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Abstract: In Sulfolobus solfataricus, Sso, the ADP-ribosylating thermozyme is known to carry both auto-
and heteromodification of target proteins via short chains of ADP-ribose. Here, we provide evidence
that this thermoprotein is a multifunctional enzyme, also showing ATPase activity. Electrophoretic
and kinetic analyses were performed using NAD" and ATP as substrates. The results showed that
ATP is acting as a negative effector on the NAD"-dependent reaction, and is also responsible for
inducing the dimerization of the thermozyme. These findings enabled us to further investigate the
kinetic of ADP-ribosylation activity in the presence of ATP, and to also assay its ability to work as a
substrate. Moreover, since the heteroacceptor of ADP-ribose is the sulfolobal Sso7 protein, known as
an ATPase, some reconstitution experiments were set up to study the reciprocal influence of the
ADP-ribosylating thermozyme and the Sso7 protein on their activities, considering also the possibility
of direct enzyme/Sso7 protein interactions. This study provides new insights into the ATP-ase activity
of the ADP-ribosylating thermozyme, which is able to establish stable complexes with Sso7 protein.

Keywords: Sulfolobus; ADP-ribosylation; thermozyme; DING protein; Archaea; Sso7 protein;
ATPase; ATP

1. Introduction

For years, the eukatyotic-like poly(ADP-ribosyl)ation system in the thermophilic S. solfataricus was
unique [1,2], until the discovery of poly(ADP-ribose) polymerase (PARP) gene orthologues in several
prokaryotes [3]. PARP family members catalyse a reversible NAD*-dependent post-translational
modification of proteins involved in a broad range of cellular processes. The reaction is physiologically
regulated by a specific and temporal balance between poly(ADP-ribose) synthesis (by PARPs) and
degradation (catalysed by poly(ADP-ribose) glycohydrolases, PARGs) [4-6] and references therein.

Up until now, the Sulfolobus thermoprotein (PARPSso) was the best biochemically characterized
prokaryotic PARP-like enzyme [1,2]. Like eukaryotic PARPs, the thermozyme elongates the ADP-ribose
chain, and binds DNA independently from the sequence, structure and free ends, although it shows
a slight preference for a circular structure [1,7,8]. PARPSso is a very stable enzyme, resistant to
denaturants including SDS. Moreover, the reaction is reversed by a PARG-like glycohydrolase that has
been recently identified and characterised [9].

PARPSso is not structurally related to the known PARPs [10] and localises at the edge of the
sulfolobal cell membrane [11].
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The thermozyme undergoes automodification by oligo-ADP-ribosylation and has Sso7,
the abundant sulfolobal DNA-binding protein, as main heteroacceptor [1,2,7]. The ADP-ribosylated
Sso7 protein is unable to condense DNA [12]. This finding allowed us to hypothesize a regulatory role
by PARPSso on DNA condensation/decondensation process mediated by Sso7 [12].

It is well known that the group of 7 kDa proteins is highly conserved in all Sulfolobus species,
identified with different acronima (Sso, Sac, Sul) [13,14], and they belong to a non-histone group,
as compared with histone-like proteins found in other Archaea [13]. The latter form a core which DNA
wraps on, whereas Sso7 proteins interact with the minor grooves of DNA, leading to the condensation
of nucleic acid [15]. In vitro studies showed that Sso7 promotes annealing of complementary DNA
strands [16], induces negative supercoiling [17], and guides the disassembly and renaturation of
protein aggregates in an ATP hydrolysis-dependent manner [18]. The different activities are mutually
exclusive events [19].

As stated above, 5507 is the main heteroacceptor of ADP-ribose in S. solfataricus, with a consequent
inhibition of its ability to condense DNA [8,12].

In previous experiments, the reconstitution of purified PARPSso with homogenous Sso7 in the
presence of 3P-NAD*in the absence of DNA led to demonstrate that the 7 kDa protein increases
the ADP-ribosylating activity of the thermozyme, functioning as an in vitro ADP-ribose acceptor [8].
In other experiments, it was shown that the purified sulfolobal enzyme, incubated with >P-NAD™,
in the absence of Ss07, had DNA as a positive effector of PARP-like activity, and exhibited a high DNA
affinity [7,20].

