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a b s t r a c t

We study existence and regularity of weak solutions for the following p-
Laplacian system {

−∆pu + Aφθ+1|u|r−2u = f, u ∈ W 1,p
0 (Ω),

−∆pφ = |u|rφθ, φ ∈ W 1,p
0 (Ω),

where Ω is an open bounded subset of RN (N ≥ 2), ∆pv := div(|∇v|p−2∇v) is the
p-Laplacian operator, for 1 < p < N , A > 0, r > 1, 0 ≤ θ < p − 1 and f belongs to
a suitable Lebesgue space. In particular, we show how the coupling between the
equations in the system gives rise to a regularizing effect producing the existence
of finite energy solutions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

This paper has been motivated by the work of Benci and Fortunato [2]. In that work the authors,
investigating the eigenvalue problem for the Schrödinger operator coupled with the electromagnetic field,
studied the existence for the following system of Schrödinger–Maxwell equations in R3{

− 1
2∆u+ φu = ωu,

−∆φ = 4πu2.
(1.1)

The existence of a solution of (1.1) is proved by using a variational approach: the equations of the system are
the Euler–Lagrange equations of a suitable functional that is neither bounded from below nor from above
but has a critical point of saddle type.

Starting from this work, first Boccardo in [3] then Boccardo and Orsina in [8] studied the related Dirichlet
problem with a source term f {

−∆u+Aφ|u|r−2
u = f, u ∈ W 1,2

0 (Ω),
−∆φ = |u|r, φ ∈ W 1,2

0 (Ω),
(1.2)

where Ω is an open bounded subset of RN with N > 2, A > 0 and r > 1.
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In [3] the existence of a weak solution (u, φ) in W 1,2
0 (Ω) ×W 1,2

0 (Ω) is proved if f belongs to Lm(Ω), with
m ≥ 2N

N + 2 = (2∗)′, where 2∗ is the Sobolev exponent, using once again that (u, φ) is a critical point of a

suitable functional. The author proves that if (2∗)′ ≤ m <
2Nr

N + 2 + 4r , with r > 2∗ −1, the second equation

of (1.2) admits finite energy solutions even if the datum |u|r does not belong to the dual space L
2N

N+2 (Ω).
In [8] the authors improve this result by proving a regularizing effect also on the solution u of the first

equation of (1.2). Existence of a solution (u, φ) in W 1,2
0 (Ω) ×W 1,2

0 (Ω) is proved if r > 2∗ and f belongs to
Lm(Ω), with m ≥ r′. Then, in the case r′ ≤ m < (2∗)′, the authors find a finite energy solution u of the
first equation of (1.2) with data f possibly not belonging to the dual space.

In this paper we are concerned with the existence of solutions for the following nonlinear elliptic system
that generalizes (1.2) {

−div(|∇u|p−2∇u) +Aφθ+1|u|r−2
u = f, u ∈ W 1,p

0 (Ω),
−div(|∇φ|p−2∇φ) = |u|rφθ, φ ∈ W 1,p

0 (Ω),
(1.3)

where Ω is an open bounded subset of RN with N ≥ 2, 1 < p < N , A > 0, r > 1 and 0 ≤ θ < p− 1.
In the case θ = 0 the system (1.3) becomes{

−div(|∇u|p−2∇u) +Aφ|u|r−2
u = f, u ∈ W 1,p

0 (Ω),
−div(|∇φ|p−2∇φ) = |u|r, φ ∈ W 1,p

0 (Ω).
(1.4)

For such value of θ, we show how the regularizing effect proved in [8] can be improved, proving the
existence of a weak solution u in W 1,p

0 (Ω) of the first equation of (1.4) with f belonging to Lm(Ω), with
(r + 1)′ ≤ m < (p∗)′.

Conversely, in the case p = 2 and 0 < θ < 1 the second equation of the system (1.3) is sublinear. This fact
does not allow us to use the same method as the previous case and we are not able to prove the regularizing
effect on u. However, we generalize the results proved in [3] (in which we recall that p = 2 and θ = 0).

Without the aim to be complete, we refer to various developments of the paper [2] in which the equations
are defined in R3 and the right hand side of the first equation of (1.1) is replaced with a nonlinear function
g(x, u) with polynomial growth in u (see e.g. [1,10–12,15,16,18]).

As concerns semilinear elliptic systems we refer to [14], where the author proves existence, multiplicity
and symmetry of solutions. In the case of elliptic systems with singular lower order terms see [7,13].

The paper is organized as follows. In Section 2 we deal with a regular datum for the first equation in
(1.3). We define the following functional

J(z, η) = 1
p

∫
Ω

|∇z|p − A(θ + 1)
pr

∫
Ω

|∇η|p + A

r

∫
Ω

(η+)θ+1|z|r −
∫
Ω

fz,

and we prove existence of a saddle point (u, φ) of J in W 1,p
0 (Ω) ×W 1,p

0 (Ω) which is a weak solution of (1.3).
In Section 3 we provide the approximation scheme that gives us estimates in the case θ = 0 and, by these

estimates, we prove that there exists a solution in W 1,p
0 (Ω) × W 1,p

0 (Ω) of the system (1.4) with f possibly
not belonging to the dual space. We give also a summability result on the solution u of the first equation.

Section 4 is devoted to the case 0 < θ < p−1. Once again by an approximation scheme we prove estimates
that allow us to pass to the limit in the approximate equations and to prove the existence of a weak solution
of (1.3), with the datum f in the dual space.

