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We prove the partial Hölder continuity for minimizers of quasiconvex functionals

F(u) : =

ˆ
Ω

f(x,u, Du) dx,

where f satisfies a uniform VMO condition with respect to the x-variable and is
continuous with respect to u. The growth condition with respect to the gradient
variable is assumed a general one.
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1. Introduction

In this paper we study the partial regularity of minimizers of the integral functional

F(u) : =
ˆ

Ω

f(x,u,Du) dx, (1.1)

where Ω ⊆ R
n is an open bounded set and u : Ω → R

N , with n, N � 2; i.e., we con-
sider vectorial minimizers of F . The growth conditions we impose on f = f(x,u,P)
are quite general, being as they permit ‘general growth condition’ with respect
to the gradient variable. This allows us to treat in a unified way the degenerate
(when p > 2) or singular (when p < 2) behaviour. We assume with respect to x a
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2 C. Goodrich, G. Scilla and B. Stroffolini

weak VMO condition, uniformly in (u,P), and continuity with respect to u. Our
main result, theorem 1.1, proves that a minimizer of (1.1) is locally Hölder con-
tinuous for any Hölder exponent 0 < α < 1; i.e., if u is a minimizer of (1.1), then
u ∈ C0,α

loc (Ω0,R
N ), where Ω0 ⊂ Ω is an open set of full measure specified in the

statement of theorem 1.1 later in this section.

1.1. Literature review

We begin by explaining how the study of functional (1.1) fits into the broader
regularity theory research over the past many years. Before proceeding further, we
point out that Mingione [35] has provided a comprehensive account of the various
areas of study within regularity theory for integral functionals and PDEs; it is an
excellent reference for those wishing to read a broad overview of the various areas
of interest within the larger realm of regularity theory.

As already mentioned we allow f to satisfy a VMO-type condition with respect
to x. More precisely the partial map x �→ (f(x,u,P))/(ϕ(|P|)) satisfies a uniform
VMO condition; here ϕ is an N -function—see condition (F4) later in this section for
the precise formulation. As a consequence we allow a certain controlled discontinu-
ous behaviour with respect to the spatial variable in the integrand of (1.1). We prove
partial Hölder continuity for the local minimizers. The first paper who considered
low order regularity (for variational integrals) was the one by Foss and Mingione
[23], where they were assuming continuity with respect to x and u. Thereafter
Kristensen and Mingione [29] proved Hölder continuity for convex integral func-
tionals with continuous coefficients for a fixed Hölder exponent depending on the
dimension and the growth exponent. Stronger assumptions as Dini-type conditions
[20] lead to partial C1-regularity. It is worth mentioning the uniform porosity of
the singular set for Lipschitzian minimizers of quasiconvex functionals [30].

The space of functions with vanishing mean oscillation (VMO) has been intro-
duced by Sarason in the realm of harmonic analysis, see [37]. It has had several
applications in connection with Hardy spaces, Riesz transforms or nonlinear com-
mutators, see [27, 39] and references therein. In the early 90s, Chiarenza, Frasca
and Longo [8] studied non-divergence form equations with VMO coefficients by
means of singular integrals operators, see also [18, 19].

The study of functionals satisfying a VMO-type condition has been broadened
considerably over the past couple decades, see [9, 38]. Recently, Bögelein, Duzaar,
Habermann and Scheven [5] considered a functional of the form (1.1) under the
assumption that (x,u,P) �→ f(x,u,P) satisfies a type of VMO assumption in x,
uniformly with respect to u and P; they further considered an analogous ellip-
tic system of the form ∇ · a(x,u,Du) = 0, in which, again, the coefficient a was
assumed to satisfy a VMO-type condition with respect to its spatial coordinate.
Moreover, the integral functional they studied was assumed to be quasi-convex.
However, unlike our study, they assumed that the growth of f with respect to P
was standard p-growth, p � 2.