The aim of the present research was first to study in vitro the effect of PARPSso protein on
the ATPase activity of Sso7 too. We present kinetic evidence that ATP, the substrate of ATPase,
negatively modulates the ADP-ribosylating activity. Moreover, assaying PARPSso with ATP as
a substrate, the thermozyme was able to hydrolyze the nucleotide and had NAD" as an effector.
Kinetic parameters of ATPase activity exhibited by PARPSso were also measured. Secondly, we studied
whether PARPSso and Sso7 ATPase activities could have a reciprocal influence, and the two proteins
would exhibit direct protein-protein interactions.

2. Materials and Methods

2.1. Materials

[*’P]NAD", nicotinamide adenine dinucleotide di(triethylammonium)salt (adenylate—32P),
1000 Ci/mmol, was purchased by GE Healthcare Europe GmbH (Milano, Italy); [y-32P]ATP
(3000 Ci/mmol) was from Perkin Elmer (Milano, Italy). Pre-stained molecular weight markers were
purchased from Bio-Rad (Cat No. 1610318, Milano, Italy). NAD*, ADP-ribose, ATP, protease inhibitors,
and all chemicals were purchased from SIGMA Chemical Company (Milano, Italy). Stock solutions
of NAD* and ATP (4 mM) were prepared; concentration was confirmed spectrophotometrically by
their molar extinction coefficients. From these solutions, an isotopic dilution was prepared at a given
compound concentration and given specific radioactivity (10,000 cpm/ compound nmole) to be used in
the assays.

2.2. Cell Culture and Homogenate Preparation

S. solfataricus strain MT-4 (DSM No. 5833) was grown at 87 °C, in either a small (2.5 L) or large
(90 L) fermenter (aeration flux: 30mL/min/L). The standard culture medium, adjusted to pH 3.5 with
0.1M H;)_SO4, contained (g/L) KH2P04, 3.1; (NH4)2504, 2.5; MgSO4, 7H20, 0.2; CaClz, 2Hzo, 0.25,
yeast extract, 2. Sometimes, in the standard medium, yeast extract was replaced by glucose (3 g/L) as
the carbon source. This condition was used to avoid any possible protein/nucleic acid contamination
from yeast. Cells were harvested in the stationary phase of growth, at a concentration of 0.5 g of
freeze-dried cells/L by continuous flow centrifugation in an Alfa Laval model LAB 102 B20 centrifuge.
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After two washes in an iso-osmotic saline solution (pH 6.0), they were collected by centrifugation at
9000x g for 30 min. Cells were stored at —20 °C for several months without loss of enzymatic activities.

The crude homogenate was prepared from the collected cells as described in [1]. A cocktail of
protease inhibitors was added to all protein solutions (2 pg/mL; containing 20 pug/mL pancreas-extract,
0.5 ug/mL thermolysin, 2 ug/mL chymotrypsin, 2 ug/mL trypsin, 330 ug/mL papain).

2.3. Purification and Electrophoresis of PARPSso and Sso7 Proteins

PARPSso was purified by means of a two-chromatographic step protocol, including two affinity
chromatographies [20]. The purified enzyme used in the described experiments was from three
different preparations, one freshly prepared from cells grown in a 2.5 L fermentor, two others stored
at —20 °C for two-three months. The freshly prepared enzyme was used in parallel with one of the
two frozen purified PARPSso, that had comparable activities. The purification of the Sso7 protein was
achieved by using a 5% perchloric acid extract of sulfolobal homogenate, followed by the procedure
previously described [8]. Protein concentration was determined by the Bradford procedure according
to [1].

The homogeneity of the two proteins was checked by SDS-PAGE (12%) and silver staining of the
gel [12].