2. Regular data

Let us firstly prove the existence of a weak solution (u, φ) of (1.3) with data f in Lm(Ω), m > N
p . This

solution is a saddle point of a functional defined on W 1,p
0 (Ω) ×W 1,p

0 (Ω).
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Proposition 2.1. Let f in Lm(Ω), with m > N
p , and let A > 0, r > 1 and 0 ≤ θ < p− 1. Then there exists

a weak solution (u, φ) of (1.3). Moreover, u and φ are in L∞(Ω), φ ≥ 0 and (u, φ) is a saddle point of the
functional defined on W 1,p

0 (Ω) ×W 1,p
0 (Ω) as

J(z, η) =
{

1
p

∫
Ω

|∇z|p − A(θ+1)
pr

∫
Ω

|∇η|p + A
r

∫
Ω

(η+)θ+1|z|r −
∫
Ω
fz if

∫
Ω

(η+)θ+1|z|r < +∞,

+∞ otherwise.
(2.1)

Proof. Fix ψ ∈ W 1,p
0 (Ω) and let I1 be the functional defined on W 1,p

0 (Ω) as I1(z) := J(z, ψ). We have, by
Hölder’s inequality and denoting by Cs the constant of the Sobolev embedding theorem, that

I1(z) ≥ 1
p

∥z∥p

W
1,p
0 (Ω)

− A(θ + 1)
pr

∥ψ∥p

W
1,p
0 (Ω)

− Cs∥f∥
L(p∗)′ (Ω)∥z∥W

1,p
0 (Ω).

This implies that I1 is coercive. Now we prove that I1 is weakly lower semicontinuous, which is that if zn ⇀ z

in W 1,p
0 (Ω) then

I1(z) ≤ lim inf
n→∞

I1(zn). (2.2)

Since f ∈ Lm(Ω) ⊂ L(p∗)′(Ω) we have that

lim
n→∞

∫
Ω

fzn =
∫
Ω

fz.

As a consequence of Fatou’s lemma, it also yields

A

r

∫
Ω

(ψ+)θ+1|z|r ≤ lim inf
n→∞

A

r

∫
Ω

(ψ+)θ+1|zn|r.

Then, by the weakly lower semicontinuity of the norm, we deduce (2.2). Hence there exists a minimum v of
I1 on W 1,p

0 (Ω). Moreover, by the classical theory of elliptic equations, v is the unique weak solution of the
Euler–Lagrange equation

− div(|∇v|p−2∇v) +A(ψ+)θ+1|v|r−2
v = f, v ∈ W 1,p

0 (Ω). (2.3)

We have, thanks to the results in [19], that

∥v∥
W

1,p
0 (Ω) + ∥v∥L∞(Ω) ≤ C1∥f∥

1
p−1
Lm(Ω), (2.4)

where C1 is a positive constant not depending on f . We define S : W 1,p
0 (Ω) → W 1,p

0 (Ω) as the operator
such that v = S(ψ). Now we consider the functional defined on W 1,p

0 (Ω) as I2(η) := J(v, η). As before, since
θ < p − 1, we have that −I2 is coercive and weakly lower semicontinuous. Then there exists a minimum ζ

of −I2, that is a maximum of I2 on W 1,p
0 (Ω). Let I3 be a functional defined on W 1,p

0 (Ω) as

I3(η) := θ + 1
p

∫
Ω

|∇η|p −
∫
Ω

(η+)θ+1|v|r.

Since ζ is a maximum of I2, we have

A

r
I3(ζ) = −I2(ζ) + 1

p

∫
Ω

|∇v|p −
∫
Ω

fv

≤ −I2(η) + 1
p

∫
Ω

|∇v|p −
∫
Ω

fv = A

r
I3(η), ∀η ∈ W 1,p

0 (Ω),

so that ζ is a minimum of I3. We observe that ζ ≥ 0 and ζ ̸≡ 0 in Ω . In fact we have

I3(ζ) = θ + 1
p

∫
Ω

|∇ζ|p −
∫
Ω

(ζ+)θ+1|v|r ≤ θ + 1
p

∫
Ω

|∇ζ+|p −
∫
Ω

(ζ+)θ+1|v|r = I3(ζ+),
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then ∥ζ∥
W

1,p
0 (Ω) ≤ ∥ζ+∥

W
1,p
0 (Ω) and so ζ− is zero almost everywhere in Ω . Now we show that ζ ̸≡ 0. We

consider λ1 to be the first eigenvalue of −∆p while φ1 in W 1,p
0 (Ω) is the associated eigenfunction, that is⎧⎪⎨⎪⎩

−div(|∇φ1|p−2∇φ1) = λ1|φ1|p−2
φ1 in Ω ,

φ1 > 0 in Ω ,

φ1 = 0 on ∂Ω .

