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Abstract

Recently, a new measure of information called extropy has been introduced by Lad, Sanfilippo and Agrò as the dual
version of Shannon entropy. In the literature, Tsallis introduced a measure for a discrete random variable, named
Tsallis entropy, as a generalization of Boltzmann-Gibbs statistics. In this work, a new measure of discrimination,
called Tsallis extropy, is introduced and some of its properties are then discussed. The relation between Tsallis
extropy and entropy is given and some bounds are also presented. Finally, an application of this extropy to pattern
recognition is demonstrated.
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1. Introduction

Let X be a discrete random variable with support S = {x1, . . . , xN} and with corresponding probability vector
p = (p1, . . . , pN), i.e., P(X = xi) = pi, for i = 1, . . . ,N. In 1948, Shannon [21] introduced a measure of information
related to the information content and the uncertainty about an event associated with a discrete random variable. This
measure, come to be known as Shannon entropy, is defined as

H(X) = −

N∑
i=1

pi log pi, (1)

where log is the natural logarithm. The concept of entropy has since been generalized in different ways. Analogous
to the discrete case, the Shannon entropy has been defined in the continuous case as well as

H(X) = −

∫ +∞

0
f (x) log f (x)dx,

where X is a non-negative random variable with probability density function f . Although the definitions are similar,
the entropy is always non-negative in the discrete case while it could be negative in the continuous case. In the
literature, different versions of entropy have been introduced, including residual and past entropy [7, 11], cumulative
residual and past entropy [9, 10, 19, 23], weighted entropies [8], dynamic entropies [1], weighted cumulative residual5

entropy [17], generalized dynamic entropies [20], and also some relationships with other concepts in reliability theory
[3, 16, 22].

Lad et al. [15] introduced the extropy, a measure of uncertainty, as a dual version of the entropy. It is useful for
comparing the uncertainty between two random variables X and Y , i.e., if the extropy of X is less than that of Y , then
X has less uncertainty than Y . For a discrete random variable X, the extropy J(X) is defined as

J(X) = −

N∑
i=1

(1 − pi) log(1 − pi), (2)
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and it is always non-negative. The extropy has subsequently been widely studied and several different versions have
also been proposed in the literature; see [2, 12, 13, 18].

Among the different generalizations of Shannon entropy, the Tsallis entropy [24] has attracted considerable atten-
tion. For a discrete random variable, the Tsallis entropy S α(X) is defined as

S α(X) =
1

α − 1

1 − N∑
i=1

pαi

 , (3)

where α > 0 and α , 1. It is a generalization of Shannon entropy since it is evident that

lim
α→1

S α(X) = H(X). (4)

In the present work, we introduce a measure of uncertainty dual to the Tsallis entropy in (3), and it may be referred10

to as the Tsallis extropy. The rest of the paper proceeds as follows. In Section 2, the Tsallis extropy is defined, and
some of its properties are given, and its relationships to other known measures are described. In Section 3, we study the
maximum Tsallis extropy and establish an upper bound for it. In Section 4, we apply this new measure to a problem
in pattern recognition, and compare some other known methods with the method based on the extropy. Finally, in
Section 5, we provide some concluding remarks and summarize the results of this work.15

2. Tsallis extropy

In this section, we introduce the Tsallis extropy, dual to the Tsallis entropy, as a new measure of uncertainty. It is
defined to preserve a relationship similar to the one between Shannon entropy and extropy. It is important to mention
at this point that Lad et al. [15] proved the following property with regard to the sum of entropy and extropy:

H(p) + J(p) =

N∑
i=1

H(pi, 1 − pi) =

N∑
i=1

J(pi, 1 − pi), (5)

where H(pi, 1 − pi) = J(pi, 1 − pi) = −pi log pi − (1 − pi) log(1 − pi). Observe that the two terms on the RHS of
this expression are the entropy and extropy of a discrete random variable taking on two values with the corresponding
probabilities as (pi, 1 − pi).

Definition 1. Let X be a discrete random variable with support S = {x1, . . . , xN} and with corresponding probability
vector p = (p1, . . . , pN), and let α > 0, α , 1. Then, the Tsallis extropy of X, JS α(X), is defined as

JS α(X) =
1

α − 1

N − 1 −
N∑

i=1

(1 − pi)α
 . (6)

Remark 1. The definition in (6) is obtained in a different way from the Tsallis entropy in (3). In fact, using the
normalization condition, we can rewrite the Tsallis entropy as

S α(X) =
1

α − 1

N∑
i=1

pi(1 − pα−1
i ).