Similarly, Bögelein [4] studied quasi-convex integral functionals in the vectorial
case. But the assumed growth of the integrand with respect to the gradient was
standard p-growth. It was also assumed that the map x �→ (f(x,u,P))/((1 + |P|)p)
was VMO, uniformly with respect to u and P. Bögelein, Duzaar, Habermann and
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 3

Scheven [6] made some similar assumptions when considering a system of PDEs
involving the symmetric part of the gradient Du, wherein the coefficients on the
symmetric part were VMO.

Goodrich [26] then further generalized, in part, the results of [5] by considering
(1.1) in the case where x �→ f(x,u,P) was VMO, uniformly with respect to u and
P, and, furthermore, in which f was only asymptotically convex.

Next, the study of problems with general growth conditions has been initi-
ated by Marcellini in a list of papers [32–34] and it is now very rich—see, e.g.,
[7, 10, 15–17, 40]. In particular, Marcellini and Papi proved the Lipschitz bound
for a solution of an elliptic system of Uhlenbeck type with general growth. In view
of comparison estimates, it is worth mentioning the paper [15], where the C1,α

regularity is proven via an excess decay estimate. Very recently, De Filippis and
Mingione have relaxed the hypotheses by considering also growth of exponential
type (no Δ2-condition) [11].

So, we see that many papers in recent years have treated either VMO-type coef-
ficient problems or general growth problems. To our knowledge, it seems that the
combination of these two generalities has not been considered as we do in this
paper. Thus, the results of this paper significantly generalize many of the previously
mentioned papers.

1.2. Strategy of the proof

We briefly explain the strategy of the proof of the main result. As a major
difficulty with respect to the proof by Bögelein or Duzaar et al. in the p-setting,
we can’t rely on homogeneity of the function ϕ. In particular, an analogue of the
Campanato excess

Ψα(x0, �) := �−αp −
ˆ

B�(x0)

|u − (u)x0,�|p dx

defined there and playing a key role in the iteration process could not be easily
handled in the Orlicz setting.

Our strategy is to find carefully the two quantities which play the role both in
the non-degenerate and in the degenerate cases. The first leading quantity is the
excess functional

Φ(x0, �) := −
ˆ

B�(x0)

ϕ|(Du)x0,�|(|Du − (Du)x0,�|) dx

(see (3.14)). In the non-degenerate case, when

Φ(x0, �) � ϕ(|(Du)x0,�|), (1.2)

we linearize the problem, via the A-harmonic approximation [17]. This procedure,
exploiting assumptions (F4)–(F5) and a freezing technique (with respect to the
variables x and u) based on the Ekeland variational principle, provides a comparison
map which is an almost minimizer of the frozen functional and whose gradient is
L1-close to that of the original minimizer (see lemma 3.8). Such comparison map
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4 C. Goodrich, G. Scilla and B. Stroffolini

is shown to be approximately A-harmonic, and this property is inherited by the
minimizer itself via the comparison estimate. This allows to prove an excess-decay
estimate, which, in turn, permits the iteration of the rescaled excess Φ(x0,�)

ϕ(|(Du)x0,�|)
and of a ‘Morrey-type’ excess

Θ(x0, �) := �ϕ−1

⎛⎜⎝ −
ˆ

B�(x0)

ϕ(|Du|) dx

⎞⎟⎠
at each scale. Namely, there exists ϑ ∈ (0, 1) such that, if the boundedness
conditions

Φ(x0, �)
ϕ(|(Du)x0,�|)

� ε∗ and Θ(x0, �) � δ∗

hold on some ball B�(x0), then

Φ(x0, ϑ
m�)

ϕ(|(Du)x0,ϑm�|) � ε∗ and Θ(x0, ϑ
m�) � δ∗

hold for every m = 0, 1, . . . .. Therefore, Θ(x0, �) is the adequate excess playing the
role of Ψα in our setting.