Let t > 0; computing I3 in tφ1, we obtain

I3(tφ1) = (θ + 1)tp

p

∫
Ω

|∇φ1|p − tθ+1
∫
Ω

φθ+1
1 |v|r

= (θ + 1)λ1t
p

p

∫
Ω

φp
1 − tθ+1

∫
Ω

φθ+1
1 |v|r = c1t

p − c2t
θ+1,

where c1 := (θ + 1)λ1

p

∫
Ω

φp
1 ∈ (0,+∞) and c2 :=

∫
Ω

φθ+1
1 |v|r ∈ (0,+∞]. By taking t such that

c1t
p−θ−1 − c2 < 0, that is t <

(
c2

c1

) 1
p−θ−1

, we have I3(tφ1) < 0. Then I3(ζ) < 0 = I3(0) and ζ ̸≡ 0.
Since ζ is a nonnegative minimum of I3, thanks to the results in [9], it is the unique weak solution of the
Euler–Lagrange equation

− div(|∇ζ|p−2∇ζ) = |v|rζθ, ζ ∈ W 1,p
0 (Ω). (2.5)

Following [6], we have that
∥ζ∥

W
1,p
0 (Ω) + ∥ζ∥L∞(Ω) ≤ C2∥v∥

r
p−θ−1
L∞(Ω), (2.6)

and we deduce, using (2.4), that

∥ζ∥
W

1,p
0 (Ω) + ∥ζ∥L∞(Ω) ≤ C∥f∥

r
(p−1)(p−θ−1)
Lm(Ω) =: R, (2.7)

where C and C2 are positive constants not depending on f and v. Now we define T : W 1,p
0 (Ω) → W 1,p

0 (Ω)
as the operator such that ζ = T (v) = T (S(ψ)). We want to prove that T ◦S has a fixed point by Schauder’s
fixed point theorem. By (2.7) we have that BR(0) ⊂ W 1,p

0 (Ω) is invariant for T ◦ S. Let {ψn} ⊂ W 1,p
0 (Ω)

be a sequence weakly convergent to some ψ and let vn = S(ψn). As a consequence of (2.4), there exists a
subsequence indexed by vnk

such that

vnk
→ v weakly in W 1,p

0 (Ω), and a.e. in Ω ,
vnk

→ v weakly-* in L∞(Ω). (2.8)

Moreover, we have
−div(|∇vnk

|p−2∇vnk
) = f −A(ψ+

nk
)θ+1|vnk

|r−2
vnk

=: gnk
,

and, using Hölder’s inequality, the Poincaré inequality and (2.4), we obtain

∥gnk
∥L1(Ω) ≤ ∥f∥L1(Ω) +A∥vnk

∥r−1
L∞(Ω)∥ψnk

∥θ+1
Lθ+1(Ω) ≤ ∥f∥L1(Ω) +AC1∥f∥

r−1
p−1
Lm(Ω)∥ψn∥θ+1

W
1,p
0 (Ω)

≤ C.

Then, by Theorem 2.1 in [5], we obtain that ∇vnk
converges to ∇v almost everywhere in Ω . Since

∥|∇vnk
|p−2∇vnk

∥(Lp′ (Ω))N = ∥vnk
∥p−1

W
1,p
0 (Ω)

≤ C1∥f∥Lm(Ω),

we deduce that
|∇vnk

|p−2∇vnk
→ |∇v|p−2∇v weakly in (Lp′

(Ω))N . (2.9)
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We recall that vnk
satisfies∫

Ω

|∇vnk
|p−2∇vnk

· ∇w +A

∫
Ω

(ψ+
nk

)θ+1|vnk
|r−2

vnk
w =

∫
Ω

fw, ∀w ∈ W 1,p
0 (Ω).

Letting k tend to infinity, by (2.8), (2.9) and Vitali’s theorem, we have that∫
Ω

|∇v|p−2∇v · ∇w +A

∫
Ω

(ψ+)θ+1|v|r−2
vw =

∫
Ω

fw, ∀w ∈ W 1,p
0 (Ω),

so that v is the unique weak solution of (2.3) and it does not depend on the subsequence. Hence vn = S(ψn)
converges to v = S(ψ) weakly in W 1,p

0 (Ω) and weakly-* in L∞(Ω). Then

|vn|r → |v|r strongly in Lq(Ω) ∀q < +∞ and ∥|vn|rζθ
n∥L1(Ω) ≤ C. (2.10)

Using (2.7), (2.10) and proceeding in the same way, we obtain that

ζn = T (vn) → ζ = T (v) weakly in W 1,p
0 (Ω), and weakly-* in L∞(Ω),

|∇ζn|p−2∇ζn → |∇ζ|p−2∇ζ weakly in (Lp′(Ω))N ,
(2.11)

and ζ is the unique weak solution of (2.5). Now we want to prove that ζn converges to ζ strongly in W 1,p
0 (Ω).

In order to obtain this, by Lemma 5 in [17], it is sufficient to prove the following

lim
n→∞

∫
Ω

(
|∇ζn|p−2∇ζn − |∇ζ|p−2∇ζ

)
· ∇ (ζn − ζ) = 0. (2.12)

We have that∫
Ω

(
|∇ζn|p−2∇ζn − |∇ζ|p−2∇ζ

)
· ∇ (ζn − ζ) =

∫
Ω

|∇ζn|p −
∫
Ω

|∇ζ|p−2∇ζ · ∇ζn (2.13)

−
∫
Ω

|∇ζn|p−2∇ζn · ∇ζ + ∥ζ∥p

W
1,p
0 (Ω)

.

The second and the third term on the right hand side of (2.13) converge, by (2.11), to ∥ζ∥p

W
1,p
0 (Ω)

. Then it
is sufficient to prove that

lim
n→∞

∥ζn∥p

W
1,p
0 (Ω)

= ∥ζ∥p

W
1,p
0 (Ω)

. (2.14)

Since ζn is equal to T (vn) ≥ 0, we have that∫
Ω

|∇ζn|p =
∫
Ω

|vn|rζθ+1
n .