We can then introduce the Tsallis extropy as

1
α − 1

N∑
i=1

(1 − pi)
(
1 − (1 − pi)α−1

)
=

1
α − 1

 N∑
i=1

(1 − pi) −
N∑

i=1

(1 − pi)α
 , (7)

from which the definition in (6) follows readily. Intuitively, the extropy corresponding to a fixed entropy could be20

simply introduced by replacing all the pi by (1− pi) as seen in (7), but we will see in Proposition 2.3 that our definition
has a deeper meaning as it preserves the invariance property about the sum of entropy and extropy (5) studied by Lad
et al. [15].
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Proposition 2.1. The Tsallis extropy in non-negative.

Proof. Let us consider the expression of Tsallis extropy in the LHS of (7). For α > 1, the function h(x) = xα−1 is
increasing in x > 0, and so

1 − (1 − pi)α−1 ≥ 0,

and hence the Tsallis extropy is non-negative. For 0 < α < 1, the function h(x) = xα−1 is decreasing in x > 0, i.e.,

1 − (1 − pi)α−1 ≤ 0,

and hence the Tsallis extropy is non-negative due to the multiplicative factor 1
α−1 being negative.25

Remark 2. Proposition 2.1 is logical since the situation characterized by the lowest uncertainty is the one in which
we have p = (1, 0, . . . , 0), which corresponds to JS α(X) = 0.

We now present some examples to demonstrate the evaluation of Tsallis extropy.

Example 1. Let X be a discrete random variable uniformly distributed over {1, . . . ,N}. Then, the Tsallis extropy is
given by30

JS α(X) =
1

α − 1

N − 1 −
N∑

i=1

(
1 −

1
N

)α
=

1
α − 1

{
N − 1 −

(N − 1)α

Nα−1

}
=

N − 1
α − 1

{Nα−1 − (N − 1)α−1}

Nα−1 . (8)

In the following proposition, we show that the Tsallis extropy reduces to the extropy in (2) when α tends to 1.
Bear in mind that this is a classical property of Tsallis and Shannon entropies.

Proposition 2.2. Let X be a discrete random variable with finite support S and with corresponding probability vector
p. Then,

lim
α→1

JS α(X) = J(X). (9)

Proof. From (6) and by using L’Hôpital’s rule, we find

lim
α→1

JS α(X) = lim
α→1

1
α − 1

N − 1 −
N∑

i=1

(1 − pi)α


= − lim
α→1

N∑
i=1

(1 − pi)α log(1 − pi)

= −

N∑
i=1

(1 − pi) log(1 − pi) = J(X).

Next, for discussing the sum of Tsallis entropy and extropy, similar to the one presented in (5), we need the35

following lemma about random variables taking on two values.

Lemma 2.1. Let X be a discrete random variable taking on two values with corresponding probabilities (p, 1 − p).
Then,

JS α(X) = S α(X). (10)
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Proof. From (6), with N = 2, we find

JS α(X) =
1

α − 1
[
1 − (1 − p)α − {1 − (1 − p)}α

]
=

1
α − 1

{1 − pα − (1 − p)α} = S α(X).

Proposition 2.3. Let X be a discrete random variable with finite support S and with corresponding probability vector
p. Then,

S α(X) + JS α(X) =

N∑
i=1

S α(pi, 1 − pi) =

N∑
i=1

JS α(pi, 1 − pi), (11)

where S α(pi, 1 − pi) and JS α(pi, 1 − pi) are the Tsallis entropy and extropy of a discrete random variable taking on
two values with corresponding probabilities (pi, 1 − pi).40

Proof. We have to prove only the first equality, since the second one is given in Lemma 2.1. From Equations (3)–(6),
we have

S α(X) + JS α(X) =
1

α − 1

N −
N∑

i=1

pαi −
N∑

i=1

(1 − pi)α


=
1

α − 1

N∑
i=1

{
1 − pαi − (1 − pi)α

}
=

N∑
i=1

S α(pi, 1 − pi),

as required.

In the following proposition, we will show that for the choice of the parameter α = 2, the Tsallis entropy and
extropy coincide.45

Proposition 2.4. Let X be a discrete random variable with finite support S of cardinality N. Then, S 2(X) = JS 2(X).

