
4142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Real-Time Downsampling in Digital Storage
Oscilloscopes With Multichannel Architectures

Ettore Napoli , Senior Member, IEEE, Efstratios Zacharelos , Mauro D’Arco , Senior Member, IEEE,

and Antonio Giuseppe Maria Strollo , Senior Member, IEEE

Abstract— Digital Storage Oscilloscopes (DSOs) conjugate high
performance with large number of features and flexibility. The
basic structure, based on fast Analog to Digital Converter (ADC)
and memory, is augmented with several components for channel
matching and bandwidth improvement, and processors that
provide visualization, frequency processing, jitter and stability
measurement, etc. Unfortunately, fine resolution in sample rate
selection is not available, such that for several applications the
user must run complex measurement procedures that require
data download and offline processing. The paper proposes a
dedicated digital circuit that offers fine control of the time-base by
real time downsampling the input stream at an almost arbitrary
sampling rate. The proposed circuit implements a series of
operations involving real-time data filtering, defragmentation and
packing, which are not considered by alternative approaches,
like those based on polyphase filters, that offer very limited
choices for the sampling rate. The circuit is designed to work
in conjunction with the highest performance DSOs that use a
multichannel architecture. Design rules for circuit design are
provided together with implementation results in 14nm FinFET
technology. When designed for an architecture with 64 channels
with 8bit input samples the circuit works in real time with a
sampling rate of 220 GSps running at 3.42 GHz, with a silicon
footprint of 0.17 mm2 and a power dissipation of 0.85W.

Index Terms— Digital circuits, signal sampling, oscilloscopes,
digital filters, interpolation, parallel processing, data storage,
storage management, resampling, digital storage oscilloscope.

I. INTRODUCTION

STATE of the art circuit design and test requires state
of the art measurement systems that match or overcome

the speed and the bandwidth of the designed circuits [1].
Digital Storage Oscilloscopes (DSOs) are the backbone of
circuit testing and need to provide always higher bandwidth
and resolution to allow the measurement of newly designed
circuits [2], [3].

The scientific literature routinely reports the advancements
in DSO technologies. Most of them leverage on the capabilities
of digital circuits, to extend and/or improve the functionalities
of this general-purpose instrument. Various contributions deal

Manuscript received September 18, 2020; revised March 2, 2021; accepted
July 28, 2021. Date of publication August 13, 2021; date of current version
September 30, 2021. This article was recommended by Associate Editor
I. Kale. (Corresponding author: Ettore Napoli.)

The authors are with the Department of Electrical and Information Tech-
nology Engineering, University of Napoli Federico II, 80125 Naples, Italy
(e-mail: ettore.napoli@unina.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3102386.

Digital Object Identifier 10.1109/TCSI.2021.3102386

with the very complex software structure of the instruments
that are equipped with complete operating systems and a
series of dedicated software modules, [4]–[6], while other
research activities are oriented to the whole circuital structure
of the DSO, [7]–[23]. Many papers study and improve the
front-end of the DSO as this is the portion that determines the
sampling rate and the bandwidth, [7]–[11]. Other contributions
propose various sampling methods and real-time or off-line
processing that, exploiting the peculiarities of the signals and
the front-end, allow an extension of the bandwidth or an
improvement of the resolution, [12]–[19]. The scientific liter-
ature also provides complete DSO circuits either implemented
with FPGA, microcontrollers, or general purpose processors,
[20]–[22], or analyzes the possible structures in terms of
performance, [23].

An up-to-date single acquisition channel of high-end DSOs
offers up to 33 GHz input electrical bandwidth and 100 GSps
maximum sample rate (Tektronix DPO/MSO 73304DX oscil-
loscopes offer 33 GHz bandwidth and 100 GS/s maximum
sample rate [24], while Teledyne-Lecroy WaveMaster 830Zi-B
offers 30 GHz Bandwidth, and 80 GS/s maximum sample
Rate [25]). Patented technologies that exploit a combination
of channel resources, such as Asynchronous Time Interleaving
(ATI) or Digital Bandwidth Interleaving (DBI), attain input
bandwidth up to 70 GHz and sample rates up to 160 GSps
(ATI), or bandwidth in excess of 100 GHz and sample rates
over 240 GSps (DBI) [26]–[29].

The focus of this paper is on the traditional time interleaving
(TI) technology, which is the pioneering technology exploiting
channel resources combination; its bandwidth performance is
limited by the baseband nature of the digitizing system. DBI
and ATI technologies introduce heterodyning to support band-
width extensions: DBI uses asymmetrical channels requiring
synchronization and massive processing that impact complex-
ity and cost of the DSO, whereas ATI deploys a compact
and low noise architecture whose bandwidth performance is
intermediate between TI and DBI technologies.

In time-interleaved structures, [30]–[37], in simple terms,
L (8 to 48) ADCs acquire the input signal at the same
rate (up to 5 GSps), with a time-offset equal to 1/L of the
sample period, so that the aggregate throughput is L times
the sample rate of the individual ADCs. The general structure
of the processing chain, for a single channel, of a DSO is
shown in Fig. 1. Each ADC in a time-interleaved structure is
complemented with an ASIC to carry out real-time operations

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6200-3990
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0003-1641-8359
https://orcid.org/0000-0001-5737-1783

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4143

Fig. 1. Typical structure of the acquisition channel of a high-performance DSO. A given DSO could have different bus width toward the acquisition memory
and/or the DEMUX positioned before the proposed IC. Capabilities and complexity of each element is widely changing depending on the brand and the
performance.

on the sample stream. The ASIC implements the time-base
of the DSO that allows a (coarse) selection of the sample
rate through real-time decimation, i.e. by downsampling by
an integer factor the sample stream at the highest sample rate.
In more advanced solutions, it even includes several hardware
machines that enable a variety of real-time functions and
support alternative acquisition modes such as peak detection,
high-resolution, averaging, etc. Generally, the ASIC is in
charge of critical processing operations that need real-time
constraints but affords only a small part of all processing
required in DSOs, that involves streamline calibration, dis-
play operations, and waveform math functions ranging from
immediate measurements to more complex algorithms like
FFTs. Such additional processing is carried out by means of
server-class multi-core processors, or FPGA circuits (advanced
trigger detection) integrated in the instrument. The typical
processing chain often includes a DEMUX that interfaces the
ASIC with the acquisition memory and balances between the
fast rate of ADCs and the ASIC with the slower access rate
of the acquisition memory. Namely, the DEMUX retrieves the
samples from ASIC, collects them into bunches, and writes
single bunches with memory accesses at a slower rate.

Hereinafter, the attention is paid to the limits of the time-
base system implemented at the very heart of the digitizing
system in DSOs, namely at circuit level by the ASIC. The
main intent of the work is to improve the time-base that at
present offers only a discrete set of sample rates rather than
continuously variable control. Note that fine control of the
time-base has always been a critical issue. Manufacturers of
analog oscilloscopes allowed the user to dispose of a limited
set of calibrated settings or use a continuously variable control
(accepting uncalibrated speeds), whereas, in early DSO mod-
els, they offered the possibility of using an external frequency
variable clock to drive the time-base circuit within limited
frequency ranges, warning the user that the overall system
accuracy was no more granted by the specifications declared
in the DSO documentation. The reader interested to further
investigate time-base issues in DSOs is addressed to [38]–[44].

As previously stated, modern DSOs use a digital circuit
deployed between ADC and acquisition memory to seamlessly
decimate the digitized signal. Decimation consists in singling
out one among N consecutive samples from the ADC sample
stream, where N is the decimation factor. In this way the
ADC operates at the fixed maximum frequency, whichever the
sample rate selected by the user. The rationale for this widely
adopted design choice is substantially related to a couple of

benefits. Specifically, the use of a fixed reference frequency
simplifies buffer design and memory access rate regulation
needed for the data transfer from ADC to acquisition memory.
Also, the jitter performance is made independent of the chosen
sample rate. This approach however prevents an optimal usage
of the memory resources and control of the time interval
capture, since it does limit the possible choices of the sample
rate, which are typically constrained to a few values per
decade. In other terms, the decimation logic adopted in ASIC
appears restrictive when the user needs real-time control of
the time interval capture in waveform analysis. For instance,
rigid sample rate selection prevents setting coherent sampling
in the analysis of steady alternate waveforms, as well as
precludes fine control of the frequency span and resolution in
FFT analyses, which claim for sample rate adaptation through
off-line processing. On the counterpart, the decimation logic
is rewarding in terms of sampling jitter containment: as a
matter of fact, the performance granted by time base systems
operating with variable frequency clocks is by far inferior to
that of systems with fixed frequency clocks; at the state-of-the-
art, the latter can assure 100 fs rms (typical) timing jitter, i.e.
0.2% of a clock period at 5 GHz. This is the typical sample
clock jitter specified by the Oscilloscopes Teledyne-Lecroy
Wavemaster 8 Zi B 4–30 GHz, [25].

A proposal to enable an almost arbitrary selection of the
sample rate in DSOs is therefore presented in this paper. It con-
sists in real-time downsampling the ADC output stream by an
arbitrary non-integer factor, and it is implemented by means of
a digital circuit that improves the processing capabilities of the
ASIC. It should be noted that the proposed circuit is conceived
as an add-on for the existing processing machines. It does not
perform by itself the streamline calibration operation aimed at
mitigating the static interleaving mismatches, which is carried
out by other DSP machines.