By (2.10) and Vitali’s theorem, we deduce that

lim
n→∞

∫
Ω

|vn|rζθ+1
n =

∫
Ω

|v|rζθ+1 = ∥ζ∥p

W
1,p
0 (Ω)

,

so that (2.14) is true and (2.12) is proved. Hence we have proved that if ψn converges to ψ weakly in W 1,p
0 (Ω)

then ζn = T (S(ψn)) converges to ζ = T (S(ψ)) strongly in W 1,p
0 (Ω). As a consequence we have that T ◦S is a

continuous operator and that T (S(BR(0))) ⊂ W 1,p
0 (Ω) is a compact subset. Then there exists, by Schauder’s

fixed point theorem, a function φ in W 1,p
0 (Ω) such that φ = T (S(φ)) and, since T (v) ≥ 0 for every v in

W 1,p
0 (Ω), φ is nonnegative. Moreover let u = S(φ), we have that u is a minimum for I1 and φ is a maximum

for I2. Hence (u, φ) is a saddle point of J defined by (2.1) and a weak solution of (1.3). □
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3. Existence and regularizing effect in the case θ = 0

In this section we assume θ = 0 and we study the regularizing effect on the existence of finite energy
solutions of both equations even if the data do not belong to the dual space. We recall that the assumption
on θ implies that we deal with the system (1.4).

We consider the datum f in L(r+1)′(Ω) and a sequence {fn} such that

fn ∈ L∞(Ω), |fn| ≤ |f | ∀n ∈ N and fn → f strongly in L(r+1)′
(Ω).

By Proposition 2.1, there exists (un, φn) in W 1,p
0 (Ω) ×W 1,p

0 (Ω) that satisfies{
−div(|∇un|p−2∇un) +Aφn|un|r−2

un = fn, (i),
−div(|∇φn|p−2∇φn) = |un|r, (ii),

(3.1)

with φn ≥ 0, un and φn in L∞(Ω). Choosing un as test function in (i) and φn in (ii) of (3.1) we have∫
Ω

|∇un|p +A

∫
Ω

φn|un|r =
∫
Ω

fnun,

∫
Ω

|∇φn|p =
∫
Ω

|un|rφn.

Then ∫
Ω

|∇un|p +
∫
Ω

|∇φn|p ≤ C

∫
Ω

fnun. (3.2)

Choosing u+
n = unχ{un≥0} as test function in (ii) we obtain∫

Ω

|∇φn|p−2∇φn · ∇u+
n =

∫
Ω

|un|ru+
n =

∫
Ω

|u+
n |r+1

. (3.3)

For the term on the left hand side of (3.3) we have, by Young’s inequality and (3.2), that∫
Ω

|∇φn|p−2∇φn · ∇u+
n ≤ 1

p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇u+
n |p (3.4)

≤ 1
p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇un|p ≤ C

∫
Ω

fnun.

Putting together (3.3) and (3.4), we obtain∫
Ω

|u+
n |r+1 ≤ C

∫
Ω

fnun.

In the same way, using u−
n = −unχ{un<0} as test function in (ii), we have∫

Ω

|u−
n |r+1 ≤ C

∫
Ω

fnun,

so that ∫
Ω

|un|r+1 =
∫
Ω

|u+
n |r+1 +

∫
Ω

|u−
n |r+1 ≤ C

∫
Ω

fnun ≤ C

∫
Ω

|f ||un|. (3.5)

Then, applying Hölder inequality to the right hand side of (3.5) with exponents (r+1)′ and r+1, we deduce

∥un∥Lr+1(Ω) ≤ C∥f∥
1
r

L(r+1)′ (Ω)
. (3.6)

This implies, by (3.2) and Hölder’s inequality, that∫
Ω

|∇un|p +
∫
Ω

|∇φn|p ≤ C∥f∥
L(r+1)′ (Ω)∥un∥Lr+1(Ω) ≤ C∥f∥

r+1
r

L(r+1)′ (Ω)
, (3.7)

and ∫
Ω

φn|un|r ≤ C∥f∥
r+1

r

L(r+1)′ (Ω)
. (3.8)

As a consequence of (3.6), (3.7) and (3.8), we have the following lemma.
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Lemma 3.1. Let f in L(r+1)′(Ω), and let A > 0 and r > 1. Then the weak solution (un, φn) of (3.1) is
such that

∥un∥Lr+1(Ω) + ∥un∥
W

1,p
0 (Ω) + ∥φn∥

W
1,p
0 (Ω) +

∫
Ω

φn|un|r ≤ C(f),

where C(f) is a positive constant depending only on ∥f∥
L(r+1)′ (Ω).

The above lemma implies that there exist subsequences still indexed by un and φn and functions u and
φ belonging to W 1,p

0 (Ω) such that

un → u weakly in W 1,p
0 (Ω), and a.e. in Ω ,

un → u weakly in Lr+1(Ω), and strongly in Lq(Ω) ∀q < max{r + 1, p∗}, (3.9)
φn → φ weakly in W 1,p

0 (Ω), and a.e. in Ω .

By applying these convergence results, we can prove the following existence theorem.

Theorem 3.2. Let A > 0, and let r > 1 and f in Lm(Ω), with m ≥ (r + 1)′. Then there exists a weak
solution (u, φ) of system (1.4), with u and φ in W 1,p

0 (Ω).