2.4. SDS-PAGE and Western Blot of Purified PARPSso

The electrophoretic analysis of the purified PARPSso fractions was carried out on a polyacrylamide
gel (12%) by means of a Tris-glycine-0.1%SDS system, pH 8.3 at 18 mA [1]. The electrophoretic analysis
was carried out by using duplicate aliquots of purified PARPSso in different experimental conditions.
After electrophoresis, one of each duplicate was stained with 0.1% Coomassie Brilliant Blue R and
then destained in a 10% acetic acid (v/v)/10% methanol solution (v/v). The proteins of the unstained
gel (second duplicate) were electrotransferred onto poly(vinylidene difuloride) (PVDF) membrane
filter (0.45 um; Cat No. IPVH00010, Merck Millipore, Milano, Italy) by a Bio-Rad Transblot system at
constant 200 mA in 0.025 M Tris—0.192 M glycine buffer, pH 8.6, containing SDS 0.025% at 4 °C for
2 h. The filter underwent repeated washes with 50 mM Tris-HCI buffer, pH 8.0, and 150 mM NaCl
(TBS), containing 0.5% Tween, and then incubated at room temperature for 3 h, in TBS-0.5% Tween,
containing 3% gelatine to saturate the non specific bond sites. Thereafter, the filter was incubated at
room temperature, overnight, in the presence of anti-PARP catalytic site polyclonal antibodies (rabbit
anti-human PARP, H-250, 1:1000, v/v; Cat No. sc7150, Santa Cruz Biotechnology, Heidelberg, Germany)
in 0.05% TBS-Tween and 0.3% gelatine. After several washes in TBS-0.05% Tween, at room temperature
for 1 h, PVDF filter was incubated with peroxidase (HRP)-conjugated goat anti-rabbit (Cat No. 31460,
Life Technologies, Monza, Italy) directed against the primary antibodies.

Finally, the filter underwent a series of washes, before detecting peroxidase activity by
chemiluminescence, using a Pierce kit (Super Signal West Dura, Pierce, Life Technologies, Monza,
Italy).The acquisition and analysis of the images were carried out by Chemidoc (Bio-Rad) and the
Quantity One program.

2.5. PARPSso Assay

Standard activity assay of purified PARPSso (10 pg) was carried out in the presence of
0.64 mM [3?P]NAD* (10,000 cpm/nmol) and according to [1,12]. Briefly, the reaction mixture
(final volume 62.5 uL), contained [*?P]NAD™*, 0.1 M Tris-HCI buffer (pH 7.5), and 4 mM NaF,
as glicohydrolase inhibitor. Where [3?P[NAD" final concentration changed, the [*2P] isotopic dilution
was 10,000 cpm/nmol. Incubation in sealed vials was at 80 °C for 10 min, unless otherwise stated.

After incubation, the reaction was blocked on ice, by adding 25% TCA (v/v), to precipitate the
proteins. The following washes of precipitate on Millipore filters (0.45 pm; Cat No. HAWP00010,
Merck Millipore, Milano, Italy) with cold 7% TCA (20-30 volumes), removed free NAD™; the
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protein-associated radioactivity on filter was measured in a liquid phase scintillator (BECKMAN LS
1701), in the scintillation liquid (LIPOFLUOR, LUMA).

The activity was also assayed in the presence of different concentrations of ATP (5 uM-100 pM)
and Sso7 (10 pug). The activity values are means of four determinations with the purified enzyme from
two preparations.

The enzymatic activity was expressed in mUnits; 1 mU is the enzyme amount required to convert
1 nmole NAD™" into ADPR in one minute, at pH 8.0 and at 80 °C.