The proposal is inspired by a previous research work that led
to the realization of a digital circuit capable of downsampling
by a non-integer factor the stream of an individual channel at
a maximum clock frequency up to a few GHz [45]–[47]. Such
circuit uses a finite impulse response filter with dynamically
varying coefficients and an effective strategy to occasionally
discard samples for reducing the sample rate. The circuit
proposed in this paper is however completely different being
oriented to a system based on many interleaved ADCs (chan-
nels from now on). The multi-channel architecture needed
the circuital implementation of a novel algorithm, as will be
shown in the following, that requires the complex phases of

4144 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

defragmenting and packing, placed after the not trivial linear
interpolation. In addition, the proposed circuit allows a sample
rate that overcomes the needs of the high-performance DSOs
available to date.

Sample rate selection could be implemented exploiting
conventional resampling techniques such as interpolation or
polyphase filters that counteract aliasing effects by means of
explicit or implicit low pass filtering operations. Unfortunately,
the direct hardware implementation of both approaches is only
effective if the resampling factor is fixed, whereas it becomes
cumbersome or impossible if the resampling factor is selected
ad lib, since different sample rate selections require different
circuit layouts. More in detail polyphase structures represent
a standard solution for fixed sample rate conversion and
would finely match the parallel structure of time interleaved
ADCs, but they are unfeasible for the considered application,
where the user can make arbitrary selections of the sample
rate, each one requiring a different structure. Alternatively,
programmable components, such as FPGAs, could be used
to adapt the polyphase structure to the user required sample
rate but they offer insufficient speed and put limits on the
selectable sample rates, excluding all the settings demanding
polyphase structures that exceed the available resources. Artifi-
cial intelligence-based approaches have also been successfully
adopted to cope with resampling tasks [48], [49]. Unfortu-
nately, their typical computational burden requires massive
resources and, most importantly, the paradigm underneath their
operation principles lacks the determinism which is required
in measurement instruments.

The proposed circuit exploits instead original approaches
that allow: parallelizing the serial computation presented
in [45]–[47]; distinguishing valid from dummy samples in the
raw bunches collecting the time-interleaved ADCs outputs;
defragmenting the raw bunches and compacting valid and
invalid samples in separate bunches of fixed size; discarding
the invalid bunches while saving the valid ones in the acqui-
sition memory.

The proposed circuit has real-time performance, hence pro-
duces no impact on the capture rate, differently from software
post-processing, which involves detrimental blind intervals.
Moreover, it can grant the jitter performance of the internal
clock to all the selectable sample rates.

The paper is organized as follows. In Section II the resam-
pling algorithm is presented while Sections III and IV describe
the proposed circuit and detail its performances.

II. RESAMPLING ALGORITHM

In the proposed system, the resampling algorithm receives,
at any clock tick, a bunch of L samples, each one on 8 bits,
where the clock rate is the one of the time-interleaved ADCs,
i.e., fck (period Tck). The output is a version of the input
signal resampled at a sample rate fs = C fck , where the
resampling factor C is an arbitrary (within the limits of the
numeric precision detailed in Appendix II) fractional value in
the interval [1/2, 1) selected by the user, [45]. It is produced as
a sequence of valid bunches, which are saved in the acquisition
memory, and invalid bunches that are instead discarded, thus
lowering, as required, the sample rate.

It is worth noticing that resampling is usually performed
after low-pass filtering/interpolation operations aimed at coun-
teracting the aliasing effects. For a digital input spectrum
X (v), where v is the frequency in hertz normalized to fck ,
the resampled version, Z(v), characterized by sample rate Cfck ,
can analytically be described as:

Z (v) =
∑∞

p,q=−∞
1

C
sinc2

(v

C

)
X

(
v − p

C
− q

)
(1)

where 1
C sinc2

(
v
C

)
accounts for the low-pass filter effect due

to the linear interpolation. From (1) the alias-free version of
the resampled signal is obtained using p = q = 0, whereas
all the combinations satisfying |p − Cq| < C single out and
permit quantifying the alias contributions that fall within the
bandwidth of the signal. Equation (1) permits to quantify the
typical strength of the alias contributions and show that they
are generally comparable to the quantization noise floor of
an 8 bit digitizer. Furthermore, it can even be shown that the
effective number of bits of the digitizer (ENOB) improves
with respect to the nominal number of bits when the input
frequencies are substantially lower than the analog bandwidth
of the digitizer. The improvement is an effect of the low-pass
filter implicit in the interpolation that restricts the acquired
bandwidth and thus the quantization noise. In fact, the low-
pass filter due to linear interpolation is characterized by a
3 dB attenuation bandwidth that is only 64% times fck . But,
as the input frequency approaches the upper limit of the
Nyquist bandwidth, i.e. for C approaching 1, the performance
of the linear interpolator decreases, such that the use of the
resampling approach could be unsuitable for the measurement
goal according to the requirements in terms of ENOB. A more
detailed analysis of linear interpolators performance is given
in [47].

Fine sample rate selection can be straightforwardly extended
by combining the hard decimation (by integer value) capability
of the ASIC with the operation of the proposed circuit.

The algorithm is illustrated in the following by firstly
recalling the single channel algorithm presented in [45]–[47],
and then detailing the operations of the multichannel algo-
rithm that develop through three stages named: interpolation,
defragmentation, and packing.

A. Single Channel Algorithm

The single-channel algorithm reads one sample at its input
and writes one sample at its output, as illustrated in [45]–[47]
where it is shown that the algorithm and the architecture are
feasible, but the maximum clock frequency is limited to a few
GHz, hence the sampling rate is in the GSps range.

The circuit implementation of the single channel algorithm
is shown in Fig. 2. It is a FIR filter with time variable
coefficients (vcFIR) that processes the digital signal x(n)
deriving from the ADC, and produces the output, y(n). The
linear interpolation provides a good compromise between
performances, which enlist both accuracy of the output results,
costs of circuitry resources, and feasibility of the resam-
pling scheme, [47]. Therefore, the value y(n) is the linear

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4145

Fig. 2. Single channel architecture proposed in [47]. Blue rectangle: updating
of a signal. Green rectangle: updating of the memory pointer. Red rectangle:
linear interpolation (FIR block).

interpolation of the samples x(n) and x(n − 1):

y (n) = (1 − a (n)) x (n) + a (n) x(n − 1) (2)

where a(n) is a time-varying coefficient, normally in the range
[0, 1). This coefficient quantifies in Tck units the time delay of
the system clock tick that follows the sampling instant required
by the selected sample rate fs . It is computed recursively at
every clock cycle defining:

d = C−1 − 1 (3)

(C is the chosen resampling factor) and decrementing a (n):

a (n) = a (n − 1) − d (4)

but, if the accumulated subtractions have produced a negative
value for a (n − 1), the decrement is skipped, and the current
coefficient is obtained incrementing by 1 the negative value:

a (n) = a (n − 1) + 1 (5)

thus restoring a (n) to its normal [0, 1) range and connotation
as a time delay. This case is referred to as an exception.
In fact, negative values for the coefficient a, occur anytime a
couple of consecutive system clock ticks fall within the same
sampling interval, i.e. anytime that a clock tick expected after
the sampling instant leads instead that sampling instant, such
that a negative delay is returned by the recursive formula. All
the samples, y (n), returned by the circuit in the presence of a
negative coefficient, are invalid and not saved in the acquisition
memory, thus creating a lower rate stream and saving memory,
while the rest of them form the valid downsampled signal.
Specifically, the circuit manages the acquisition memory by
means of a pointer that is always incremented by one, except
for the cases that follow a negative a coefficient (exceptions).
The invalid samples calculated using a negative a coefficient,
are thus overwritten, whereas the valid samples are stored in
consecutive locations in the memory.

B. Multichannel Algorithm

The multichannel architecture receives a bunch of L samples
deriving from the ADCs at the system frequency fck and
produces a bunch of L interpolated samples at the same
rate. To cope with the lower rate of the output stream,
the multichannel architecture provides, with a certain pace,
an invalid bunch that is not saved into the memory.

Fig. 3. Parallel channels generating the a-sequence. The figure shows the
behavior of L channels for k clock cycles. Each channel must calculate
a (L + i) from a (i) without waiting for the calculation of a (L + i − 1).

In order to implement the downsampling operation in the
multichannel architecture, one vcFIR filter for each of the L
channels, is necessary. Furthermore, suitable solutions capable
of considering both the time varying character of the coeffi-
cients and the need for disposing of the invalid samples must
be defined. These solutions should update in real-time the
coefficients of the vcFIR filters deployed on each individual
channel and dedicated to the interpolation task, defragment
each bunch singling out the invalid samples, assemble valid
and invalid bunches in a sequence, such that discarding the
invalid bunches permits downsampling the input bunched
stream.

A diagram of the proposed algorithm can be seen in the
actual circuital implementation shown in Fig. 7. The multi-
channel algorithm is composed by i) interpolation: operates
in parallel on a bunch of samples and produces a set of
interpolated valid and invalid samples; ii) defragmentation:
operates on the set of samples sweeping on one side the invalid
samples; iii) gluing: counts the number of valid samples
in a set and provides this information to the next phase;
iv) packing: operates on three sets of defragmented samples
after gluing to pick the valid samples and generate a set of
all-valid or all-invalid samples.