The proof is a consequence of the proof of Theorem 4.2 in the case θ = 0. We deduce, by Theorem 3.2,
the regularizing effect for the solutions of (1.4). We assume

(r + 1)′ < (p∗)′ ⇔ r >
N(p− 1) + p

N − p
and f ∈ Lm(Ω), with m ≥ (r + 1)′. (3.10)

Remark 3.3. Under these assumptions we note that, if m ≥ (p∗)′, thanks to the results in [4], we
have that u belongs to W 1,p

0 (Ω) ∩ Lt(Ω), with t := Nm(p− 1)
N − pm

. Then, if t

r
< (p∗)′, that is m < m1 :=

Npr

N(p− 1)2 + p(p− 1) + p2r
, φ belongs to W 1,p

0 (Ω) even if the datum of the second equation of (1.4) does
not belong to the dual space. We verify that m1 > (p∗)′. Since

m1 = pNr

N(p− 1)2 + p(p− 1) + p2r
> (p∗)′ = Np

N(p− 1) + p
⇔ r > p∗ − 1,

it follows thanks to (3.10). Moreover we have that, if m < (p∗)′ (i.e. the datum f does not belong to
W−1,p′(Ω)), then u belongs to W 1,p

0 (Ω). Hence we have a regularizing effect due to the system: the functions
u and φ belong to W 1,p

0 (Ω) because of the coupling between the equations. This fact does not follow on being
solutions of the single equations.

We now prove summability results for u.

Proposition 3.4. Under the assumptions (3.10), the weak solution u of (1.4), given by Theorem 3.2, belongs
to Ls(Ω), with s = m(pr + p− 1)

m(p− 1) + 1 .

Proof. We recall that u is obtained from (3.9) and that (un, φn) is a weak solution of the system (3.1).
Choosing (u+

n )γ as test function in (ii) of (3.1), with γ ≥ 1, we have

γ

∫
Ω

|∇φn|p−2∇φn · ∇u+
n (u+

n )γ−1 =
∫
Ω

(u+
n )r+γ . (3.11)
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Applying Young’s inequality to the left hand side of (3.11) we obtain, by Lemma 3.1, that

γ

∫
Ω

|∇φn|p−2∇φn · ∇u+
n (u+

n )γ−1 ≤ C

∫
Ω

|∇φn|p + C

∫
Ω

|∇un|p(u+
n )p(γ−1) (3.12)

= C(f) + C

∫
Ω

|∇un|p(u+
n )pγ−p.

Now using (u+
n )pγ−p+1 as test function in (i) of (3.1) we have, by Hölder’s inequality, that∫
Ω

|∇u+
n |p(u+

n )pγ−p ≤ C

∫
Ω

|∇u+
n |p(u+

n )pγ−p + C

∫
Ω

φn(u+
n )r+pγ−p (3.13)

≤ C

∫
Ω

fn(u+
n )pγ−p+1 ≤ C∥f∥Lm(Ω)

(∫
Ω

(u+
n )m′(pγ−p+1)

) 1
m′
.

As a consequence of (3.11), (3.12) and (3.13) we obtain∫
Ω

(u+
n )r+γ ≤ C(f) + C∥f∥Lm(Ω)

(∫
Ω

(u+
n )m′(pγ−p+1)

) 1
m′
. (3.14)

Imposing r + γ = m′(pγ − p+ 1) we have

γ = r(m− 1) +m(p− 1)
m(p− 1) + 1 and s := r + γ = m(pr + p− 1)

m(p− 1) + 1 .

We verify that γ ≥ 1:
γ = r(m− 1) +m(p− 1)

m(p− 1) + 1 ≥ 1 ⇔ m ≥ r + 1
r

= (r + 1)′,

which it is true by (3.10). Then, by (3.14), we deduce

∥u+
n ∥Ls(Ω) ≤ C(f),

where C(f) is a positive constant depending only on ∥f∥Lm(Ω). In the same way we obtain, using u−
n as test

function, that
∥u−

n ∥Ls(Ω) ≤ C(f).

Then we have
∥un∥Ls(Ω) = ∥u+

n ∥Ls(Ω) + ∥u−
n ∥Ls(Ω) ≤ C(f),

and un converges to u weakly in Ls(Ω), so that u ∈ Ls(Ω). □

Remark 3.5. Comparing this summability result on u with the result contained in (3.9) we observe that

s = m(pr + p− 1)
m(p− 1) + 1 ≥ r + 1 ⇔ m ≥ r + 1

r
= (r + 1)′,

then, if (3.10) holds, Ls(Ω) ⊂ Lr+1(Ω). Moreover, if m ≥ (p∗)′, it follows from [4] that u belongs to Lt(Ω),
with t = Nm(p− 1)

N − pm
. We have that

s ≥ t ⇔ m ≤ m1.

Summarizing we obtain that the best summability results for u are

u ∈ Ls(Ω), if (r + 1)′ ≤ m < m1, (3.15)

and
u ∈ Lt(Ω), if m ≥ m1.

Then we note, by (3.15), that we have also a regularizing effect for the summability of the solution u.
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4. Existence and regularizing effect in the dual case

We prove now the existence theorem for a weak solution of (1.3) for θ ≥ 0 and f belonging to L(p∗)′(Ω).
Let {fn} be a sequence that satisfies

fn ∈ L∞(Ω), |fn| ≤ |f | ∀n ∈ N and fn → f strongly in L(p∗)′
(Ω).