In the degenerate case, when

Φ(x0, �) � κϕ(|(Du)x0,�|) (1.3)

for some κ < 1, we perform a different linearization procedure: the assumption (F7)
coupled with an analogous freezing argument as before provides, now, the almost ϕ-
harmonicity of the minimizer via the application of the ϕ-harmonic approximation
[16] to the comparison map. The corresponding excess improvement implies that if
the excess is small at radius � it is also small at some smaller radius θ�, for θ < 1.
The key point in this iteration process is that the boundedness of both the excess Φ
and the Morrey excess Θ at some scale ϑθk0� (‘switching radius’) under assumption
(1.2) is satisfied exactly when the degenerate bound (1.3) fails and therefore we can
proceed the iteration in the non-degenerate regime. Notice that, if on the one hand
|(Du)x0,�| might blow up in the iteration since we cannot expect C1-regularity, on
the other hand the Morrey excess Θ(x0, θ

k�) stays bounded, exactly as it should be
for a C0,α-regularity result. In addition, if at level k0 the regime is non-degenerate,
the behaviour stays non-degenerate at any subsequent level k � k0, and the iteration
can proceed. The smallness of Θ at any level ensures Hölder continuity of u in x0

provided the excess functionals Φ and Θ are small at some initial radius � (actually,
this holds in a neighbourhood of x0, since these smallness conditions are open).
Finally, it is then proven that such a smallness condition on the excesses is indeed
satisfied on the complement of the set Σ1 ∪ Σ2 of theorem 1.1.

1.3. Assumptions and statement of the main result

We list here the main assumptions on the integral functional that we are going to
study throughout the paper. We assume that ϕ : [0,∞) → [0,∞) is an N -function
such that
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 5

(ϕ1) ϕ ∈ C1([0,∞)) ∩ C2((0,∞));

(ϕ2) 0 < μ1 − 1 � inft>0
tϕ′′(t)
ϕ′(t) � supt>0

tϕ′′(t)
ϕ′(t) � μ2 − 1, for suitable constants

1 < μ1 � μ2.

We may assume, without loss of generality, that 1 < μ1 < 2 < μ2.
For the precise notation and definitions, as well as the additional assumptions we

will require on ϕ, we refer to § 2.
We assume the integrand f : Ω × R

N × R
N×n → R, f = f(x,u,P) to be

Borel-measurable, such that the partial map P → f(·, ·,P) ∈ C1(RN×n) ∩
C2(RN×n\{0}). We will denote by Df and D2f the corresponding first and second
gradients, respectively, for fixed x and u. We require f to comply with the following
assumptions:

(F1) coercivity: there exists ν > 0 such that

νϕ(|P|) � f(x,u,P) − f(x,u,0)

uniformly in x ∈ Ω and u ∈ R
N , for every P ∈ R

N×n;

(F2) ϕ-growth conditions with respect to the P variable: there exists a constant
L > 0 such that

|Df(x,u,P)| � Lϕ′(|P|), |D2f(x,u,P)| � Lϕ′′(|P|),
uniformly in x ∈ Ω and u ∈ R

N , for every P ∈ R
N×n with |P| �= 0;

(F3) f is degenerate quasiconvex; i.e.,
ˆ
B

f(x,u,P +Dη(y)) − f(x,u,P) dy

� ν

ˆ
B

ϕ′′(μ+ |P| + |Dη(y)|) |Dη(y)|2 dy,

for every x ∈ Ω, u ∈ R
N , every ball B ⊂ Ω, P ∈ R

N×n and η ∈ C∞
0 (B,RN ),

μ � 0;

(F4) the function x �→ f(x,u,P)/ϕ(|P|) satisfies a VMO-condition, uniformly with
respect to (u,P):

|f(x,u,P) − (f(·,u,P))x0,r| � vx0(x, r)ϕ(|P|), for allx ∈ Br(x0)

where x0 ∈ Ω, r ∈ (0, 1] and P ∈ R
N×n and vx0 : R

n × [0, 1] → [0, 2L] are
bounded functions such that

lim
�→0

V(�) = 0, where V(�) := sup
x0∈Ω

sup
0<r��

−
ˆ

Br(x0)

vx0(x, r) dx,

and

(f(·,u,P))x0,r :=
1

|Br(x0)|
ˆ
Br(x0)

f(x,u,P) dx ;
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6 C. Goodrich, G. Scilla and B. Stroffolini

(F5) f is uniformly continuous with respect to the u variable; i.e.,

|f(x,u,P) − f(x,u0,P)| � Lω(|u − u0|)ϕ(|P|),
where ω : [0,∞) → [0, 1] is a nondecreasing, concave modulus of continuity;
i.e., limt↓0 ω(t) = ω(0) = 0.

