external perturbations. Thus, to model such
continuance biological systems, including developmental pro-
cesses, a new class of computational methods, called trajectory
inference, have been developed in the last few years. These methods
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use scRNA-seq data generated from a population of cells underly-
ing a biological process that were collected at different time-points,
and try to computationally order them along an evolutionary tra-
jectory, which can have different topologies (i.e. linear, bifurcating
or even more complex graph structure). Once cells have been
ordered, gene expression patterns throughout the inferred trajec-
tories can be used to identify key regulator genes governing cell fate
decisions.

We first introduced the concept of pseudotime withMonocle as
a robust methodology to describe developmental systems
[41]. Since Monocle, which is at its third version now [42], the
number of available methods has grown exponentially
[87]. Recently, a newly proposed method to infer developmental
trajectories that substantially differ from others, was modeling
cellular processes using the optimal transport problem [88]. Inter-
estingly, to date, more than 100 methods have been developed to
infer cell trajectory [87].

Once trajectories have been reconstructed, RNA velocities [89]
can be overlaid onto the inferred trajectory to add directionality to
the reconstructed dynamical process.

15 Discussion and Future Directions

With the outburst of scRNA-seq technology, an increasing number
of analytic methods have been introduced to the scientific commu-
nity. Despite the wide range of analytic options, the absence of
standardization leads to high entry barriers. In the present review,
we propose four ready-to-use pipelines for the analysis of scRNA-
seq data that could fit various biological data types. With a novice in
mind, these computational pipelines provide an effective and simple
workflow, including normalization of raw counts, feature selection,
dimensionality reduction, and data clustering. The proposed pipe-
lines cover both R and Python programming languages, and
employ Seurat (R), Scanpy (Python), Monocle (R), and gf-icf
(R) platforms.

As it is important to have the ability to interpret outputs in
order to ensure data coherence, we reviewed the key steps of
scRNA-seq analysis. We also highlighted guidelines and offered
standardized values to filter and reduce data dimensionality. It is
the user’s responsibility to carefully assess the output of their analy-
sis, and if necessary, adjust the pipeline default settings to fit source
data. Furthermore, as the field evolves rapidly, this review might lag
behind the up-to-date tools. Therefore, we recommend referring to
this review as a basic workflow guideline while keeping in line with
innovations in the field.
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As single-cell sequencing is no longer limited to transcriptional
experiments but allows for capturing also other data types, includ-
ing DNA, ChIP, and ATAC, we presume that future pipelines must
be able to cope with multiomics data integration. Single-cell mul-
tiomics will simultaneously allow gaining information on all levels
of the living cells, including DNA, RNA, proteins, and epigenetic
modification [90–92]. Integration of these different “omics” infor-
mation into a single dimension will allow having a more compre-
hensive understanding of the cell fate regulations and phenotypes.

Interestingly, another new technology that necessitates high
scaling computational tools is the spatial transcriptomics, which
allows to identify the cell type spatial composition of tissues
[93, 94]. This approach may help to increase the accuracy of the
investigated system by adding another guiding dimension to the
data. By positionally annotating the cells, it would be possible to
precisely cluster different subpopulations in highly heterogeneous
systems, such as organoids, and track the spatiotemporal dynamics
between them. Therefore, the ability to conserve the spatial posi-
tion will provide a better perception of tissue organization, func-
tionality, and development.

An additional perspective is the use of high-throughput
scRNA-seq technology for personalized medicine. Several efforts
have been made to screen different cell types and tissues via scRNA-
seq to tailor appropriate medical treatment to patients’ individual
characteristics [95, 96]. Developing new tools that incorporate
machine learning approaches may increase the advancement in the
field of precision medicine, and bring it closer to clinical usage. We
believe that innovative tools occupying the aforementioned proper-
ties will stand at the forefront of science.

16 Notes

1. Before proceeding with further analyses, it is recommendable
to go through sequencing and mapping statistics, which are
often provided by the bioinformatic tool used for preproces-
sing. For instance, less than 70% of barcode-associated reads
might suggest high levels of ambient RNA (due to a significant
level of lysed cells or insufficient washes after tissue
dissociation).

2. Reads confidently mapped to the genome should exceed 80%
of the total.

3. QC-based outlier detection, that is, multiplet and lytic cell
filtering, should be performed taking these covariates
concomitantly.

4. The threshold for filtering outlier cells should be as permissive
as possible to avoid excessive dropout effect. It could be further
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adjusted once downstream analyses have been performed to
better interpret data.

5. As transcripts coverage may differ between samples, it is essen-
tial to set the threshold for each one separately.

6. When setting a threshold, the biological property of the dataset
should be considered, as increased respiratory or metabolic
processes may also cause high mitochondrial reads.

7. The selected threshold should be as permissible as possible to
avoid a dropout effect or removal of a rare cell population.

8. An acceptable guideline is to adjust the threshold to the smal-
lest cluster size or to the number of genes expressed in more
than 1–5% in the dataset.

9. Despite the normalization method of choice, data transforma-
tion (e.g., log transformation) should always be applied since
most tools for downstream analyses expect normally
distributed data.

10. Try to avoid correcting biological batches, unless you want to
infer trajectories and such correction does NOT mask other
biological information of interest.