Then, by Proposition 2.1, there exists a solution (un, φn) in W 1,p
0 (Ω) ×W 1,p

0 (Ω) of the system{
−div(|∇un|p−2∇un) +Aφθ+1

n |un|r−2
un = fn, (I),

−div(|∇φn|p−2∇φn) = |un|rφθ
n, (II),

(4.1)

with φn ≥ 0, un and φn in L∞(Ω). Choosing un as test function in (I) and φn in (II) we have∫
Ω

|∇un|p +A

∫
Ω

φθ+1
n |un|r =

∫
Ω

fnun,

∫
Ω

|∇φn|p =
∫
Ω

|un|rφθ+1
n . (4.2)

Then ∫
Ω

|∇un|p +
∫
Ω

|∇φn|p ≤ C

∫
Ω

fnun. (4.3)

We obtain, by (4.3) and applying Hölder’s inequality and the Sobolev embedding theorem, that∫
Ω

|∇un|p ≤
∫
Ω

|∇un|p +
∫
Ω

|∇φn|p ≤ C

∫
Ω

fnun

≤ C∥f∥
L(p∗)′ (Ω)∥un∥Lp∗ (Ω) ≤ C∥f∥

L(p∗)′ (Ω)∥un∥
W

1,p
0 (Ω),

so that
∥un∥

W
1,p
0 (Ω) ≤ C∥f∥

1
p−1
L(p∗)′ (Ω)

and ∥φn∥
W

1,p
0 (Ω) ≤ C∥f∥

1
p−1
L(p∗)′ (Ω)

. (4.4)

Moreover, by (4.2), we deduce ∫
Ω

φθ+1
n |un|r ≤ C∥f∥

p
p−1
L(p∗)′ (Ω)

. (4.5)

Choosing u+
n as test function in (II) we obtain∫

Ω

|∇φn|p−2∇φn · ∇u+
n =

∫
Ω

|un|ru+
nφ

θ
n =

∫
Ω

|u+
n |r+1

φθ
n.

Using Young’s inequality and (4.4), we find∫
Ω

|u+
n |r+1

φθ
n =

∫
Ω

|∇φn|p−2∇φn · ∇u+
n ≤ 1

p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇u+
n |p

≤ 1
p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇un|p ≤ C∥f∥
p

p−1
L(p∗)′ (Ω)

.

In the same way, choosing u−
n as test function in (II), we deduce∫

Ω

|u−
n |r+1

φθ
n ≤ C∥f∥

p
p−1
L(p∗)′ (Ω)

,

so that ∫
Ω

|un|r+1
φθ

n =
∫
Ω

|u+
n |r+1

φθ
n +

∫
Ω

|u−
n |r+1

φθ
n ≤ C∥f∥

p
p−1
L(p∗)′ (Ω)

. (4.6)

As a consequence of (4.4), (4.5) and (4.6), we have the following lemma.
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Lemma 4.1. Let f in L(p∗)′(Ω), and let A > 0, r > 1 and 0 ≤ θ < p− 1. Then the weak solution (un, φn)
of (4.1), given by Proposition 2.1, is such that

∥un∥
W

1,p
0 (Ω) + ∥φn∥

W
1,p
0 (Ω) +

∫
Ω

φθ+1
n |un|r +

∫
Ω

|un|r+1
φθ

n ≤ C(f)

where C(f) is a positive constant depending only on ∥f∥
L(p∗)′ (Ω).

Once again, by Lemma 4.1, there exist subsequences still indexed by un and φn and functions u and φ

in W 1,p
0 (Ω) such that

un → u weakly in W 1,p
0 (Ω), strongly in Lq(Ω), with q < p∗, and a.e. in Ω ,

φn → φ weakly in W 1,p
0 (Ω), strongly in Lq(Ω), with q < p∗, and a.e. in Ω .

(4.7)

Theorem 4.2. Let A > 0, and let r > 1, 0 ≤ θ < p− 1 and f in Lm(Ω), with m ≥ (p∗)′. Then there exists
a weak solution (u, φ) in W 1,p

0 (Ω) ×W 1,p
0 (Ω) of system (1.3).

Proof. Let u and φ be the functions defined in (4.7). We want to pass to the limit in (II) of (4.1). We
recall that φn satisfies ∫

Ω

|∇φn|p−2∇φn · ∇ψ =
∫
Ω

|un|rφθ
nψ, ∀ψ ∈ W 1,p

0 (Ω). (4.8)

We want to prove that |un|rφθ
n strongly converges to |u|rφθ in L1(Ω). Fix σ > 0 and let E ⊂ Ω . By

Lemma 4.1 there exists k ∈ N such that∫
E

|un|rφθ
n =

∫
E∩{|un|≤k}

|un|rφθ
n +

∫
E∩{|un|>k}

|un|rφθ
n ≤ k

r
∫

E

φθ
n + 1

k

∫
{|un|>k}

|un|r+1
φθ

n

≤ k
r

∫
E

φθ
n + C(f)

k
≤ k

r
∫

E

φθ
n + σ

2 .

Since, by (4.7), φθ
n strongly converges to φθ in L1(Ω), applying Vitali’s theorem, there exists δ > 0 such

that |E| < δ and ∫
E

|un|rφθ
n ≤ k

r
∫

E

φθ
n + σ

2 ≤ σ.