1) Interpolation: In the multichannel version an interpo-
lated sample is calculated following the principle adopted
in the single channel system, thus calculating the value of
the time-varying coefficient a (n) and using (2) to calculate
the output, y (n). The discrete time variable n stems the
samples characterized by sampling rate L · fck (sampling
period, Tck

/
L), where fck is the sampling rate (Tck sampling

period) of each channel.
Each channel is responsible for producing the correct value

a (n) which follows the value a (n − 1) calculated by the
adjacent channel, as explained in Fig. 3, and combining the
samples x (n − 1) and x (n). But, since parallelism is of
the essence, each channel cannot wait to pick-up the value
a (n − 1) produced by the adjacent channel to determine
the required value a (n). Therefore, each channel must be
configured to work as an independent channel.

To this end, the initial set of coefficients for the discrete time
instants ranging from 1 up to L, i.e. {a (1) , . . . , a (L)}, needed
by the L channels to elaborate the first bunch of samples,
is calculated in advance according to the settings on the desired
C value made by the user. A detailed explanation on how to
calculate the initial set of coefficients is in the Appendix I.

4146 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Once the initial set of coefficients is configured and given in
input, the interpolation algorithm is responsible for carrying
on and calculating the next sets for the elaboration of the
following bunches. Each channel must produce a value for
the coefficient a that is L steps ahead just exploiting the
current value it holds. Using the discrete time variable k to
stem the samples characterized by the sampling rate fck of
each channel, and the parameter l ∈ [1, . . . , L] to address the
generic channel one has:

a (kL + l) = a ((k − 1) L + l) − (L − m) d + m (6)

where d is the decrement to be applied defined in II-B
(0< d ≤1), and m is the number of exceptions occur-
ring in the interval delimited by ((k − 1)L + l) Tck

L and
(kL + l) Tck

L . The applicability of (6) relies on the capability of
recognizing the number of exceptions, m, in the sub-sequence
made up of the L values following a ((k − 1)L + l).

The approach implemented by the algorithm considers that
the average number of exceptions in each bunch is given
by L (1 − C), that in general has both integer and fractional
parts: for instance, for an architecture with L = 4 channels
using a resampling factor C = 0.70, one has 1.2 exceptions
per bunch on average. Exceptions detected at run time in an
L-subsequence will be on some occurrences equal to:

M = �L (1 − C)� (7)

and on the remaining ones equal to M – 1, such that the
variable m can take only two values for any selection of
the resampling rate, namely {M − 1, M}. Intuitively, if the
coefficient a((k − 1) L + l) evaluated by the l-th channel,
approaches zero, it is understandable that the next exception
is close enough so that there is enough space for M excep-
tions; on the other hand, if a((k − 1) L + l) is close to one,
the next exception is far enough so that there is only room for
M - 1 exceptions. To recognize the number of exceptions in
a deterministic manner and calculate the coefficient a(kL + l),
a threshold is introduced:

T H = [L − 1 − (M − 1)] d − (M − 1) (8)

which quantifies the total decrement that is applied to the coef-
ficient a((k − 1) L+l) through L−1 subsequent steps, in pres-
ence of M − 1 exceptions. If the coefficient a((k − 1) L + l)
is below the threshold there are M exceptions through the
following L steps, otherwise the L-th step is not an exception,
and only M − 1 exceptions are present through the following
L steps. More in detail, the algorithm calculates beforehand,
according to the settings made by the user, two quantities:

inc_m = − (L − M + 1) d + M − 1 (9)

inc_M = − (L − M) d + M (10)

and, as required by (6), if a((k − 1) L + l) ≥ T H adds
to a((k − 1) L + l) the quantity inc_m, otherwise inc_M
is added. A numerical example shown in the Appendix I
is provided to clarify the coefficients update process of the
parallel interpolation algorithm.

With the correct values of a (kL + l), each channel cal-
culates the interpolated sample, y (kL + l), using (2). The

Fig. 4. Defragmentation algorithm. The interpolation channels produce
scrambled valid (green) and invalid (red) samples. Defragmentation separates
them so that invalid samples are at the top and valid at the bottom.

couple of consecutive samples, x (kL + l) and x (kL + l − 1)
needed in input to the interpolation is normally fetched from
the bunch of x samples, {x (kL + 1) , . . . , x (kL + L)}, that
arrive from the ADCs. The only exception is for channel one
that requires x (kL + 1) and the L-th sample of the previous
bunch x ((k − 1) L + L). The algorithm thus requires storing
the L-th sample of each input bunch to process the following
bunch.

The algorithm produces at each clock tick a struc-
tured array, in which each sample of the output bunch,
{y (kL + 1) , . . . , y (kL + L)}, is labeled with a Boolean flag,
set true if the sample is invalid and as such to be discarded
at the memorization stage. The structured array is hence
processed by the defragmentation and packing algorithms.

2) Defragmentation: The structured array is processed by
the defragmentation algorithm that sweeps the invalid samples
at the top of the array, leaving at the bottom the valid ones.

The defragmentation algorithm consists of so many identical
steps as the maximum number of exceptions that could appear
in L channels for an arbitrary selection of the resampling factor
C in [1/2, 1), which is equal to

⌈
L
/

2
⌉

(rounding to the upper
integer). At each step, the lowest location hosting an invalid
sample is detected, and all the samples that are above the
aforementioned location are shifted down, while the topmost
location, which is freed up by the downward shift, is marked
as invalid, thus keeping constant the number of invalid samples
in the array; the example given in Fig. 4 clarifies the described
approach. Let us assume an architecture with L = 6 channels.
The maximum number of exceptions that could be present is⌈

L
/

2
⌉ = 3, consequently, a structure with 3 stages is required

for defragmentation. Fig. 4 considers an array that contains
four valid samples, shown in green, and two invalid samples,
shown in red. The array elements are enumerated from bottom
to top correspondingly to the interpolation channels. During
the first step the invalid sample that derives from channel 3 is
identified and the data above channel 3 (channels 4 to 6) are
shifted down while the location corresponding to channel 6 is
marked as invalid (and filled with zero, as these data are not
used). At the second stage the process similarly addresses the
sample in the fourth location of the buffer. The last stage leaves
the samples unchanged; it is necessary in case the resampling
factor selected by the user produces 3 exceptions in a bunch.

The following packing stage requires the knowledge of the
number of valid samples in each bunch. Counting the valid

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4147

Fig. 5. Example of the Packing algorithm. S2, S1 and S0 are combined to
form an output of L valid (colored), or L invalid (black) consecutive samples.
The first column indicates the clock ticks.

samples in the bunches is straightforward from the algorithmic
point of view but requires an additional circuital stage that in
Section III is named ‘Glue’.

3) Packing: Packing is obtained implementing a queue
that manages three consecutive defragmented bunches and
arranges, at each clock tick, one output, containing a bunch
of L valid or L invalid samples and a related Boolean flag;
the released bunch is substituted by a new bunch from the
defragmentation unit according to the logic of the queue, while
the two partially elaborated bunches move forward through the
queue.

The operation principle of the packing algorithm can be
illustrated as follows. The bunches in the queue are named
S0, S1 and S2, where S0 is the bunch that just entered, and
S2 is the bunch to be released. S2 might contain valid samples
or not. In the first case, the output bunch is formed taking
the valid samples available in S2 and as many valid samples
as needed to complete a valid bunch made up of L samples
from the bunch S1, and if S1 can provide only a part of
them, the rest is taken from S0. In the second case, the same
S2 bunch is returned as output marked as invalid.

For the sake of clarity more details related to the operation
of the algorithm are given in Fig. 5, where an architecture with
L = 6 channels and a resampling factor C = 0.75 are consid-
ered. Each defragmented bunch carries some valid samples,
highlighted with colored circles, and some invalid samples,
highlighted with black circles. The graphic shows the bunches
in the queue for 5 consecutive clock ticks, enumerated from
1 to 5 in the leftmost column. Row 1 in Fig. 5 shows bunch
S0 with 4 valid samples, S1 with 5 valid samples, and S2 with
4 valid samples, and makes clear that at the first clock tick
the output is composed using the 4 valid samples of the oldest
bunch in the queue, S2, and 2 out of the 5 valid samples in
S1. At the next clock tick, illustrated by row 2, the bunches
S0, S1, and S2, are updated such that they contain 5, 4,
and 3 valid samples, respectively. Notice that apart from the
incoming bunch, S0, bunch S1 contains the valid samples that
were in S0 and have not contributed to the valid output at
the previous step, and bunch S2 contains the valid samples
that were in S1 and have not been used to generate the valid
output, because in excess of need. Hence, at the second step,
the output is composed by 3 samples from S2 and 3 samples
from S1. At the third step, illustrated by row 3, the bunches
S0, S1, and S2, contain 4, 5, and 1 valid sample, respectively.
A valid output is assembled taking 1 sample from S2 and
5 samples from S1. At this step all the samples of S1 are
required, so that at the next step bunch S2, will have no valid

Fig. 6. Resampling algorithm. Example of defrag and packing steps. Colored
circles correspond to valid samples. Black circles to invalid samples. Six
consecutive outputs can be observed for each step of the algorithm.

samples. At the fourth step, illustrated with row 4, S0, S1,
and S2, contain 5, 4, and 0 valid samples, such that, bunch
S2 with no valid samples is returned marked as an invalid
bunch of samples.