Proof. From (6), upon choosing α = 2, we obtain

JS 2(X) =
1

2 − 1

N − 1 −
N∑

i=1

(1 − pi)2


= N − 1 −

N∑
i=1

(1 + p2
i − 2pi)

= N − 1 − N −
N∑

i=1

p2
i + 2

N∑
i=1

pi

= 1 −
N∑

i=1

p2
i = S 2(X),

as required.

In the following theorem, we will prove that the Tsallis entropy is always greater than the Tsallis extropy for α < 2
and that the reverse inequality holds for α > 2.50
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Theorem 2.1. For any discrete random variable X with support of cardinality N ≥ 3, we have

S α(X) ≥ JS α(X) if 0 < α < 2,
S α(X) ≤ JS α(X) if α > 2.

Proof. First of all, we remark that for α = 1 we mean the limit case in which we obtain the well known result about
entropy and extropy. Let us consider the difference between Tsallis entropy and extropy given by

S α(X) − JS α(X) =
1

α − 1

2 − N −
N∑

i=1

pαi +

N∑
i=1

(1 − pi)α
 .

Then, we consider the Lagrange function L defined as

L = S α(X) − JS α(X) + λ

 N∑
i=1

pi − 1

 ,
for which the partial derivatives with respect to pi are

∂L
∂pi

=
−α

α − 1

(
pα−1

i + (1 − pi)α−1
)

+ λ,

which vanish if and only if
pα−1

i + (1 − pi)α−1 = C, (12)

where C is a constant. Then, we consider, for 0 ≤ x ≤ 1, the function h(x) = xα−1 + (1− x)α−1, such that h(x) = h(1− x)
and h(0) = h(1) = 1. The function h has a minimum at x = 1

2 , if α > 2 or 0 < α < 1, and a maximum at the same point
for 1 < α < 2. Then, in order to satisfy both (12) and the normalization condition, we have only two possibilities.
The first one is given by choosing one pi equal to 1 and all the others equal to 0, whereas the second one is given55

by pi = 1
N , i = 1, . . . ,N. These are the cases in which the difference between Tsallis entropy and extropy takes the

maximum and the minimum values. In the first case, we have S α(X) − JS α(X) = 0. In the second case, we obtain

S α(X) − JS α(X) =
1

α − 1

2 − N −
N∑

i=1

1
Nα

+

N∑
i=1

(
1 −

1
N

)α
=

2Nα−1 − Nα − 1 + (N − 1)α

(α − 1)Nα−1 . (13)

Let us consider the numerator of (13) as a function of α, g(α) = 2Nα−1 − Nα − 1 + (N − 1)α. We have

g′(α) = Nα−1(log N)(2 − N) + (N − 1)α log(N − 1),

which is non negative if, and only if,

α ≤
log

[
N

N−2
log(N−1)

log N

]
log

(
N

N−1

) = G(N).

We have that, for N ≥ 3,

1 < G(N) < 2⇐⇒
N − 2
N − 1

<
log(N − 1)

log N
<

N(N − 2)
(N − 1)2 , (14)

which holds as one can see in Figure 1.
Then, the function g has a maximum between 1 and 2 and g(1) = g(2) = 0. Hence, we have g(α) > 0 if 1 < α < 2

and g(α) < 0 if 0 < α < 1 or α > 2. By recalling the definition of g and (13), we obtain that the difference between60

Tsallis entropy and extropy for uniform distribution is greater than 0 if 0 < α < 1 or 1 < α < 2 and less than 0
if α > 2. Hence, S α(X) − JS α(X) has minimum of 0 and maximum for the uniform distribution if 0 < α < 2 and
viceversa if α > 2.
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Figure 1: Plot of the functions on the RHS of (14) in red, black and blue, respectively.

3. Maximum Tsallis extropy

When we deal with a measure of information, it will be useful to know what its maximum value is. The Tsallis ex-65

tropy reaches its maximum value when the random variable X is uniformly distributed, as established in the following
theorem.

Theorem 3.1. Let X be a discrete random variable with finite support S of cardinality N, and let α > 0, α , 1. Then,
X has maximum Tsallis extropy for fixed N and α if, and only if, it is uniformly distributed.

Proof. Let N and α be fixed. Then, we need to maximize the function of N variables given by

JS α (p) =
1

α − 1

N − 1 −
N∑

i=1

(1 − pi)α
 ,

subject to the condition
N∑

i=1

pi = 1. (15)

For this purpose, let us consider the Lagrange function defined by

JS ∗α (p) =
1

α − 1

N − 1 −
N∑

i=1

(1 − pi)α
 + λ

 N∑
i=1

pi − 1

 ,
from which we readily find the partial derivatives respect to pi, i = 1, . . . ,N, as

∂JS ∗α (p)
∂pi

=
α

α − 1
(1 − pi)α−1 + λ.