Then, once again using Vitali’s theorem, we have

|un|rφθ
n → |u|rφθ strongly in L1(Ω). (4.9)

Hence, by Theorem 2.1 in [5], we obtain that ∇φn converges ∇φ almost everywhere in Ω . Moreover

∥|∇φn|p−2∇φn∥(Lp′ (Ω))N ≤ ∥φn∥p−1
W

1,p
0 (Ω)

≤ C(f),

so that
|∇φn|p−2∇φn → |∇φ|p−2∇φ weakly in (Lp′

(Ω))N . (4.10)

Fix ψ in W 1,p
0 (Ω) ∩ L∞(Ω), we have, by (4.10), that

lim
n→∞

∫
Ω

|∇φn|p−2∇φn · ∇ψ =
∫
Ω

|∇φ|p−2∇φ · ∇ψ.

On the other hand, by (4.9) and Vitali’s theorem, we find

lim
n→∞

∫
Ω

|un|rφθ
nψ =

∫
Ω

|u|rφθψ.
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By passing to the limit in (4.8), we obtain that∫
Ω

|∇φ|p−2∇φ · ∇ψ =
∫
Ω

|u|rφθψ, ∀ψ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). (4.11)

Let η belong to W 1,p
0 (Ω). Choosing ψ = Tk(η) as test function in (4.11), we obtain∫

Ω

|∇φ|p−2∇φ · ∇Tk(η) =
∫
Ω

|u|rφθTk(η). (4.12)

We have that |∇φ|p−2∇φ · ∇Tk(η) converges to |∇φ|p−2∇φ · ∇η almost everywhere in Ω and that⏐⏐⏐|∇φ|p−2∇φ · ∇Tk(η)
⏐⏐⏐ ≤

⏐⏐⏐|∇φ|p−2∇φ · ∇η
⏐⏐⏐ ,

with
⏐⏐⏐|∇φ|p−2∇φ · ∇η

⏐⏐⏐ in L1(Ω). Then, by Lebesgue’s theorem, we deduce

lim
k→∞

∫
Ω

|∇φ|p−2∇φ · ∇Tk(η) =
∫
Ω

|∇φ|p−2∇φ · ∇η. (4.13)

Now we want to let k to infinity on the right hand side of (4.12). We recall that

|u|rφθTk(η) = |u|rφθTk(η+) − |u|rφθTk(η−),

where |u|rφθTk(η+) and |u|rφθTk(η−) are nonnegative functions increasing in k. We have that |u|rφθTk(η+)
converges to |u|rφθη+ and |u|rφθTk(η−) converges to |u|rφθη− almost everywhere in Ω . It follows from
Beppo Levi’s theorem that

lim
k→∞

∫
Ω

|u|rφθTk(η+) =
∫
Ω

|u|rφθη+ and lim
k→∞

∫
Ω

|u|rφθTk(η−) =
∫
Ω

|u|rφθη−,

so that

lim
k→∞

∫
Ω

|u|rφθTk(η) = lim
k→∞

∫
Ω

|u|rφθTk(η+) − lim
k→∞

∫
Ω

|u|rφθTk(η−) (4.14)

=
∫
Ω

|u|rφθη+ −
∫
Ω

|u|rφθη− =
∫
Ω

|u|rφθη.

Letting k to infinity in (4.12), by (4.13) and (4.14), we obtain∫
Ω

|∇φ|p−2∇φ · ∇η =
∫
Ω

|u|rφθη, ∀η ∈ W 1,p
0 (Ω).

Then φ in W 1,p
0 (Ω) is a weak solution of the second equation of (1.3).

Now we want to pass to the limit in (I) of (4.1). We have that un satisfies∫
Ω

|∇un|p−2∇un · ∇ψ +A

∫
Ω

φθ+1
n |un|r−2

unψ =
∫
Ω

fnψ, ∀ψ ∈ W 1,p
0 (Ω). (4.15)

Fix ε > 0. Choosing ψ = Tε(Gk(un))
ε

in (4.15), we obtain

1
ε

∫
{k≤|un|≤k+ε}

|∇un|p +A

∫
{|un|≥k}

φθ+1
n |un|r−2

un
Tε(Gk(un))

ε
=

∫
{|un|≥k}

fn
Tε(Gk(un))

ε
.

Dropping the first nonnegative term, we have

A

∫
{|un|≥k+ε}

φθ+1
n |un|r−1 ≤ A

∫
{|un|≥k}

φθ+1
n |un|r−2

un
Tε(Gk(un))

ε

≤
∫

{|un|≥k}
|fn|

⏐⏐⏐⏐Tε(Gk(un))
ε

⏐⏐⏐⏐ ≤
∫

{|un|≥k}
|fn|,
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so that
A

∫
{|un|≥k+ε}

φθ+1
n |un|r−1 ≤

∫
{|un|≥k}

|f |.

Letting ε tend to zero, by Beppo Levi’s theorem, we obtain∫
{|un|≥k}

φθ+1
n |un|r−1 ≤ 1

A

∫
{|un|≥k}

|f |. (4.16)

Once again fix σ > 0 and let E ⊂ Ω . By (4.16), we have∫
E

φθ+1
n |un|r−1 =

∫
E∩{|un|≤k}

φθ+1
n |un|r−1 +

∫
E∩{|un|>k}

φθ+1
n |un|r−1

≤ kr−1
∫

E

φθ+1
n + 1

A

∫
{|un|≥k}

|f |.