The selection of a resampling factor C in the interval
[1/2, 1) assures that at least one every other bunch is valid, and
that a queue managing three bunches in the packing stage is
sufficient to assemble at each clock tick an output bunch with
L valid or invalid samples, whichever the number of channels
in the architecture. This can be proved observing that each
defragmented bunch arriving to the packing stage as bunch
S0, carries at least

⌊
L
/

2
⌋

valid samples. The most critical
scenario happens when there is the minimum number of valid
samples in the queue, which consists in having bunch S2 with
no valid samples and only one residual valid sample in S1, that
assures that S0 still contains at least

⌊
L
/

2
⌋

valid samples. The
algorithm then returns a bunch marked as invalid and loads a
new bunch S0 with at least

⌊
L
/

2
⌋

valid samples. It can be
shown that the number of valid samples in the queue is thus
L+1, which is sufficient to output a valid bunch and fall again
in the most critical scenario. The result is obvious in case L
is even, since bunch S2 has one residual valid sample, and
bunches S1 and S0 each have L

/
2 valid samples; it can also

be shown in case L is odd, by observing that the minimum
number of valid samples in the two consecutive bunches,
namely S1 and S0, must be expressed as

⌊
2L

/
2
⌋ = L.

Fig. 6 presents a summarizing schematic including the
described algorithms. A six-channels architecture and a resam-
pling factor equal to 0.75 are chosen. Notice how the bunches
are firstly defragmented and then packed to produce L valid
bunches 75% of the time, and L invalid bunches data 25% of
the time; no sample is lost during the process.

III. PROPOSED CIRCUIT

A digital circuit that implements the proposed algorithm has
been designed. The HDL code and the simulation environment
for the proposed circuits is available on CodeOcean to boost
scientific reproducibility, [50]. The architecture of the circuit is
in Fig. 7. It is composed of: Interpolation (composed by L time
varying FIR filters); Defragmentation (changes the order of the
samples to separate valid and invalid samples); Glue (calcu-
lates the number of valid samples in a defragmented block of
samples); Pack (collects the samples to obtain bunches of L
valid or invalid samples).

A. Interpolation Block

The first part of the circuit, the interpolation block, is shown
in Fig. 8. It is composed by the register that stores the xL

sample and L vcFIR circuits.

4148 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 7. Architecture of the proposed circuit. The signals in the CONFIG box are calculated (as in Appendix I) and driven to the vcFIR during the configuration
stage. The bunches arriving from the ADCs are composed by L samples, {x1, . . . , xL } that are forwarded to the vcFIR circuit in couples. The register in
the interpolation block stores the xL sample needed by vcFIR1 to process the subsequent bunch. In the interpolation block, the input signal is processed by
L parallel vcFIR filters; In the defragmentation block valid and invalid samples are divided; In the glue block, the defragmented exceptions are converted to
the actual number of valid samples; In the pack block, valid samples are combined to form the output.

Fig. 8. Variable coefficient FIR (vcFIR) for one channel in Fig. 7. The circuit is replicated L times in the interpolation block of Fig. 7; Colored rectangles
correspond to pipeline registers (same color for the same level); Rectangles containing arithmetic operators and a number between angled brackets indicate
that the operator contains as many pipeline levels as dictated by the number.

The structure of the vcFIR is shown in Fig. 8. It is similar to
the single channel architecture of Fig. 2 presented in [46], [47]
but features many differences. An important difference is the
way a is updated. In the single channel architecture d is
subtracted from a, in every clock cycle, until a gets negative.
At that moment, a mux exploits the MSB of signal a to
determine the sign of a, and instead of yet another subtraction,
a unitary addition restores a to positive values.

The multi-channel version follows the same principle, but
since now a needs to be calculated L steps ahead, instead of
choosing between d and 1, the multiplexer chooses between
summing inc_m or inc_M , depending on the most significant
bit of a_T H (that is signal a minus the TH value), which
corresponds to its sign (see Section II.B.1). The circuit has also
been changed duplicating the adders to calculate in advance
the two possible results (loop split technique). In this way the
critical path includes only one adder instead of passing through
the subtractor and the adder.

Another key difference with the circuit in Fig. 2, is the use
of pipeline registers, that allow higher speed notwithstanding
the more complex structure. In the multi-channel version, as it
can be seen in Fig. 8, a total of twenty pipeline levels has
been introduced. Pipeline levels are also inside the adders
(4 or 5 levels) and the multipliers (3 levels). The pipeline
registers are depicted with colored rectangles in Fig. 8. Signals
are named according to the pipeline stage they are in. For
instance, signals between the red and blue lines of registers,
carry the subscript ‘1’. Signals between the blue and dark blue

registers carry the subscript ‘2’, and after that, ‘3’. After a,
the signal b is calculated by subtracting a from 1:

b1 = 1−a1 (11)

And the circuit performs the multiplications:
za2 = a2 · z (12)

xb2 = b2 · x (13)

Finally, the two products are summed and truncated to form
an 8 bits output sample:

y8 = za3 + xb3 (truncated to 8 bits) (14)

At the same time, the most significant bit of a, is carried
to the output (No_Mem3), to dictate invalid samples.

The pipelined adders and the subtractor at the input of the
circuit in Fig. 8, allow higher working frequencies. However,
they create a subtle problem. If they are reset to zero, they
provide the wrong a_TH, a_nxt_m, and a_nxt_M signals to
the MUX for as many clock cycles as the number of pipeline
levels. The MUX will then generate the wrong sequence
for signal a, thus jeopardizing the functionality of the entire
system. The solution of this problem is to reset the pipeline
registers of the adder that generates a_nxt_m to the actual
sequence of values that the normal operation would generate
(since a_TH is zero, the MUX continuously selects a_nxt_m
whilst the pipeline is being filled, so there is no need to
initialize a_nxt_M). Thus, additional values for init_a are

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4149

calculated in advance following the algorithm detailed in
Section II and in the Appendix I (L·5 values, where 5 is
the number of pipeline levels) and forwarded to the pipeline
registers. Since the loop of the a signal, due to the presence
of the pipeline, is now looking further ahead in the sequence
of the values of a, equations (7), (8), (9), and (10) that
calculate the signals M , TH, inc_M, and inc_m, are modified
accordingly. The modification is straightforward and consists
in substituting L with L·5 (5 is the number of pipeline levels)
in the cited equations.

B. Defragmentation Block

The L samples, named block of samples, and the L excep-
tion flag bits that stem out of the interpolation block, feed the
‘Defragmentation’ block that is composed by

⌈
L
/

2
⌉

equal
‘Defrag’ stages. Each ‘Defrag’ stage must locate the first
exception and shift by one position all the samples above that
position (see Section II.B.2).

A ‘Defrag’ stage is composed by: a pipeline register for the
input block of samples; a pipeline register for the exceptions;
several 2 to 1 MUX that allow the conditional shift by one of
both the exceptions and the block of samples; a thermometric
code combinatorial circuit that receives the exception as input
and produces a thermometric code L-bit signal named thermo
composed of zeros up to the position of the first exception and
ones from this position upwards. The thermo signal feeds the
MUX to generate a partially defragged signal that goes to the
next stage for further defragmentation. In terms of speed and
silicon area, these components, at least for the implementation
with less than 32 channels, are not critical for the circuit.

C. Glue Block

After the defragmentation, follows the ‘Glue’ block, where
the defragged exceptions signal is processed to provide the
signal V0 that indicates the number of valid samples in the
defragged block of samples. V0 is a k-bit signal where:

k = ⌈
log2(L + 1)

⌉
(15)

The ‘Glue’ block is composed by a pipeline register on
signal defragged that produces the signal S0 and a pipeline
register on signal defragged_exceptions that is followed by
a priority encoder that produces signal V0. In terms of speed
and silicon footprint, these components, at least for the imple-
mentation with less than 32 channels, are not critical for the
circuit.

D. Pack Block

The circuital implementation of the Packing algorithm can
be seen in Fig. 9. The inputs to this circuit, are the defragged
samples and the V0 signal described in Section III-C. The
outputs are the final block of samples Y (composed by L
valid or L invalid samples) and a 1-bit signal, NoMem, that
turns high to indicate an invalid block of samples.

The ‘Pack’ circuit is divided in three stages as shown by the
dashed lines in 9. As discussed in Section II.B.3), the objective

Fig. 9. Pack circuit. Colored rectangles indicate pipeline levels. The top
portion (from S0 to Y) processes the defragged bunches to generate the output.
The bottom portion (from V 0 to NoMem) calculates the number of valid
samples in the processed bunches and determines the invalid outputs.

is to combine the valid samples of the three blocks of samples
(S0, S1 and S2), to create the output block of samples.

The top portion of the ‘Pack’ circuit processes the block of
samples S0, S1, and S2. It generates S1 using S0, generates
S2 using S1, and produces the output.