11. When performing batch correction on technical as well as
biological covariates, it should be done simultaneously.

12. The choice of HVGs may influence downstream analysis,
although it has been shown that choosing between 200 and
2400HVGs does not affect representation in lower dimensions
(i.e., PCA space) [9].

13. Feature selection based on mean and variance cannot be per-
formed on data scaled to zero mean and unit variance.

14. Principal components can also be used to inspect the effect of
technical covariates on data [65], or to address the role of
specific genes across the dataset [69].

15. Nonlinear dimensionality reduction methods are a powerful
tool for data visualization, NOT summarization.

16. Downstream analyses require summarized data, for example,
PCA or diffusion maps.
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11. Plasschaert LW, Žilionis R, Choo-Wing R et al
(2018) A single-cell atlas of the airway epithe-
lium reveals the CFTR-rich pulmonary iono-
cyte. Nature 560:377–381

12. Suo S, Zhu Q, Saadatpour A et al (2018)
Revealing the critical regulators of cell identity
in the mouse cell atlas. Cell Rep
25:1436–1445.e3

13. Velasco S, Kedaigle AJ, Simmons SK et al
(2019) Individual brain organoids

reproducibly form cell diversity of the human
cerebral cortex. Nature 570:523–527

14. Fischer DS, Fiedler AK, Kernfeld EM et al
(2019) Inferring population dynamics from
single-cell RNA-sequencing time series data.
Nat Biotechnol 37:461–468

15. Liu Z, Wang L, Welch JD et al (2017) Single-
cell transcriptomics reconstructs fate conver-
sion from fibroblast to cardiomyocyte. Nature
551:100–104

16. Cacchiarelli D, Qiu X, Srivatsan S et al (2018)
Aligning single-cell developmental and repro-
gramming trajectories identifies molecular
determinants of myogenic reprogramming
outcome. Cell Syst 7:258–268.e3

17. van Dijk D, Sharma R, Nainys J et al (2018)
Recovering gene interactions from single-cell
data using data diffusion. Cell 174:716–729.
e27

18. Hayashi T, Ozaki H, Sasagawa Y et al (2018)
Single-cell full-length total RNA sequencing
uncovers dynamics of recursive splicing and
enhancer RNAs. Nat Commun 9:619

19. Savas P, Virassamy B, Ye C et al (2018) Single-
cell profiling of breast cancer T cells reveals a
tissue-resident memory subset associated with
improved prognosis. Nat Med 24:986–993

20. Moghe I, Loupy A, Solez K (2018) The human
cell atlas project by the numbers: relationship
to the Banff classification. Am. J. Transplant
18:1830

21. Ziegenhain C, Vieth B, Parekh S et al (2017)
Comparative analysis of single-cell RNA
sequencing methods. Mol Cell 65:631–643.e4

22. Senabouth A, Andersen S, Shi Q et al (2020)
Comparative performance of the BGI and Illu-
mina sequencing technology for single-cell
RNA-sequencing. NAR Genom Bioinform
2. https://doi.org/10.1093/nargab/lqaa034

23. Rosenberg AB, Roco CM, Muscat RA et al
(2018) Single-cell profiling of the developing
mouse brain and spinal cord with split-pool
barcoding. Science 360:176–182

24. Tasic B, Yao Z, Graybuck LT et al (2018)
Shared and distinct transcriptomic cell types
across neocortical areas. Nature 563:72–78

362 Shaked Slovin et al.

https://github.com/gambalab/scRNAseq_chapter/blob/master/tables/table1.xlsx
https://github.com/gambalab/scRNAseq_chapter/blob/master/tables/table1.xlsx
https://github.com/gambalab/scRNAseq_chapter/blob/master/tables/table1.xlsx
https://doi.org/10.1093/nargab/lqaa034


25. Guillaumet-Adkins A, Rodrı́guez-Esteban G,
Mereu E et al (2017) Single-cell transcriptome
conservation in cryopreserved cells and tissues.
Genome Biol 18:45

26. Wohnhaas CT, Leparc GG, Fernandez-Albert
F et al (2019) DMSO cryopreservation is the
method of choice to preserve cells for droplet-
based single-cell RNA sequencing. Sci Rep
9:10699

27. Baran-Gale J, Chandra T, Kirschner K (2018)
Experimental design for single-cell RNA
sequencing. Brief Funct Genomics
17:233–239

28. Salomon R, Kaczorowski D, Valdes-Mora F
et al (2019) Droplet-based single cell RNAseq
tools: a practical guide. Lab Chip
19:1706–1727

29. Islam S, Zeisel A, Joost S et al (2014) Quanti-
tative single-cell RNA-seq with unique molec-
ular identifiers. Nat Methods 11:163–166

30. Abate AR, Chen C-H, Agresti JJ, Weitz DA
(2009) Beating Poisson encapsulation statistics
using close-packed ordering. Lab on a Chip
9:2628

31. Zhang X, Li T, Liu F et al (2019) Comparative
analysis of droplet-based ultra-high-through-
put single-cell RNA-Seq systems. Mol Cell
73:130–142.e5

32. Brazovskaja A, Treutlein B, Camp JG (2019)
High-throughput single-cell transcriptomics
on organoids. Curr Opin Biotechnol
55:167–171

33. Stegle O, Teichmann SA, Marioni JC (2015)
Computational and analytical challenges in
single-cell transcriptomics. Nat Rev Genet
16:133–145

34. Haque A, Engel J, Teichmann SA, Lönnberg T
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