As a consequence of (4.7) and applying Vitali’s theorem, there exist k̃ and δ > 0, with |E| < δ, such that

1
A

∫
{|un|≥k̃}

|f | ≤ σ

2 and k̃r−1
∫

E

φθ+1
n ≤ σ

2 ,

uniformly in n. Then we deduce ∫
E

φθ+1
n |un|r−1 ≤ σ, (4.17)

uniformly in n. We recall that, by (4.7), φθ+1
n |un|r−1 converges to φθ+1|u|r−1 almost everywhere in Ω .

Thanks to (4.17), applying Vitali’s theorem, we obtain that

φθ+1
n |un|r−1 → φθ+1|u|r−1 strongly in L1(Ω). (4.18)

We have that
−div(|∇un|p−2∇un) = −Aφθ+1

n |un|r−2
un + fn =: gn,

and, by the assumptions on f and (4.18), that ∥gn∥L1(Ω) ≤ C. Applying Theorem 2.1 in [5], we obtain that
∇un converges to ∇u almost everywhere in Ω . Moreover

∥|∇un|p−2∇un∥(Lp′ (Ω))N ≤ ∥u∥p−1
W

1,p
0 (Ω)

≤ C(f),

then
|∇un|p−2∇un → |∇u|p−2∇u weakly in (Lp′

(Ω))N . (4.19)

By passing to the limit as n tends to infinity in (4.15), by (4.18) and (4.19), and applying Lebesgue’s theorem,
we deduce that∫

Ω

|∇u|p−2∇u · ∇ψ +A

∫
Ω

φθ+1|u|r−2
uψ =

∫
Ω

fψ, ∀ψ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Proceeding as when we passed to the limit in (II), we have∫
Ω

|∇u|p−2∇u · ∇v +A

∫
Ω

φθ+1|u|r−2
uv =

∫
Ω

fv, ∀v ∈ W 1,p
0 (Ω).

Then u in W 1,p
0 (Ω) is a weak solution of the first equation of (1.3) and (u, φ) is a weak solution of (1.3). □

Remark 4.3. We want to stress the fact that, in order to prove this theorem, we only used the results (4.7)
obtained as consequence of the estimates in Lemma 4.1. Since the results (3.9) are analogous, proceeding in
the same way we can prove, as said before, Theorem 3.2.
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Remark 4.4. We observe that, thanks to the results in [6], the second equation of (1.3) admits a weak

solution in W 1,p
0 (Ω) if |u|r ∈ Ls(Ω), with s ≥

(
p∗

θ + 1

)′

. We recall that u belongs to Lt(Ω), with

t = Nm(p− 1)
N − pm

. Then, if t
r
<

(
p∗

θ + 1

)′

, we deduce once again a regularizing effect on φ due to the coupling
in the system. We have that

t

r
<

(
p∗

θ + 1

)′

⇔ m < m2 := Npr

N(p− 1)2 + p(p− 1) + p2r − θ(p− 1)(N − p) .

For this to be possible we must have that r > p∗ − 1 − θ. We stress the fact that for θ = 0 we recover the
regularizing effect on φ observed in Remark 3.3.

In this case (θ > 0) we are not able to prove a regularizing effect on the existence of a finite energy
solution for the first equation of (1.3). We feel that this is an obstacle only due to the method used, and
that the following conjecture should be true.

Conjecture 4.5. Let A > 0, and let r > 1 and 0 ≤ θ < p− 1. Then there exists 1 < m < (p∗)′ such that if
f belongs to Lm(Ω), with m ≥ m, then there exists a weak solution (u, φ) in W 1,p

0 (Ω) ×W 1,p
0 (Ω) of system

(1.3).

For instance if we assume that |un| ≤ c φn in Ω , for some c > 0, we are able to prove that this conjecture
is true with m = (r + 1 + θ)′ and r > p∗ − 1 − θ. Indeed, if we consider the approximate problem (4.1),
choosing u+

n as test function in (II), we obtain∫
Ω

|∇φn|p−2∇φn · ∇u+
n =

∫
Ω

|un|rφθ
nu

+
n =

∫
Ω

|u+
n |r+1

φθ
n ≥ 1

cθ

∫
Ω

|u+
n |r+1+θ

. (4.20)

So, by Young’s inequality, using (4.3) and applying Hölder’s inequality, we deduce from (4.20) that

1
cθ

∫
Ω

|u+
n |r+1+θ ≤

∫
Ω

|∇φn|p−2∇φn · ∇u+
n ≤ 1

p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇u+
n |p

≤ 1
p′

∫
Ω

|∇φn|p + 1
p

∫
Ω

|∇un|p ≤ C

∫
Ω

|f ||un| ≤ C∥f∥
L(r+1+θ)′ (Ω)∥un∥Lr+1+θ(Ω) .

Thus we have, once again, that

∥un∥
W

1,p
0 (Ω) + ∥φn∥

W
1,p
0 (Ω) +

∫
Ω

φθ+1
n |un|r +

∫
Ω

|un|r+1
φθ

n ≤ C(f) ,

where C(f) is a positive constant depending only on ∥f∥
L(r+1+θ)′ (Ω).

Thanks to these estimates it follows from Remark 4.3 that we can pass to the limit in (4.1). Hence we
have proved our conjecture with m = (r + 1 + θ)′.

We note that for θ = 0 we obtain m = (r + 1)′, that is, exactly, the result stated in Theorem 3.2.
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