The bottom portion processes the V0 signal (indicates
how many valid samples are in S0) and its derived versions
(V1 and V2 that tell how many valid samples are in S1 and
S2, respectively) to determine how many valid samples to pick
from S0, S1, and S2 to produce the output. It also checks if
S2 contains any valid samples to decide whether the output
block of samples is valid or not.

The three stages are separated by registers that are necessary
to avoid combinatorial loops. The ‘Pack’ circuit also contains
six additional pipeline levels (shown in Fig. 9 with colored
rectangles) to increase the working frequency.

The ‘True_Valid’ circuit is a NOR gate on V2 that, if
V2 = 0, asserts the NoMemInt signal and defines the output
as invalid.

The ‘Pick S1’ and ‘Pick S0’ blocks generate the k-bit signals
PickS1 and PickS0 that indicate how many samples to extract
from S0 and S1 to compose the output. The two blocks exploit
the flag signal P that is asserted if (L − V 2) < V 1 and is
implemented with a k-bit adder and a comparator.

Let us firstly detail the circuital composition of ‘Pick S1’.
It is composed by a mux, and one k-bit adder. The mux is
driven by two control lines NoMemInt and the signal, P .

• If {NoMemInt, P} = {1, −}, PickS1 = 0.
• If {NoMemInt, P} = {0,0}, PickS1 = V1 since all the

valid S1 samples contribute to the output.
• If {NoMemInt, P} = {0,1}, PickS1 = (n − V 2) (thus the

need of the k-bit adder). In this case only some of the S1
samples contribute to the output.

The block ‘Pick S0’ is very similar to ‘Pick S1’. Its mux is
driven by the same signals as ‘Pick S1’.

• If {NoMemInt, P} = {1, −} or {0,1}, PickS0 = 0.

4150 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

• If {NoMemInt, P} = {0,0}, PickS0 = n-V2-V1. The
circuit will also use some of the valid S0 samples to
generate the output.

The blocks ‘Shift0’ and ‘Shift1’ are combinational shifters
(shift from 0 to n bit) that right-shift S0 and S1 signals as
many times as PickS0, PickS1. This eliminates the samples
that contribute to the output and in the next clock cycle, S1
and S2 will only contain the unused valid samples.

The blocks ‘NU0’, ‘NU1’ determine the valid samples in
S1, S2, defining the k-bit signals nxV1, nxV2. These blocks
are very similar to ‘PickS0’ from the circuital point of view.
They are composed by a mux driven by {NoMemInt,P}, and
a k-bit adder.

The mux in the ‘NU0’ block operates as follows:

• If {NoMemInt, P} = {1, −} or {0,1} nxV1 = V0.
No samples picked from S0.

• If {NoMemInt, P} = {0,0} nxV1 = V0+V1-V2-L.

The mux in the ‘NU1’ block operates as follows:

• If {NoMemInt, P} = {1, −} nxV2 = V1. No samples
have been picked from S1.

• If {NoMemInt, P} = {0,0} nxV2 = 0. All the valid
samples in S1 have been picked.

• If {NoMemInt, P} = {0,1} nxV2 = V1-(L-V2).

The last remaining block is the ‘True Sample’ that is
responsible for producing the final output signal. The block
is composed by two combinational shifters, one k-bit adder,
and one OR gate. The shifters operate on S1 (shifted by
V2 positions) and on S0 (shifted by V2+V1 positions,
thus the need for the adder). The OR gate combines the
shifted S0, shifted S1 and S2 to create the output sam-
ple. It can be demonstrated that the shifters, no matter
the value of P , succeed in producing a valid output if
NoMemInt = 0.

In conclusion, the circuital implementation of the ‘Pack’
block, notwithstanding the complexity of the algorithm and the
large final silicon footprint of the circuit, is broken down to six
k-bit adders (depending on the optimization this number can
change), muxes, and some wide input combinational shifters.
Since k is slowly increasing with the number of channels, L,
it is expected that the performance limit is due to the shifters
whose complexity linearly increases with L).

IV. IMPLEMENTATION RESULTS

The circuit has been synthesized targeting a commercial
standard-cell library in 14 nm FinFET technology provided
by Global Foundry. Physical synthesis is performed by using
Cadence Genus (that also includes parasitic estimates from
the subsequent Place&Route phase). The circuit is synthesized
according to the imposed timing constraints. The considered
technology corner is the typical one with 0.8 V supply voltage
and regular VTH. The simulations, with delay and switch-
ing activity annotation, have been conducted with Cadence
NCSIM. Power dissipation is computed by simulating the final
netlist with 104 input vectors from an asynchronously sampled
sinusoid to obtain the switching activity.

TABLE I

THROUGHPUT. ASIC IMPLEMENTATION RESULTS IN 14NM FINFET GF
TECHNOLOGY. DIFFERENT NUMBER OF CHANNELS ARE CONSIDERED

Fig. 10. Frequency and throughput vs number of channels. Dashed lines
mark the results for the single channel (5.26 GSps) architecture proposed
in [47].

A. Clock Frequency and Throughput

Architectures featuring different numbers of channels in
the interpolating block, have been simulated and synthesized.
The maximum clock frequency and the sample throughput is
reported in Table I. Five versions of the proposed circuit are
reported whose number of channels ranges from 8 to 64.

With reference to the clock frequency, it is worth not-
ing that the proposed circuit, notwithstanding the largely
increased complexity when compared with [47], reaches the
same working frequency of 5.26 GHz when implemented
with 8 channels. As the number of channels is increased,
certain computations impose a greater workload to specific
parts of the circuit, resulting in reduced circuit speed. As an
example, the maximum working frequency for the 64 channels
implementation of the circuit is reduced to 3.42 GHz.

However, as it can be observed in Fig. 10, even though
the highest working frequency is decreased, the throughput
is increased almost linearly when the number of channels
is increased (around 3.3 GSps increase for each additional
channel starting from the result obtained with 8 channels).
That is, the more channels are implemented, the more samples
are processed per unit time. As it is easily gathered, it takes
around 56 channels to reach the 200 GSps milestone, which
is far ahead of the state of the art. To match the state-of-the-
art results of 100 GSps around 24 channels are needed. When
compared with the implementation proposed in [47], whose

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4151

TABLE II

SILICON AREA OCCUPATION. ASIC IMPLEMENTATION RESULTS IN 14NM FINFET GF TECHNOLOGY.
DIFFERENT NUMBER OF CHANNELS ARE CONSIDERED

Fig. 11. Breakdown of the silicon area occupation vs number of channels.
Absolute and percentage values for the Interpolation, Defragmentation, and
Glue summed with Pack blocks are shown.

throughput was limited to 5.26 GSps, the proposed circuit
shows largely improved performance and design flexibility.

B. Area and Power Results

Silicon area occupation for the five implementations of the
circuit considered in the paper is reported in Table II. The total
area increases slightly faster than linearly with the number of
channels. This is because the proposed circuit is composed
by L vcFIR circuits whose structure is not dependent on the
number of channels, and the Defragmentation, Glue, and Pack
blocks that indeed depend on, and slowly increase in terms
of complexity, with L. A breakdown of the area occupation
together with a graph showing the area percentage for the
various blocks is reported in Fig. 11. The Interpolation block
is about 80% of the total area for the 8 channels version of the
circuit while only occupies 58% of the circuit when moving to
the 64 channels version due to the increased complexity of the
remaining blocks. Among these, the area required by the Glue
block is negligible. With reference to the Defragmentation,
and Pack blocks, the largest area increase is due to the
Defragmentation block whose area increases with the square
of L (note that the Defragmentation block is composed by a
number of Defrag stages that linearly depends on L while the
dimension of each defrag stage also increases linearly with L).

TABLE III

COMBINATIONAL AND SEQUENTIAL LOGIC BREAKDOWN. ASIC
IMPLEMENTATION RESULTS IN 14NM FINFET GF TECHNOLOGY

The comparison with the area of the circuit proposed in [47]
is not simple since the actual proposal includes many more
blocks and channels. Table II shows the area per channel
of the proposed circuit (ranges from 2.5 to 4 times larger
than [47]). An interesting comparison is between the circuit
in [47] and the vcFIR circuit of Fig. 8 (since both carry out
similar processing) that shows that the increased pipelining
and the changes in the structure result in about 30% area
increase with no penalty on the working frequency.

The breakdown of combinational and sequential logic com-
position for the proposed circuit is in Table III. The use of
pipelining and the design for high working frequency result
in a massive use of flip-flops with a percentage of area
occupation for sequential elements that is around 70% and
is not dependent on the number of channels. When comparing
with [47], that uses 57% of the area for flip-flops, the proposed
circuit shows a higher share due to pipelining.

Power dissipation results follow the same trends as the
area occupation, as seen in Table IV. The largest circuit with
64 channels dissipates less than 1 mW. The most power-hungry
component is always the Interpolation block, even if its weight
decreases with the number of channels. With reference to the
rest of the circuit, when it comes to power, the defragmentation
is again the most critical block since its power requirement
increases with the square of the number of channels.