(F6) the second derivatives D2f are Hölder continuous away from 0 with some
exponent β0 ∈ (0, 1) such that uniformly in (x,u) and for 0 < |P| � 1

2 |Q|

|D2f(x,u,P) −D2f(x,u,P + Q)| � c0 ϕ
′(|Q|) |Q|−β0 |P|β0 ;

(F7) the function P → Df(x,u,P) behaves asymptotically at 0 as the ϕ-Laplacian;
i.e.,

lim
t→0

Df(x,u, tP)
ϕ′(t)

= P,

uniformly in {P ∈ R
N×n : |P| = 1} and uniformly for all x ∈ Ω and u ∈ R

N .

Our main regularity result can be stated as follows. Note that the definition of
V appearing in Σ1 can be found in (2.3).

Theorem 1.1. Let Ω ⊂ R
n be an open bounded domain, ϕ a convex function sat-

isfying assumptions (ϕ1)–(ϕ3) and consider a minimizer u ∈W 1,ϕ(Ω,RN ) to the
functional (1.1) under assumptions (F1)–(F7). Then there exists an open subset
Ω0 ⊂ Ω such that

u ∈ C0,α
loc

(
Ω0,R

N
)

and |Ω \ Ω0| = 0

for every α ∈ (0, 1). Moreover, Ω \ Ω0 ⊂ Σ1 ∪ Σ2 where

Σ1 :=

⎧⎪⎨⎪⎩x0 ∈ Ω : lim inf
�↘0

−
ˆ

B�(x0)

|V|(Du)x0,�|(Du − (Du)x0,�)|2 dx > 0

⎫⎪⎬⎪⎭ ,

Σ2 :=

{
x0 ∈ Ω : lim sup

�↘0
|(Du)x0,�| = +∞

}
.

2. Preliminaries and basic results

2.1. Some basic facts on N–functions

We recall here some elementary definitions and basic results about Orlicz
functions. The following definitions and results can be found, e.g., in [1, 3, 28, 31].

A real-valued function ϕ : R
+
0 → R

+
0 is said to be an N -function if it is convex

and satisfies the following conditions: ϕ(0) = 0, ϕ admits the derivative ϕ′ and this
derivative is right continuous, non-decreasing and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for
t > 0, and limt→∞ ϕ′(t) = ∞.

We say that ϕ satisfies the Δ2-condition if there exists c > 0 such that for all t � 0
holds ϕ(2t) � c ϕ(t). We denote the smallest possible such constant by Δ2(ϕ). Since
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 7

ϕ(t) � ϕ(2t), the Δ2-condition is equivalent to ϕ(2t) ∼ ϕ(t), where ‘∼’ indicates the
equivalence between N -functions.

By Lϕ and W 1,ϕ we denote the classical Orlicz and Orlicz-Sobolev spaces, i. e.
f ∈ Lϕ if and only if

´
ϕ(|f |) dx <∞ and f ∈W 1,ϕ if and only if f,Df ∈ Lϕ. The

space W 1,ϕ
0 (Ω) will denote the closure of C∞

0 (Ω) in W 1,ϕ(Ω).
We define the function (ϕ′)−1 : R

+
0 → R

+
0 as

(ϕ′)−1(t) := sup{s ∈ R
+
0 : ϕ′(s) � t}.