Then, we can determine the stationary points as

α

α − 1
(1 − pi)α−1 + λ = 0⇐⇒ pi = 1 −

(
(1 − α)λ

α

) 1
α−1

= K,

where K is a constant. For satisfying the condition in (15), we need to have K = 1
N , in which case p becomes the70

probability mass function vector of a discrete uniform distribution.

Remark 3. In Example 1, the Tsallis extropy has been evaluated for the uniform distribution over N elements, and
so the maximum Tsallis extropy is as presented in (8).
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Theorem 3.2. The Tsallis extropy is less than 1.

Proof. To establish this result, we show that the Tsallis extropy of a discrete uniform distribution increases to 1 as the
size of the support N increases. Let XN be a discrete random variable uniformly distributed over a finite support of
size N. From (8), we know the corresponding Tsallis extropy is

JS α(XN) =
1

α − 1

(
N − 1 −

(N − 1)α

Nα−1

)
.

Let us now consider the function
g(N) = N − 1 −

(N − 1)α

Nα−1 , (16)

and show that it increases for α > 1 and decreases for 0 < α < 1. This way, we will prove that JS α(XN) is increasing
in N. Let us consider the derivative of g, by treating it as a function of a continuous variable N, given by

g′(N) = 1 −
(N − 1)α−1

Nα
(α + N − 1) =

Nα − (N − 1)α−1(α + N − 1)
Nα

,

whose sign is determined by

Nα − (N − 1)α−1(α + N − 1) = Nα − (N − 1)α − α(N − 1)α−1,

which, by mean value theorem, is equal to

α(N − 1 + ε)α−1 − α(N − 1)α−1,

for some ε ∈ (0, 1). Thence, by using the fact that the function h(x) = xα−1 is incresing in x > 0 for α > 1 and75

decreasing for 0 < α < 1, we get the monotonicity of g(N) in (16).
Now, we evaluate the limit of JS α(XN) as N tends to infinity. We have

lim
N→+∞

N − 1
α − 1

(Nα−1 − (N − 1)α−1)
Nα−1 = lim

N→+∞

N − 1
α − 1

1 − (
1 −

1
N

)α−1
= lim

N→+∞

N − 1
N

= 1.

Finally, upon using the result in Theorem 3.1 about the maximum Tsallis extropy, we conclude that the Tsallis extropy
is less than 1 for any discrete random variable.

Corollary 3.1. For any discrete random variable X, we have

0 ≤ JS α(X) < 1.

Proof. The result follows readily from Proposition 2.1 and Theorem 3.2.80

4. Application to pattern recognition

In this section, we give an application of the Tsallis extropy in pattern recognition by using the well-known Iris
dataset in [6]. We then compare the results obtained with those in the Dempster-Shafer theory of evidence [5] due
to Kang et al. [14] and Buono and Longobardi [4]. The objective is to classify among three classes of flowers: Iris
Setosa (Se), Iris Versicolour (Ve) and Iris Virginica (Vi). The dataset consists of 150 samples, with 50 in each class.85

The characteristics measured for each flower are: the sepal length in cm (SL), the sepal width in cm (SW), the petal
length in cm (PL), the petal width in cm (PW) and the class (one of Se, Ve and Vi). We select 40 samples for each
kind of Iris and then we find a sample of max-min value to generate a model of interval numbers, as shown in Table
1(a). Each element of the dataset can be regarded as an unknown test sample. Suppose the selected sample data is
(6.1, 3.0, 4.9, 1.8, Vi).90
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Table 1: (a) The interval numbers of the statistical model. (b) Probability distributions based on Kang’s method.