2.6. ATPase activity of PARPSso and SSo7

ATPase activity was assayed by incubating purified PARPSso (10 pg) in a mixture of 5 mM MgCl,,
50 mM sodium phosphate, pH 7.5, in the presence of [y->*P]ATP (10,000 cpm/nmol), for 5 min at
70 °C, in a final volume of 150 uL. The final ATP concentrations changed as in the figures. The [32P]
isotopic dilution was 10,000 cpm/nmol for all. The activity was also assayed in the presence of two
concentrations of NAD" (10 uM and 100 uM) or Sso7 (10 ug). As a control, the ATPase activity of
SSo7 protein, already described [14], was assayed. The specific composition of reaction mixtures is
reported in the legends of figures. After incubation, duplicate aliquots (25 uL), were drawn from the
assay mixture, added to 0.5 mL of a suspension containing 50 mM HCl, 5 mM H3PO, and 7% activated
charcoal, and centrifuged at 4000x g for 20 min, as reported in [18]. The radioactivity (free [32P]) of the
supernatant was determined from a 100-uL aliquot. For rate calculations, corrections were made for
the amount of spontaneous ATP hydrolysis, in the absence of either one or the other protein (blank).
The values shown in the figures are means of four determinations with the purified enzyme from
two preparations.

Enzymatic unit is expressed as nanomoles of free phosphate produced in one minute.

2.7. PARPSso/Sso 7 Interactions

Protein mixtures were prepared at different PARPSs0/Sso7 ratios in 10 mM Na-phosphate
buffer/10 mM EDTA, pH 7.5, in sealed vials (final volume 10 pL) and incubated at 80 °C for 20 min.
The experiment was carried on twice at 80 °C and once at 45 °C. After incubation the samples
were transferred on ice, diluted with sample buffer (2x; v/v) and analysed by SDS-PAGE (5-12%
polyacrylamide gradient) [21]. Gels were silver stained [21].

2.8. Data Base Analysis

Amino acid sequence and structural motifs were analysed by ExPasy Bioinformatic resource [22].
Secondary structure prediction was according to Ashok Kumar [23].

2.9. Statistics

Standard deviations were calculated by Excel program. Graphics were drawn by Graph Pad
program. Mann-Whitney U test allowed one to calculate the significance differences (P) [24].

3. Results

3.1. Effect of ATP on S. solfataricus ADP-Ribosylating Thermozyme

Basic kinetic with NAD™ as a substrate was described by a sigmoid curve, typical of a cooperative
process (Figure S1). The linearizing Hill plot confirmed the cooperativity and allowed one to calculate
the Hill coefficient, (ny = 1.8), Figure S1 (inlet).

In order to assess the effect of ATP on PARPSso, the same kinetic was carried out by measuring
PARPSso activity, either in the absence or in the presence of ATP (5 uM, 10 pM and 100 uM) at increasing
NAD™ concentrations (Figure 1).
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Figure 1. ATP effect on PARPSso activity. Polymerase activity was assayed with [Z?P][NAD* as
described in § 2.5, in presence of different ATP concentrations (uM: 0, ¢; 5, m; 10, a; 100, o). The basic
kinetic curve (#) is the one described in Figure S1.

All kinetics were described by sigmoid curves, indicating ATP as an activity modulator. In detail,
ATP behaved as a negative effector, inhibiting PARPSso activity, already at the lowest concentration
(5 uM), where specific activity was highly influenced; in fact, at Ky 5 (0.4 mM NADY), it was reduced by
almost 40%. The inhibitory effect was dose-dependent with a maximum at 100 uM nucleotide. At this
concentration Ky 5 splitted to 0.5 mM NAD™* and the specific activity was close to zero. Linearizing the
plots, the trend was close to that of a mixed inhibition, were both Ky and Vax changed (Figure S2).
This behaviour might be explained by considering that the ADP-ribosylating reaction is a three-step
reaction with two substrates, NAD and the protein acceptor of ADP-ribose. Under the kinetic condition,
used ATP interferes only with NAD binding site. In the binding site both NAD" and ATP share in
part the binding domain, as it is probably different in the region binding the pyridinic nucleotide.
The sigmoidal curves determined in the basic kinetic (only NAD* present), were typical of oligomeric
and allosteric proteins, and had been described also for eukaryotic PARP1. It was suggested that the
dimerization of this enzyme is a prerequisite to the automodification reaction ([25] and references
therein). Thus, it was conceivable that the allosteric kinetic of Sulfolobus PARPSso could depend on
the dimerization of the thermozyme. In fact, a previous electrophoretic experiment showed that a
dimeric enzyme occurred upon incubation of PARPSso with the pyridinic substrate [21]. This result
was detected also in some Sulfolobus crude preparations where monomeric PARPSso (46.5 kDa),
and at least its dimer occurred naturally [21]. Trypsin digestion of the 90 kDa protein and amino acid
sequence analysis of peptides by mass spectrometry further demonstrated the identity of monomeric
and dimeric PARPSso [26].