If ϕ′ is strictly increasing, then (ϕ′)−1 is the inverse function of ϕ′. Then ϕ∗ : R
+
0 →

R
+
0 with

ϕ∗(t) :=
ˆ t

0

(ϕ′)−1(s) ds

is again an N -function and (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0. ϕ∗ is the Young-Fenchel-
Yosida conjugate function of ϕ. Note that ϕ∗(t) = supa�0(at− ϕ(a)) and (ϕ∗)∗ =
ϕ. When both ϕ and ϕ∗ satisfy Δ2-condition, by elementary convex analysis it is
easy to see that for all δ > 0 there exists cδ (only depending on Δ2(ϕ) and Δ2(ϕ∗))
such that for all t, a � 0 it holds that

at � δ ϕ(t) + cδ ϕ
∗(a).

Proposition 2.1. Let ϕ be an N -function complying with (ϕ1) and (ϕ2). Then

(i) it holds that

ϕ′(t) ∼ t ϕ′′(t) (2.1)

uniformly in t > 0. The constants in (2.1) are called the characteristics of ϕ;

(ii) it holds that

μ1 � inf
t>0

tϕ′(t)
ϕ(t)

� sup
t>0

tϕ′(t)
ϕ(t)

� μ2 ;

(iii) the mappings

t ∈ (0,+∞) → ϕ′(t)
tμ1−1

,
ϕ(t)
tμ1

and t ∈ (0,+∞) → ϕ′(t)
tμ2−1

,
ϕ(t)
tμ2

are increasing and decreasing, respectively;

(iv) as for the functions ϕ and ϕ′ applied to multiples of given arguments, the
following inequalities hold for every t � 0:

aμ2ϕ(t) � ϕ(at) � aμ1ϕ(t) and

aμ2−1ϕ′(t) � ϕ′(at) � aμ1−1ϕ′(t) if 0 < a � 1 ;

aμ1ϕ(t) � ϕ(at) � aμ2ϕ(t) and

aμ1−1ϕ′(t) � ϕ′(at) � aμ2−1ϕ′(t) if a � 1.
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8 C. Goodrich, G. Scilla and B. Stroffolini

In particular, from (iv) it follows that both ϕ and ϕ∗ satisfy the Δ2-condition
with constants Δ2(ϕ) and Δ2(ϕ∗) determined by μ1 and μ2. We will denote by
Δ2(ϕ,ϕ∗) constants depending on Δ2(ϕ) and Δ2(ϕ∗). Moreover, for t > 0 we have

ϕ(t) ∼ ϕ′(t) t, ϕ(t) ∼ ϕ′′(t) t2, ϕ∗(ϕ′(t)
) ∼ ϕ∗(ϕ(t)/t

) ∼ ϕ(t).

We recall also that the following inequalities hold for the inverse function ϕ−1:

a
1

μ1 ϕ−1(t) �ϕ−1(at) � a
1

μ2 ϕ−1(t) (2.2)

for every t � 0 with 0 < a � 1. The same result holds also for a � 1 by exchanging
the role of μ1 and μ2.

For given ϕ we define the associated N -function ψ by

ψ′(t) :=
√
ϕ′(t) t .

Notice that if ϕ satisfies assumption (2.1), then also ϕ∗, ψ and ψ∗ satisfy this
assumption.

Define V : R
N×n → R

N×n in the following way:

V(Q) = ψ′(|Q|) Q
|Q| . (2.3)

It is easy to check that

|V(Q)|2 ∼ ϕ(|Q|),
uniformly in Q ∈ R

N×n.
Another important set of tools are the shifted N -functions {ϕa}a�0 (see [12]).

We define for t � 0

ϕa(t) :=
ˆ t

0

ϕ′
a(s) ds with ϕ′

a(t) := ϕ′(a+ t)
t

a+ t
.