C. Circuit Scalability With Number of Input Bits

Conventional high-performance oscilloscopes are based on
8 bits ADC and aim at high sample rate and bandwidth since

4152 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

TABLE IV

POWER DISSIPATION. ASIC IMPLEMENTATION RESULTS IN 14NM FINFET GF TECHNOLOGY. DIFFERENT NUMBER OF CHANNELS ARE CONSIDERED

TABLE V

ASIC IMPLEMENTATION RESULTS IN 14NM FINFET GF TECHNOLOGY. DIFFERENT NUMBER OF CHANNELS AND BITS PER SAMPLE ARE CONSIDERED.
PERCENTAGES INDICATE THE WORSENING OF RESULTS WITH RESPECT TO 8-BIT SAMPLES

these parameters are of utmost importance in most applica-
tions. For those applications that benefit from measurements
with higher dynamic range (e.g., ultrasound range finder),
the market provides oscilloscopes that use 12 bit ADC, [51],
that provide sample rate up to 20GSps. For a larger number of
input bits oscilloscopes are not available and the user needs to
move towards digitizers with a sample rate up to 250 MSps,
[52], [53].

The circuit presented in the paper is easily scalable with
the number of input bits being mostly composed of blocks
that grow linearly or logarithmically with the number of
input bits. The only exceptions are the binary multipliers
in the vcFIR blocks (exploited for the linear interpolation),
but these can be easily pipelined to counteract the impact
of the number of input bits on the speed. Please note
that the interested reader can use the parametrizable HDL
code available at [50] to adapt the circuit to a particular
application.

Synthesis results using 12 bits input samples are shown
in Table V. The table shows the results for 4, 8, 16, and
64 channels at 12 bit compared, when possible, against the
8 bit version of the circuit. The 12bit circuits, yet at 4 channels,
provide a throughput higher than what is needed by the
high-end oscilloscope at 12 bits available today. In general,
moving from 8 to 12 bits (50% increase of the number of
bits) results in about 30% area increase, a reduction of the
maximum clock frequency that is below 20% (even if, as said
before, speed can be tailored to the application by careful
pipelining and retiming) and a power increase that ranges from
10% to 20%.

The synthesis results, that can also be further tailored to a
given application requiring certain speed or power, allow to
state that the circuit is tolerant to the increase of the number
of input bits.

V. CONCLUSION

A digital circuit able to downsample the output stream
of digitizers made up of several time interleaved ADCs,
like those adopted in modern high-performance DSOs, at an
almost arbitrary sample rate, has been proposed and demon-
strated in 14nm FinFET technology. The circuit implements
an additional option for the DSOs, that allows optimal usage
of memory resources, and is useful for specific applications
requiring fine selection of the sampling rate. The proposed
circuit has no impact on the capture rate and jitter performance
of DSO.

APPENDIX A
INITIALIZATION SIGNALS

An example clarifies the configuration stage and the update
of the time varying coefficient represented by signal a. Let us
assume a four-channel architecture, i.e. L = 4 and a chosen
resampling factor C = 0.8. During the configuration stage II-B
is used to calculate d = C−1 − 1 = 0.25.

Recalling that the current value of signal a is obtained
by decrementing by d the previous one, unless this one is
negative, in which case it is instead obtained incrementing by 1
the negative value, one can state that the first set of values,
namely a(kL +l) related to k = 0 with l ranging from 1 up
to L, are:

a(1) = 0

a(2) = a(1) − d = −0.25

a(3) = a(2) + 1 = 0.75

a(4) = a(3) − d = 0.50

In order to update the values a(kL +l) related to k > 0,
the circuit needs the parameter M = �L (1 − C)� = 1, the

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4153

threshold T H = [L − 1 − (M − 1)] d− (M − 1) = 0.75, the
increments inc_m = − (L − M + 1) d + M − 1 = −1 and
inc_M = − (L − M) d + M = 0.25 calculated using (7), (8),
(9), and (10). These increments are managed according to a
conditional instruction, identical for all channels, namely:

if a (kL + l) − T H ≥ 0
then a (kL + l + L) = a (kL + l) + inc_m

else {a (kL + l) − T H < 0}
a (kL + l) = a (kL + l) + inc_M

For instance, at time instant k = 1, for channels
l = 1,…, L, one obtains:

a(5) = 0.25, obtained using a(5) = a(1) + inc_M

a(6) = 0, obtained using a(6) = a(2) + inc_M

a(7) = −0.25, obtained using a(7) = a(3) + inc_m

a(8) = 0.75, obtained using a(8) = a(4) + inc_M.

After a(kL +l), l = 1, …, L are calculated, the cor-
responding outputs, y(kL +l), are determined interpolating
the input samples x(kL +l - 1) and x(kL +l). Each output
is labelled by means of a flag that turns high every time
the corresponding a(kL +l) is negative. The structured array,
formed by y(kL +l), l = 1, …,L and the related flags, is driven
to the defragmentation unit and to the pack unit as explained
in Section II.

APPENDIX B
RESOLUTION OF THE RESAMPLING FACTOR

The resolution of the resampling factor, C , depends on the
numerical representation of the configuration signals within
the circuit. All the configuration signals are calculated exploit-
ing an internal parameter defined as:

E = −d = 1 − C−1 (A1)

The circuit proposed in the paper represents the parame-
ter E , which is in the range [−1,0), using an 8 bits signal that
represents the fractional part of the number (and implies the
leading ones). The representation of E with 8 bits means that
there are 256 possible E values thus 256 possible C values in
the [0.5,1) range. Such values are not evenly spaced. The best
resolution is obtained for C close to 0.5 and is 0.97 × 10−3

while the worst resolution is obtained for C close to 1 and is
3.9 × 10−3.

A detailed derivation of the resolution of the resampling
factor C in the general case is given in the following. Assum-
ing an n-bit E signal, its resolution is constant and equal to
2−n , while its range is

[−1,−2−n
]
. The actual resampling

factor, C , is:
C = (1 − E)−1 (A2)

and: C ∈ [
1
/

2, 1
/ (

1 + 2−n
)] ∼ [

1
/

2, 1 − 2−n
]
. Thus, the

proposed circuit allows the user to choose between 256 dif-
ferent values for the resampling factor. Due to the non-linear
dependence between E and C the resolution of C , that is the
step between two consecutive possible values, is not constant.

It can be calculated as a function of the resolution of E :

|d (C)| =
∣∣∣∣d (C)

d (E)
d (E)

∣∣∣∣ =
∣∣∣∣∣
d (1 − E)−1

d (E)

∣∣∣∣∣ d (E) = 2−n

(1 − E)2

(A3)

• For E values close to 0, (resampling rates, C close to 1),
the resolution of C , is larger:

LargestCST E P = d (C) |E→0 = 2−n (A4)

• For E values close to -1, (resampling rates, C close to
0.5), the resolution of C , is relatively small:

SmallestCST E P = d (C) |E=−1 = 1

4
2−n. (A5)

A larger number of bits for the representation of E , results
in a very fine resolution of the resampling factor, but it is in
trade off with the complexity of the system.

REFERENCES

[1] M. Krauss, H. Thieme, H.-G. Schniek, and E. Wittig, “Fully-integrated 5
V CMOS system for a 20 M sample/s sampling oscilloscope,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 1996,
pp. 384–385, doi: 10.1109/ISSCC.1996.488727.

[2] S. Naboicheck and S. Ems, “5 GHz sampling oscilloscope front-
end based on heterojunction bipolar transistors (HBT),” in Proc. 15th
Annu. GaAs IC Symp., Oct. 1993, pp. 155–158, doi: 10.1109/GAAS.
1993.394480.

[3] J. Chou, J. Conway, G. Sefler, G. Valley, and B. Jalali, “150 GS/s real-
time oscilloscope using a photonic front end,” in Proc. Int. Topical
Meeting Microw. Photon. Jointly Held Asia–Pacific Microw. Photon.
Conf., Sep. 2008, pp. 35–38, doi: 10.1109/MWP.2008.4666628.

[4] H. Huawei and L. Xiaohong, “Design and implementation of network
communication module for non-OS DSO,” in Proc. 2nd Int. Conf. Com-
put. Eng. Technol., Apr. 2010, pp. V7-150–V7-153, doi: 10.1109/ICCET.
2010.5485301.

[5] P. Z. Csurcsia, A. Banovics, and I. Kollar, “Digital oscilloscope dis-
plays results together with confidence bounds,” in Proc. IEEE Int.
Symp. Intell. Signal Process., Aug. 2009, pp. 81–86, doi: 10.1109/
WISP.2009.5286576.

[6] X. Zhuang, Y. Zhao, and L. Wang, “The research and application of
sine interpolation in digital storage oscilloscope,” in Proc. IEEE Circuits
Syst. Int. Conf. Test. Diagnosis, Apr. 2009, pp. 1–3, doi: 10.1109/CAS-
ICTD.2009.4960897.

[7] J. Xiaochang and W. Jie, “An analog front end design for GSPS oscillo-
scope,” in Proc. 14th IEEE Int. Conf. Electron. Meas. Instrum. (ICEMI),
Nov. 2019, pp. 286–291, doi: 10.1109/ICEMI46757.2019.9101869.

[8] Y. Kuojun, P. Zhixiang, S. Jiali, and Y. Peng, “A fast baseline and
trigger level calibration method in digital oscilloscope,” in Proc. IEEE
Int. Instrum. Meas. Technol. Conf. (I2MTC), May 2019, pp. 1–6, doi:
10.1109/I2MTC.2019.8827158.