3.2. PARPSso Dimerization in Presence of ATP

On the basis of the results described in the previous section, we set up a similar electrophoretic
experiment to study whether ATP could also induce PARPSso dimerization. Figure 2 shows the results
of SDS-PAGE and anti-PARP1 immunoblotting in the absence and presence of either NAD* or ATP in
standard assay conditions.
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(@ (b)

Figure 2. PARPSso dimerization in the presence of NAD* and ATP. (a) SDS-PAGE (12%) and
staining in 0.1% Comassie brilliant blue R; (b) immunoblotting with anti-PARP antibody (Santa
Cruz, rabbit anti-human PARP, H-250, 1:1000, v/v). Incubation conditions in presence of NAD™*
and ATP are reported in § 2.4. Lanes: 1, purified PARPSso (20 pg); 2, purified PARPSso (20 png)
incubated in standard assay conditions for polymerase activity); 3, as in 2, in presence of 4 mM ATP.
M, prestained molecular weight markers (Bio-Rad): myosin (206 kDa), beta-galactosidase (118 kDa),
bovine serum albumin (97 kDa), ovalbumine (54 kDa), carbonic anhydrase (37 kDa), trypsin inhibitor
(29 kDa), lysozyme (17 kDa), aprotinin (7 kDa). The experiment was carried out also on 0.4 mM
compounds with similar results.

In the presence of either compound, the purified monomer splits to dimer, with the disappearance
of the band at 46.5 kDa, and the appearance of a signal at 92 kDa. On one side, these results confirmed
that enzyme dimerization induced by NAD* (Figure 2, lane 2) could account for the allosteric kinetic
of PARPSso (Figure 1). On the other hand, they evidenced that ATP induced the same PARPSso
dimerization as NAD*. Moreover, the fact that the results were similar by incubating PARPSso
with ten times less (0.4 mM) nucleotides evidences that dimerization event occurs even at very low
concentration of both compounds.

It must be underlined that PARPSso is not structurally related to the canonical PARP members;
it belongs to a serendipitously discovered protein family, with a common N-terminus (DINGGG),
a highly conserved phosphate-binding site, and a Walker A motif, binding nucleoside triphosphates
(NTP) [26-29].

3.3. ATPase Activity of S. solfataricus PARPSso

The next question to solve was to study whether ATP might be itself a substrate of PARPSso.

The basic kinetic, carried on with ATP as a substrate, was described by a sigmodal curve (Figure S3).
Linearization by Hill equation gave a plot showing cooperativity with nyy = 3.1 (inlet of Figure S3).
This result gave evidence that the thermozyme had also ATPase activity.

In the presence of NAD*, the kinetic followed sigmoidal trends too (Figure 3).
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Figure 3. ATPase kinetic of PARPSso. Assays are described in § 2.6. NAD* added at different
concentrations (uM: 0, 4; 10, m; 100 uM, A). The basic kinetic curve (4) is the one described in Figure S2.

Furthermore, in this case, the allosteric kinetic could be explained by PARPSso dimerization
induced by ATP (Figure 2, lane 3).

The basic kinetic (¢, Figure 3), reached 50% saturation at fairly 0.6 mM ATP (Ky5). In the
presence of 10 uM NAD", this value increased to 0.75 mM ATP, with a 10-15% increase of specific
activity. Moreover, activity inhibition was measured above 0.5 mM ATP. Up to 0.5 mM ATP, the two
curves overlapped.