We have the following relations:

ϕa(t) ∼ ϕ′
a(t) t ;

ϕa(t) ∼ ϕ′′(a+ t)t2 ∼ ϕ(a+ t)
(a+ t)2

t2 ∼ ϕ′(a+ t)
a+ t

t2, (2.4)

ϕ(a+ t) ∼ [ϕa(t) + ϕ(a)]. (2.5)

The families {ϕa}a�0 and {(ϕa)∗}a�0 satisfy the Δ2-condition uniformly in a � 0.
The connection between V and ϕa (see [12]) is the following:

|V(P) − V(Q)|2 ∼ ϕ|P|(|P − Q|), (2.6)

uniformly in P,Q ∈ R
N×n. The following lemma (see [14, corollary 26]) deals with

the change of shift for N -functions.
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 9

Lemma 2.2. Let ϕ be an N -function with Δ2(ϕ),Δ2(ϕ∗) <∞. Then for any η > 0
there exists cη > 0, depending only on η and Δ2(ϕ), such that for all a,b ∈ R

d and
t � 0

ϕ|a|(t) � cηϕ|b|(t) + ηϕ|a|(|a − b|). (2.7)

We define the function Va : R
N×n → R

N×n for a � 0 by

Va(Q) :=
√
ϕ′
a(|Q|)|Q| Q

|Q| , (2.8)

where ϕa is the shifted N -function of ϕ. Since ϕ0 = ϕ, we retrieve in (2.8) the
function V for a = 0. With the following lemma, we list some properties of functions
Va which will be useful in the sequel.

Lemma 2.3. Let a � 0 and Va be as above. Then for any P,Q ∈ R
N×n a Young-

type inequality holds:

ϕ′
a(|Q|)|P| � c(|Va(Q)|2 + |Va(P)|2), (2.9)

where the constant c depends only on Δ2(ϕ).

Let P0,P1 ∈ R
N×n, θ ∈ [0, 1] and define Pθ := (1 − θ)P0 + θP1. Then the

following result holds (see [12, lemma 20]).

Lemma 2.4. Let ϕ be a N -function with Δ2(ϕ,ϕ∗) <∞. Then uniformly for all
P0,P1 ∈ R

N×n with |P0| + |P1| > 0 holds
ˆ 1

0

ϕ′(|Pθ|)
|Pθ| dθ ∼ ϕ′(|P0| + |P1|)

|P0| + |P1|
where the constants only depend on Δ2(ϕ,ϕ∗).

In view of the previous considerations, the same proposition holds true for the
shifted functions, uniformly in a � 0.

From assumption (F2) we can easily infer an upper bound for f(x,u,P) −
f(x,u,Q), uniformly in x ∈ Ω and u ∈ R

N , for every P,Q ∈ R
N×n; namely,

|f(x,u,P) − f(x,u,Q)| � |P − Q|
ˆ 1

0

|Df(x,u,P + t(Q − P))|dt

� L|P − Q|
ˆ 1

0

ϕ′(|P + t(Q − P)|) dt

� cLϕ(|P| + |Q|).

(2.10)

The following estimate is a consequence of (F2) and lemma 2.4 (see [17,
eq. (2.14)]):

|Df(x,u,P) −Df(x,u,Q)| � c(ϕ,L)ϕ′′(|P| + |Q|)|P − Q|
� c(ϕ,L)ϕ′

|P|(|P − Q|)

= c(ϕ,L)
ϕ′(|P| + |P − Q|)
|P| + |P − Q| |P − Q|,

(2.11)
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10 C. Goodrich, G. Scilla and B. Stroffolini

for every P,Q ∈ R
N×n.

The following version of Sobolev-Poincaré inequality can be found in [12,
lemma 7].

Theorem 2.5. Let ϕ be an N -function with Δ2(ϕ,ϕ∗) < +∞. Then there exist
numbers α = α(n,Δ2(ϕ,ϕ∗)) ∈ (0, 1) and K = K(n,N,Δ2(ϕ,ϕ∗)) > 0 such that
the following holds. If B ⊂ R

n is any ball with radius R and w ∈W 1,ϕ(B,RN ),
then

−
ˆ

B

ϕ

( |w − (w)B |
R

)
dx � K

⎛⎝−
ˆ

B

ϕα (|Dw|) dx

⎞⎠
1
α

, (2.12)

where (w)B := −
ˆ

B

w(x) dx. Moreover, if w ∈W 1,ϕ
0 (B,RN ), then

−
ˆ

B

ϕ

( |w|
R

)
dx � K

⎛⎝−
ˆ

B

ϕα (|Dw|) dx

⎞⎠
1
α

,

where K and α have the same dependencies as before.