[9] K. Park and J. Park, “20 ps resolution time-to-digital converter for digital
storage oscilloscopes,” in Proc. IEEE Nucl. Sci. Symp. Conf. Rec., vol. 2,
Sep. 1998, pp. 876–881, doi: 10.1109/NSSMIC.1998.774310.

[10] Q. Duyu, T. Shulin, and P. Huiqing, “Design and realization of compen-
sation for one type of broadband acquisition channel,” in Proc. IEEE
10th Int. Conf. Electron. Meas. Instrum., Aug. 2011, pp. 212–216, doi:
10.1109/ICEMI.2011.6037890.

[11] Q. Duyu, T. Shulin, Z. Hao, and P. Huiqing, “Study on signal condition-
ing technology in 2GHz broadband digital oscilloscope,” in Proc. IEEE
11th Int. Conf. Electron. Meas. Instrum., Aug. 2013, pp. 342–346, doi:
10.1109/ICEMI.2013.6743069.

[12] D. Qiu, S. Tian, T. Feng, Z. Hao, and H. Wuhuang, “Design and
implementation of 500GSPS random equivalent sampling,” in Proc.
12th IEEE Int. Conf. Electron. Meas. Instrum. (ICEMI), Jul. 2015,
pp. 953–957, doi: 10.1109/ICEMI.2015.7494363.

http://dx.doi.org/10.1109/ISSCC.1996.488727
http://dx.doi.org/10.1109/MWP.2008.4666628
http://dx.doi.org/10.1109/CAS-ICTD.2009.4960897
http://dx.doi.org/10.1109/CAS-ICTD.2009.4960897
http://dx.doi.org/10.1109/ICEMI46757.2019.9101869
http://dx.doi.org/10.1109/I2MTC.2019.8827158
http://dx.doi.org/10.1109/NSSMIC.1998.774310
http://dx.doi.org/10.1109/ICEMI.2011.6037890
http://dx.doi.org/10.1109/ICEMI.2013.6743069
http://dx.doi.org/10.1109/ICEMI.2015.7494363
http://dx.doi.org/10.1109/GAAS.1993.394480
http://dx.doi.org/10.1109/GAAS.1993.394480
http://dx.doi.org/10.1109/ICCET.2010.5485301
http://dx.doi.org/10.1109/ICCET.2010.5485301
http://dx.doi.org/10.1109/WISP.2009.5286576
http://dx.doi.org/10.1109/WISP.2009.5286576

4154 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

[13] Y. Wanyu, Z. Yijiu, Y. Zhonghao, and L. Dan, “Design of random equiv-
alent sampling control module based on FPGA,” in Proc. 14th IEEE Int.
Conf. Electron. Meas. Instrum. (ICEMI), Nov. 2019, pp. 1027–1032, doi:
10.1109/ICEMI46757.2019.9101501.

[14] M. D’Apuzzo, M. D’Arco, and M. Vadursi, “A proposal for DSO
bandwidth extension through synchronous time interleaving,” in Proc.
IEEE Int. Instrum. Meas. Technol. Conf. Proc., May 2016, pp. 1–5, doi:
10.1109/I2MTC.2016.7520494.

[15] M. Vertregt, W. Rey, M. Boonen, J. Verhaegh, and W. Wiertsema,
“A 0.4 W mixed-signal digital storage oscilloscope processor with Moire
prevention, embedded 393 kb RAM and 50 M sample/s 8b ADC,”
in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers,
Feb. 1998, pp. 114–115, doi: 10.1109/ISSCC.1998.672396.

[16] Y. Zhao, X. Zhuang, and L. Wang, “The research and application of
random sampling in digital storage oscilloscope,” in Proc. IEEE Circuits
Syst. Int. Conf. Test. Diagnosis, Apr. 2009, pp. 1–3, doi: 10.1109/CAS-
ICTD.2009.4960896.

[17] M. D’Arco, M. Genovese, E. Napoli, and M. Vadursi, “Design and
implementation of a preprocessing circuit for bandpass signals acqui-
sition,” IEEE Trans. Instrum. Meas., vol. 63, no. 2, pp. 287–294,
Feb. 2014, doi: 10.1109/TIM.2013.2278564.

[18] M. D’Apuzzo and M. D’Arco, “A wide-band DSO architecture based on
three time interleaved channels,” J. Instrum., vol. 11, no. 8, Aug. 2016,
Art. no. P08003, doi: 10.1088/1748-0221/11/08/P08003.

[19] M. D’Apuzzo and M. D’Arco, “Sampling and time–interleaving strate-
gies to extend high speed digitizers bandwidth,” Measurement, vol. 111,
pp. 389–396, Dec. 2017, doi: 10.1016/j.measurement.2017.08.001.

[20] Z. Zou, J. Wu, G. Yang, Y. Bie, Y. Wang, and M. Zhou, “Design of sim-
ple oscilloscope and spectrum analysis system,” in Proc. IEEE 4th Inf.
Technol. Mechatronics Eng. Conf. (ITOEC), Dec. 2018, pp. 1662–1666,
doi: 10.1109/ITOEC.2018.8740670.

[21] H. Zhiqiang, F. Guonan, and Z. Jingzhi, “Design and implement of
the digital storage oscilloscope card based on VHDL,” in Proc. IEEE
10th Int. Conf. Electron. Meas. Instrum., Aug. 2011, pp. 346–349, doi:
10.1109/ICEMI.2011.6037747.

[22] W. Zibin and C. Changling, “Design of WBDSO control circuit with
state machine,” in Proc. Int. Conf. Commun., Circuits Syst., May 2005,
p. 1180, doi: 10.1109/ICCCAS.2005.1495318.

[23] F. Attivissimo, A. Di Nisio, N. Giaquinto, and M. Savino, “Measur-
ing time base distortion in analog-memory sampling digitizers,” IEEE
Trans. Instrum. Meas., vol. 57, no. 1, pp. 55–62, Jan. 2008, doi:
10.1109/TIM.2007.909600.

[24] Tektronix, Digital and Mixed Signal Oscilloscopes—MSO/DPO70000
Series Datasheet, document Lit. Num. 55W-23446-34, Apr. 2020.
[Online]. Available: www.tek.com

[25] (Aug. 7, 2021). Teledyne-Lecroy Wavemaster 8 Zi-B Oscilloscopes
4-30GHz DataSheet, Lit. Num. wm8zi-b-ds-21may19. [Online].
Available: http://cdn.teledynelecroy.com/files/pdf/wavemaster-8zi-b-
datasheet.pdf

[26] P. J. Pupalaikis et al., “Technologies for very high bandwidth real-
time oscilloscopes,” in Proc. IEEE Bipolar/BiCMOS Circuits Tech-
nol. Meeting (BCTM), Sep. 2014, pp. 128–135, doi: 10.1109/BCTM.
2014.6981299.

[27] J. Pickerd, DSP in High Performance Oscilloscope, docu-
ment Lit. Num. 55W-17589-0, Tektronix White Paper, 2004.

[28] P. Monsurrò, A. Trifiletti, L. Angrisani, and M. D’Arco, “Stream-
line calibration modelling for a comprehensive design of ATI-based
digitizers,” Measurement, vol. 125, pp. 386–393, Sep. 2018, doi:
10.1016/j.measurement.2018.04.099.

[29] J. Song, S. Tian, Y.-H. Hu, and P. Ye, “Digital iterative harmonic rejec-
tion and image cancellation for LPF-less frequency-interleaved analog-
to-digital converters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66,
no. 12, pp. 2072–2076, Dec. 2019, doi: 10.1109/TCSII.2019.2895341.

[30] G. Kim et al., “A 161-mW 56-Gb/s ADC-based discrete multitone wire-
line receiver data-path in 14-nm FinFET,” IEEE J. Solid-State Circuits,
vol. 55, no. 1, pp. 38–48, Jan. 2020, doi: 10.1109/JSSC.2019.2938414.

[31] Hulidan and W. Jinwei, “DSO-based signal reconstruction of time-
interleaved,” in Proc. Int. Conf. Commun., Circuits Syst., May 2008,
pp. 843–846, doi: 10.1109/ICCCAS.2008.4657901.

[32] B. Xu, Y. Zhou, and Y. Chiu, “A 23-mW 24-GS/s 6-bit voltage-
time hybrid time-interleaved ADC in 28-nm CMOS,” IEEE J. Solid-
State Circuits, vol. 52, no. 4, pp. 1091–1100, Apr. 2017, doi: 10.1109/
JSSC.2016.2642204.

[33] S. Cai, E. Z. Tabasy, A. Shafik, S. Kiran, S. Hoyos, and S. Palermo,
“A 25 GS/s 6b TI two-stage multi-bit search ADC with soft-decision
selection algorithm in 65 nm CMOS,” IEEE J. Solid-State Circuits,
vol. 52, no. 8, pp. 2168–2179, Aug. 2017.

[34] D.-S. Jo, B.-R.-S. Sung, M.-J. Seo, W.-C. Kim, and S.-T. Ryu,
“A 40-nm CMOS 7-b 32-GS/s SAR ADC with background chan-
nel mismatch calibration,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 67, no. 4, pp. 610–614, Apr. 2020, doi: 10.1109/TCSII.2019.
2916913.