At 100 uM NAD*, nearly 20% activity was still measured. At this effector concentration inhibition
of ATPase was more evident.

Therefore, NAD*, at a low concentration shows an enzyme activation, but at the highest
concentration works as an allosteric inhibitor of ATPase activity, even if its effect is lower than the
same concentration of ATP on the ADP-ribosylation activity (Figure 1). It was worth nothing that
linearizing the plots for ATPase activity in absence and presence of NAD, inhibition was a typical
competitive one, varying only Ky, (Figure S4). This is not surprising as ATPase reaction is simpler than
ADP-ribosylation one: a single substrate in competition with the effector NAD". Thus, the binding of
ATP to the AMP moiety of the active site is modulated by the concentration of NAD™: increasing this
compound, its binding is favoured and ADP-ribosyation is the reaction going on. At very low NAD*
concentration and large ATP amount, ATPase activity preveals.

A comparison of ADP-ribosylation and ATPase kinetics of PARPSso indicated a ke, with ATP
(140 s71) as a substrate, seven times higher than that with NAD* (k.. = 20 s7!). Catalytic specificities
(Keat /Ko.5) were 230 (ATP) versus 51 (NAD™).

3.4. Polymerase and ATPase Activity of Thermozyme in Presence of Sso7 Protein

Since it is well known that Sso7 is not only the preferred hetero acceptor of poly-ADPR,
but also possesses an ATPase activity [18], we studied whether and how SS07 could influence
the ADP-ribosylation and ATPase activities of PARPSso (Figure 4).

ADP-ribosylation activity of PARPSso in presence of Sso7 produced a three times increase of basal
activity, whereas Sso7 incubated alone with 2[P]NAD™ was not able to use the pyridinic compound as
a substrate (Figure 4a). Thus, the activity increase observed upon incubation of PARPSso with the
7 kDa protein, was exclusively due to ADP-ribosylation of Sso7.
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Figure 4. Sso7 effect on polymerase and ATPase activity of thermozyme. (a): Polymerase activity
was assayed in standard condition, as reported in § 2.5 by incubating: (i) purified PARPSso (10 pug);
(ii) purified Sso7 (10 ug); (iii) purified PARPSso (10 pg) in presence of purified Sso7 (10 ug). (b): ATPase
activity was assayed as described in § 2.6 by incubating: (i) thermozyme (10 pg); (ii) Sso7 (10 ug of
proteins); (iii) purified thermozyme (10 ug) in presence of purified Sso7 (10 ug). The values were the
means of four different experiments in duplicate. The significance differences (*: p < 0.05) were tested
with the Mann-Whitney U test [24].

On the other hand, both proteins exhibited a significant ATPase activity, and it was more
pronounced for PARPSso (Figure 4b).

The simultaneous presence of PARPSso and Sso7 in ATPase standard assay mixture gave an
activity increase which was the sum of those exhibited separately by the two proteins (Figure 4b).
This result indicated that there was no reciprocal interference in ATPase activities of the two enzymes,
independent each other. On the contrary, the three times increase of ADP-ribosylation activity was
induced by the presence of Sso7, the target protein of PARPSso heteromodification.

3.5. PARPSso0/Sso7 Protein Interactions

Another matter to be further explored was to ascertain whether Sso7 as substrate of
ADP-ribosylation might establish protein-protein interactions with PARPSso. Figure 5 shows the
electrophoretic patterns of the two purified proteins analysed separately (lanes 1, 2) and incubated in a
mixture at different molar ratios (lanes 3-5) under the conditions described in Materials and Methods.