2.2. Some useful lemmas

The following lemma, useful in order to re-absorb certain terms, is a variant of
the classical [25, lemma 6.1] (see [17, lemma 3.1]).

Lemma 2.6. Let ψ be an N -function with ψ ∈ Δ2, let � > 0 and h ∈ Lψ(B�(x0)).
Let g : [r, �] → R be nonnegative and bounded such that for all r � s < t � �

g(s) � θg(t) +A

ˆ
Bt(x0)

ψ

( |h(y)|
t− s

)
dy +

B

(t− s)β
+ C,

where A,B,C � 0, β > 0 and θ ∈ [0, 1). Then

g (r) � c(θ,Δ2(ψ), β)

[
A

ˆ
B�(x0)

ψ

( |h(y)|
�− r

)
dy +

B

(�− r)β
+ C

]
.

The following lemma is useful to derive reverse Hölder estimates. It is a variant
of the results by Gehring [24] and Giaquinta-Modica [25, theorem 6.6].

Lemma 2.7. Let B0 ⊂ R
n be a ball, f ∈ L1(B0), and g ∈ Lσ0(B0) for some σ0 > 1.

Assume that for some θ ∈ (0, 1), c1 > 0 and all balls B with 2B ⊂ B0

−
ˆ

B

|f |dx � c1

⎛⎝−
ˆ

2B

|f |θ dx

⎞⎠1/θ

+ −
ˆ

2B

|g|dx.
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 11

Then there exist σ1 > 1 and c2 > 1 such that g ∈ Lσ1
loc(B) and for all σ2 ∈ [1, σ1]⎛⎝−

ˆ

B

|f |σ2 dx

⎞⎠1/σ2

� c2 −
ˆ

2B

|f |dx+ c2

⎛⎝−
ˆ

2B

|g|σ2 dx

⎞⎠1/σ2

.

2.3. A-harmonic and ϕ-harmonic functions

Let A be a bilinear form on R
N×n. We say that A is strongly elliptic in the sense

of Legendre-Hadamard if for all ξ ∈ R
N , ζ ∈ R

n it holds that

κA|ξ|2|ζ|2 � 〈A(ξ ⊗ ζ)|(ξ ⊗ ζ)〉 � LA|ξ|2|ζ|2 (2.13)

for some LA � κA > 0. We say that a Sobolev function w on a ball B�(x0) is
A-harmonic on B�(x0) if it satisfies −div(ADw) = 0 in the sense of distributions;
i.e., ˆ

B�(x0)

〈ADw|Dψ〉dx = 0, for all ψ ∈ C∞
0 (B�(x0),RN ).

It is well known from the classical theory (see, e.g. [25, chapter 10]) that w is
smooth in the interior of B�(x0), and it satisfies the estimate

sup
B�/2(x0)

|Dw|2 + �2 sup
B�/2(x0)

|D2w|2 � c(n,N, ν, L) −
ˆ

B�(x0)

|Dw|2 dx. (2.14)

Let ϕ be an Orlicz function. We say that a map w ∈W 1,ϕ(B�(x0),RN ) is
ϕ-harmonic on B�(x0) (see [16]) if and only if

ˆ
B�(x0)

〈
ϕ′(|Dw|)
|Dw| Dw

∣∣∣∣Dψ〉 dx = 0, for all ψ ∈ C∞
0 (B�(x0),RN ).

More precisely, Dw and V(Dw) are Hölder continuous due to the following decay
estimate, see [15].