[35] K. Sun, G. Wang, Q. Zhang, S. Elahmadi, and P. Gui, “A 56-GS/s 8-bit
time-interleaved ADC with ENOB and BW enhancement techniques in
28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 3, pp. 821–833,
Mar. 2019, doi: 10.1109/JSSC.2018.2884352.

[36] J.-W. Nam, M. Hassanpourghadi, A. Zhang, and M. S.-W. Chen, “A 12-
bit 1.6, 3.2, and 6.4 GS/s 4-b/Cycle time-interleaved SAR ADC with
dual reference shifting and interpolation,” IEEE J. Solid-State Circuits,
vol. 53, no. 6, pp. 1765–1779, Jun. 2018.

[37] M. Pisati et al., “A 243-mW 1.25–56-Gb/s continuous range PAM-
4 42.5-dB IL ADC/DAC-based transceiver in 7-nm FinFET,” IEEE
J. Solid-State Circuits, vol. 55, no. 1, pp. 6–18, Jan. 2020, doi:
10.1109/JSSC.2019.2936307.

[38] S. Gori and C. Narduzzi, “Application of a phase measurement algorithm
to digitizing oscilloscope characterization,” IEEE Trans. Instrum. Meas.,
vol. 49, no. 6, pp. 1211–1215, Dec. 2000.

[39] S. A. Khan, A. K. Agarwala, D. T. Shahani, and M. M. Alam, “Advance
oscilloscope triggering,” IEEE Trans. Instrum. Meas., vol. 56, no. 3,
pp. 944–953, Jun. 2007.

[40] R. Lapuh, B. Pinter, B. Voljc, Z. Svetik, and M. Lindic, “Digital
oscilloscope calibration using asynchronously sampled signal estima-
tion,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, pp. 2570–2577,
Jul. 2011.

[41] C. M. Wang, P. D. Hale, K. J. Coakley, and T. S. Clement, “Uncertainty
of oscilloscope timebase distortion estimate,” IEEE Trans. Instrum.
Meas., vol. 51, no. 1, pp. 53–58, Feb. 2002.

[42] C. M. Wang, P. D. Hale, and K. J. Coakley, “Least-squares estimation
of time-base distortion of sampling oscilloscopes,” IEEE Trans. Instrum.
Meas., vol. 48, no. 6, pp. 1324–1332, Dec. 1999.

[43] V. G. Ivchenko, A. N. Kalashnikov, R. E. Challis, and B. R. Hayes-Gill,
“High-speed digitizing of repetitive waveforms using accurate inter-
leaved sampling,” IEEE Trans. Instrum. Meas., vol. 56, no. 4,
pp. 1322–1328, Aug. 2007.

[44] Y. J. Zhao, Y. H. Hu, and H. J. Wang, “Enhanced random equivalent
sampling based on compressed sensing,” IEEE Trans. Instrum. Meas.,
vol. 61, no. 3, pp. 579–586, Mar. 2012.

[45] M. D’Arco, E. Napoli, and L. Angrisani, “A time base option for
arbitrary selection of sample rate in digital storage oscilloscopes,” IEEE
Trans. Instrum. Meas., vol. 69, no. 6, pp. 3936–3948, Jun. 2020, doi:
10.1109/TIM.2019.2939765.

[46] M. D’Arco, E. Napoli, and E. Zacharelos, “Digital circuit for the
arbitrary selection of sample rate in digital storage oscilloscopes,” in
Proc. Int. Conf. Appl. Electron. Pervading Ind., Environ. Soc., Pisa, Italy,
Sep. 2019, pp. 183–189, doi: 10.1007/978-3-030-37277-4_21.

[47] M. D’Arco, E. Napoli, and E. Zacharelos, “Digital circuit for seamless
resampling ADC output streams,” Sensors, vol. 20, no. 6, p. 1619,
Mar. 2020, doi: 10.3390/s20061619.

[48] S. Xu, X. Zou, B. Ma, J. Chen, L. Yu, and W. Zou, “Deep-learning-
powered photonic analog-to-digital conversion,” Light, Sci. Appl., vol. 8,
no. 1, pp. 1–11, Jul. 2019.

[49] M. Imani, E. R. Dougherty, and U. Braga-Neto, “Boolean Kalman filter
and smoother under model uncertainty,” Automatica, vol. 111, Jan. 2020,
Art. no. 108609.

[50] E. Napoli. Real-Time Downsampling in Digital Storage Oscillo-
scopes With Multichannel Architectures. Accessed: Feb. 2021, doi:
10.24433/CO.3482395.v1. [Online]. Available: https://codeocean.com/

[51] (Dec. 20, 2018). Teledyne-Lecroy WavePro HD Oscilloscopes 2.5-8GHz
DataSheet. [Online]. Available: http://cdn.teledynelecroy.com/files/pdf/
waveprohd-datasheet.pdf

[52] National Instruments PXIe-5622 150MS/s, 16-Bit PXI IF Digitizer,
document Lit. Num. 375023F-01, Dec. 2017. [Online]. Available:
https://www.ni.com/pdf/manuals/375023f.pdf

[53] (Jan. 26, 2021). Spectrum Instrumentation DN2.822-04 250MS/s Dig-
itizer. [Online]. Available: https://spectrum-instrumentation.com/sites/
default/files/download/dn2_82x_datasheet_english.pdf

http://dx.doi.org/10.1109/ICEMI46757.2019.9101501
http://dx.doi.org/10.1109/I2MTC.2016.7520494
http://dx.doi.org/10.1109/ISSCC.1998.672396
http://dx.doi.org/10.1109/CAS-ICTD.2009.4960896
http://dx.doi.org/10.1109/CAS-ICTD.2009.4960896
http://dx.doi.org/10.1109/TIM.2013.2278564
http://dx.doi.org/10.1088/1748-0221/11/08/P08003
http://dx.doi.org/10.1016/j.measurement.2017.08.001
http://dx.doi.org/10.1109/ITOEC.2018.8740670
http://dx.doi.org/10.1109/ICEMI.2011.6037747
http://dx.doi.org/10.1109/ICCCAS.2005.1495318
http://dx.doi.org/10.1109/TIM.2007.909600
http://dx.doi.org/10.1016/j.measurement.2018.04.099
http://dx.doi.org/10.1109/TCSII.2019.2895341
http://dx.doi.org/10.1109/JSSC.2019.2938414
http://dx.doi.org/10.1109/ICCCAS.2008.4657901
http://dx.doi.org/10.1109/JSSC.2018.2884352
http://dx.doi.org/10.1109/JSSC.2019.2936307
http://dx.doi.org/10.1109/TIM.2019.2939765
http://dx.doi.org/10.1007/978-3-030-37277-4_21
http://dx.doi.org/10.3390/s20061619
http://dx.doi.org/10.24433/CO.3482395.v1
http://dx.doi.org/10.1109/BCTM.2014.6981299
http://dx.doi.org/10.1109/BCTM.2014.6981299
http://dx.doi.org/10.1109/JSSC.2016.2642204
http://dx.doi.org/10.1109/JSSC.2016.2642204
http://dx.doi.org/10.1109/TCSII.2019.2916913
http://dx.doi.org/10.1109/TCSII.2019.2916913

NAPOLI et al.: REAL-TIME DOWNSAMPLING IN DSOs WITH MULTICHANNEL ARCHITECTURES 4155

Ettore Napoli (Senior Member, IEEE) received
the Ph.D. degree (Hons.) in electronic engineer-
ing in 1995, the Ph.D. degree in electronic engineer-
ing in 1999, and the Ph.D. degree (Hons.) in physics
in 2009.

He was a Research Associate with the Engineer-
ing Department, University of Cambridge, U.K.,
in 2004. Since 2020, he has been a Full Professor
with the University of Napoli Federico II. He has
authored or coauthored more than 100 articles pub-
lished in international journals and conferences. His

research interests include modeling and design of power semiconductor
devices and VLSI circuit design.

Efstratios Zacharelos received the B.S. degree in
physics and the M.S. degree in electronic physics
from Aristotle University, Thessaloniki, Greece,
in 2016 and 2019, respectively. He is currently
pursuing the Ph.D. degree in electronic engineering
with Federico II University, Naples, Italy.

Mauro D’Arco (Senior Member, IEEE) received
the Ph.D. degree (Hons.) in electronic engineering
in 1999, and the Ph.D. degree in electro-technical
engineering in 2003. He was the Coordinator of a
task force at DE-STI-ECE, CERN, where he has
been Unpaid Associate from 2010 to 2011 and a
Visiting Scientist at TE-MSC-MM in 2014. He is
currently an Associate Professor with the Univer-
sity of Napoli Federico II. His research interests
include the models for digital-to-analog converters,
the arbitrary waveform generators, and innovative
acquisition modes.

Antonio Giuseppe Maria Strollo (Senior Member,
IEEE) received the M.S. (Hons.) and Ph.D. degrees
in electronic engineering from the University of
Napoli Federico II, Italy. Since 2002, he has been
a Full Professor with the University of Napoli
Federico II, where he has been the Head of the
Department of Electronic and Telecommunication
Engineering from 2005 to 2008. He has published
more than 140 articles on international journals and
conferences. His research interest includes design
and analysis of digital VLSI circuits. From 2009 to

2012, he was an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS
AND SYSTEMS—I: REGULAR PAPERS. He is currently an Associate Editor
of Integration, the VLSI Journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