(a)

Item SL SW PL PW

S e [4.4,5.8] [2.3,4.4] [1.0,1.9] [0.1,0.6]
Ve [4.9,7.0] [2.0,3.4] [3.0,5.1] [1.0,1.7]
Vi [4.9,7.9] [2.2,3.8] [4.5,6.9] [1.4,2.5]

(b)

Item SL SW PL PW

P(S e) 0.3058 0.2748 0.1391 0.1563
P(Ve) 0.4148 0.3516 0.3801 0.3737
P(Vi) 0.2794 0.3736 0.4808 0.4700

We then generate four discrete probability distributions using the method of Kang et al. [14] based on the similarity
of interval numbers. Given two intervals A = [a1, a2] and B = [b1, b2], their similarity S (A, B) is defined as

S (A, B) =
1

1 + γ D(A, B)
,

where γ > 0 is the coefficient of support, and we used γ = 5, for example. Then, D(A, B), the distance between
intervals A and B, is defined to be

D2(A, B) =

[(a1 + a2

2

)
−

(
b1 + b2

2

)]2

+
1
3

(a2 − a1

2

)2
+

(
b2 − b1

2

)2 .
To generate probability distributions, the intervals given in Table 1(a) are used for interval A and for interval B we
use singletons given by the selected sample. For each one of the four characteristics measured, we get three values of
similarity and then we obtain a probability distribution by normalizing them (see Table 1(b)). We then evaluate the
Tsallis extropy of these probability distributions, as presented in Table 2(a), wherein we have used α = 0.5, 0.7, 1.5, 2.

Table 2: Tsallis extropy (a) and the weights (b) for different choices of α.

(a)

Item SL SW PL PW

α = 0.5 0.8941 0.8965 0.8715 0.8759
α = 0.7 0.8560 0.8592 0.8267 0.8324
α = 1.5 0.7245 0.7291 0.6781 0.6871
α = 2 0.6564 0.6613 0.6050 0.6150

(b)

ω(S L) ω(S W) ω(PL) ω(PW)

α = 0.5 0.2476 0.2470 0.2533 0.2522
α = 0.7 0.2469 0.2461 0.2542 0.2528
α = 1.5 0.2450 0.2439 0.2567 0.2544
α = 2 0.2445 0.2433 0.2574 0.2548

We use the Tsallis extropies in Table 2(a) to generate other probability distributions. Observe that the higher the ex-
tropy, the higher the uncertainty, and so it would be reasonable to give more weight to observations related to character-
istics with lower Tsallis extropy. We refer to the obtained Tsallis extropies as JS α(S L), JS α(S W), JS α(PL), JS α(PW).
Due to the monotonicity of the exponential function, we choose as baseline weight the function w(x) = e−x, and we
can then obtain the weights ω by normalization. For example, for the sepal length, we have

ω(S L) =
e−JS α(S L)

e−JS α(S L) + e−JS α(S W) + e−JS α(PL) + e−JS α(PW) .

The values of the weights are listed in Table 2(b) for different choices of the parameter α. We determine a final
probability distribution in the following way: for each kind of flower, we have four probabilities, one for a specific
characteristic; we multiply the probabilities given in Table 1(b) by the corresponding weights and then sum the values
relating to the same class. For example, the probability of the class Iris Setosa is obtained as follows:

P(S e) = 0.3058 · ω(S L) + 0.2748 · ω(S W) + 0.1391 · ω(PL) + 0.1563 · ω(PW).
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Thus, by choosing α = 0.5, we obtain the final probability distribution to be

P(S e) = 0.2182, P(Ve) = 0.3800, P(Vi) = 0.4018,

and then the decision is that the selected flower belongs to the class with the higher probability, Iris Virginica, i.e., we95

thus made the correct decision, in this case.
In this manner, we tested all 150 samples for different values of α, and observed that the overall recognition rate

of this method based on the Tsallis extropy to be 94.66%. The results obtained this way are compared with the
recognition rates of the methods of Kang et al. [14] and Buono and Longobardi [4], and these are presented in Table
3. The proposed method is seen to present a slightly better performance in comparison to the other two methods.100

Table 3: The recognition rates of different methods.

Item Se Ve Vi Overall

Kang’s method 100% 96% 84% 93.33%
Buono and Longobardi’s method 100% 96% 86% 94%
Method based on Tsallis extropy 100% 98% 86% 94.66%

5. Conclusions

In this paper we have studied the Tsallis extropy. It is a measure of uncertainty dual to the Tsallis entropy and
it is introduced by preserving a classical invariance property about entropy and extropy. We have discussed some
properties of the proposed measure and have given several examples. In particular, we have examined the problem
of the maximum Tsallis extropy which is always of great interest in information theory. Finally, we have illustrated105

an application in the context of pattern recognition by using the proposed measure, and we have then compared the
recognition rates with two other known methods. It will be of interest to introduce some other new measures with
interesting properties and also discuss the optimal choice of parameter α in the proposed measure.
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