1 2 3 4 5 M XDa
206
118
97

i

PARPSso e . 54

— 7

Sso7 — —

Figure 5. PARPSso and Sso7 interactions. Complexes of the two proteins were evidenced by SDS-PAGE
(5-12% gradient) and silver staining of the gel [21]. Lanes: 1, purified PARPSso (3 ug); 2, purified Sso7
protein (1.2 pg, 171 pmoles); 3-5, purified PARPSso (3 ng, 65 pmoles) in the presence of increasing
concentrations of Sso7 (1:0.5, 1:1, 1:3, mol/mol). M, pre-stained molecular weight markers (Bio-Rad),
as in Figure 2.
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The molecular weight shift of PARPSso monomer (46.5 kDa) in the presence of Sso7 suggested
that the two proteins interact with each other by forming complexes at molecular weight as much
higher, as much Sso7 concentration increased. In detail, in Figure 5 the silver stained basal bands
at 46.5 and 7 kDa (lanes 1, 2 respectively), tended to disappear in lanes 3 and 4, and were replaced
by other signals below 90 kDa, corresponding to intermediate protein-protein complexes. In lane
5, the whole PARPSso was used to form complexes, whereas a net Sso7 band appeared again at
7 kDa, indicating that saturation was achieved in the complexes. At this ratio (PARPSso/Sso7 ratio 1:3,
mol/mol), the complexes were evident up to the protein marker at 90 kDa. By considering that in lane
4 the complex almost reaches saturation (Sso7 disappears), the ratioSso7 (1.2 ug, 171 pmol)/PARPSso
(3 ng, 65 pmol) is close to 3.

4. Discussion

The results presented here clearly show that PARPSso exhibits two enzymatic activities. It is able
to modify itself and a heteroacceptor, the Sso7 protein, by ADP-ribosylation, or to act as an ATPase,
being the ATPase activities of PARPSso and Sso7 protein, independent each other.

The ATPase activity of Sso7 had been widely described [17], and confirmed in our experiments,
demonstrating also that both Sso7 and PARPSso are ATPase with a mutually exclusive activity (Figure 4).
It is worth noting that the ATPase kinetic of PARPSso is modulated by NAD™ as a competitive inhibitor,
which shares in part with ATP the moiety to bind the active site (Figure 54). The ATPase inhibition trend
accounts for a simple reaction catalysed by PARPSso, which probably occurs in the cell at zero or very
low NAD™ levels playing a different role than the ADP-ribosylating reaction. We highlight that, in the
cell, PARPSso is localized along the membrane and kept in touch with both it and the nucleoid [11].
This observation is important because PARPSso was first discovered as an ADP-ribosylating enzyme,
catalysing a three-step reaction more complex than the hydrolysis of ATP. Structurally, PARPSso belongs
to the family of DING proteins, and similarly to other members of the DING family, it is a monomer,
and has a single highly unvariant phosphate-binding site (P-loop, Figure 6).

(a)
I-DINGGGATLP QKLYQTSGVLTAGFAPYIGV GSGNGKAAFL

TNDYTKFVAG VSNK NVHWAG

61-SDSKLTATEL STYATNKQPT WGKLIQVPSV ATSVAIPFRK
SGANAVDLSV SELCGVFSGR ITDWSGISGA

131- GRTGPITVVY RSESSGTTEL

(b)

0O o ) o

- Helix
- Sheet
- Turn

10
125 150

00 158

Figure 6. Partial amino acid sequence of PARPSso. (a) Amino acids defining the phosphate binding
(P)-site are in bold. PARPSso accession number B3EWGY (UniProt). The Walker A motif is underlined.
(b) Prediction of secondary structure of PARPSso [23]. The predicted secondary structure of this region
indicates the cluster of beta-sheets flanked by alfa-helices described for other DING proteins.

The eight conserved residues of P-loop are T8, L9, S32, D62, R141, S145, G146, T147
(Figure 6a) [10,26]. Previously, we demonstrated that, thanks to this site, PARPSso, as monomer,
exhibits also phosphatase activity, as other DING proteins from different organisms [26]. What is
relevant to discuss here is how PARPSso, a monomer with a P-loop, can catalyse reactions like
hydrolysis of ATP, and moreover, a three-step reaction like ADP-ribosylation. Here, we demonstrate
that the presence of either one or the other substrate (ATP or NAD") induces the dimerization of
PARPSso, suggesting common structural binding motifs. It is widely reported that many ABC ATPases,
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first discovered as part of membrane transporter systems [27-31], have P-site and function as dimers.
This P-site binds phosphate through hydrogen bonds and encloses the Walker A motif (consensus
sequence GXXXXGKT/S) [27]. The lysine residue in the consensus GXXXXGKTY/S is crucial for the
direct interaction with the phosphates of ATP. Similar to ABC ATPases, PARPSso has P-site and Walker
A motifs enclosed in an «/f3 motif at N-terminus, also exhibits highly cooperative ATP-hydrolysis,
and functions as a dimer [21,25]. This structural similarity allows one to explain its ATPase activity:
the ATP binding site of ABC-ATPases is present in PARPSso too.

How to explain the more complex ADPribosylating activity of PARPSso? This activity of PARPSso
requires NAD™ as a substrate. NAD" induces the dimerization of PARPSso. The sigmoidal curves
determined in the basic kinetic (only NAD* present, Figure 1) were typical of oligomeric and allosteric
proteins, and had been described also for eukaryotic PARP1. It was suggested that the dimerization
of this enzyme is a prerequisite to the intermolecular automodification reaction ([25] and references
therein). Thus, it is conceivable that the allosteric kinetic of Sulfolobus PARPSso could depend on the
dimerization of the thermozyme. Here, we demonstrate that the thermozyme dimerizes in the presence
of NAD™, and it suggests a head-to-tail arrangement of two protein molecules forming the active site.
Thus, dimerization plays an important role in both catalytic activities of PARPSso. Looking at structural
motifs contributing to the active site, as said above, PARPSso has P-site and Walker A motif enclosed
in an o/ motif at N-terminus, and functions as a dimer, probably with a head-to-tail arrangement
of two thermozyme molecules [21,26]. These motifs, which account for ATPase activity, have been
described also in DNA repair enzymes Rad50 and MutS and SMC proteins [32], where two molecules
work in pair, by a similar dimer arrangement. The head-to-tail arrangement of such a dimer forms,
at the interface, two functional active sites [32].

On the other hand, the proteins that bind to nucleotide cofactors such as NAD(P) usually adopt
the Rossmann fold motif. [33]. The GXXXG/A amino acid stretch of Rossmann fold /amotif is within
the dinucleotide binding domain and stabilizes helix-helix interactions in both membrane and soluble
proteins. Specifically, nicotinamide adenine dinucleotide (NAD™)-utilizing enzymes share a Gly-rich
loop that interacts with the cofactors phosphate moieties. The N-terminus of PARPSso encloses these
amino acid and secondary structure motifs (Figure 6) [10,26].

In summary, both P-loop nucleoside-triphosphatase (NTPase) fold and the Rossmann fold-proteins
belong to the class of (3/c proteins and share a Gly-rich loop. They are among the most widely occurring
protein folds presumed to exist in the last universal common ancestor and considered as the earliest
precursors of modern proteins [33]. It is worth noting that, in proteins with a similar architecture,
both Rossmann fold and ATP-binding sites have been identified [33]. Both Rossmann- 3/« fold and
P-loop were also identified in RuvBL1, an evolutionarily highly conserved eukaryotic protein belonging
to the AAA-family of ATPases (ATPase associated with diverse cellular activities), involved also in
chromatin remodelling, DNA repair and apoptosis [34].

On this basis, the co-presence in PARPSso of structural motifs able to bind mono- and dinucleotides
within 3/« modules might allow one to explain the double activity of the thermozyme.

PARPSso can be numbered among multifunctional proteins, often reported in literature [35-37].
The ability to catalyse different activities is an important tool, especially in prokaryotes, to expand their
limited amount of genomic information [35-37]. At the molecular level, the catalytic promiscuity of a
single domain, that is, its ability to catalyse both a primary substrate-specific function and a different,
secondary reaction, can account for multifunctionality.

Studies are in progress to assess whether hydrolysis of ATP and protein ADP-ribosylation take
part to the same regulatory mechanism or are involved in different processes.
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