Proposition 2.8. Let ϕ be a convex function complying with (ϕ1), (ϕ2) and

(ϕ3)

ϕ′ is Hölder continuous off the diagonal:

|ϕ′′(s+ t) − ϕ′′(t)| � c0 ϕ
′′(t)

( |s|
t

)β0

, β0 > 0,

for all t > 0 and s ∈ R with |s| < 1
2
t.

Then there exist a constant c � 1 and an exponent γ0 ∈ (0, 1) depending only
on n,N and the characteristics of ϕ, such that the following statement holds true:
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12 C. Goodrich, G. Scilla and B. Stroffolini

whenever w ∈W 1,ϕ(BR(x0),RN ) is a weak solution of the system

div
(
ϕ′(|Du|)
|Du| Du

)
= 0 in BR(x0),

then for every τ ∈ (0, 1) there hold

sup
BτR/2(x0)

ϕ(|Dw|) � c

ˆ
−
BτR(x0)

ϕ(|Dw|) dx,

ˆ
−
BτR(x0)

|V(Dw) − (V(Dw))x0,τR|2 dx

� cτ2γ0

ˆ
−
BR(x0)

|V(Dw) − (V(Dw))x0,R|2 dx.

This result can be viewed as the Orlicz version of the milestone theorem of
Uhlenbeck [41] for differential forms solving a p-harmonic system, see also [2].

2.4. Harmonic type approximation results

We recall here two different harmonic type approximation results. The first one
is the A-harmonic approximation: given a Sobolev function u on a ball B, we want
to find an A-harmonic function w which is ‘close’ to the function u. It will be the
A-harmonic function with the same boundary values as u; i.e., a Sobolev function
w which satisfies {

−div(ADw) = 0 on B
w = u on ∂B

(2.15)

in the sense of distributions.
Setting z := w − u, then (2.15) is equivalent to finding a Sobolev function z

which satisfies {
−div(ADz) = −div(ADu) on B
z = 0 on ∂B

(2.16)

in the sense of distributions.
The following A-harmonic approximation result in the setting of Orlicz spaces

has been proved in [17, theorem 14].

Theorem 2.9. Let B ⊂⊂ Ω be a ball with radius rB and let B̃ ⊂ Ω denote either
B or 2B. Let A be a strongly elliptic (in the sense of Legendre-Hadamard) bilinear
form on R

N×n. Let ψ be an N-function with ψ ∈ Δ2(ψ,ψ∗) and let s > 1. Then
for every ε > 0, there exists δ > 0 only depending on n, N , κA, |A|, Δ2(ψ,ψ∗) and
s > 1 such that the following holds. Let u ∈W 1,ψ(B̃,RN ) be almost A-harmonic
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 13

on B in the sense that∣∣∣∣−ˆ
B

〈ADu|Dη〉dx
∣∣∣∣ � δ−

ˆ

B̃

|Du|dx‖Dη‖L∞(B) (2.17)

for all η ∈ C∞
0 (B,RN ). Then the unique solution z ∈W 1,ψ

0 (B,RN ) of (2.16)
satisfies

−
ˆ

B

ψ

( |z|
rB

)
dx+ −

ˆ

B

ψ(|Dz|) dx � ε

⎛⎜⎝(−
ˆ

B̃

(
ψ(|Du|))s dx

) 1
s

+ −
ˆ

B̃

ψ(|Du|) dx

⎞⎟⎠ .

Remark 2.10. We will exploit the previous approximation result in a slightly
modified version. Indeed, following [7, lemma 2.7], under the additional assumption

−
ˆ

B̃

ψ(|Du|) dx �

⎛⎜⎝−
ˆ

B̃

[ψ(|Du|)]s dx

⎞⎟⎠
1
s

� ψ(μ)

for some exponent s > 1 and for a constant μ > 0, and (2.17) replaced by∣∣∣∣−ˆ
B

〈ADu|Dη〉dx
∣∣∣∣ � δμ‖Dη‖L∞(B),

it can be seen with minor changes in the proof that the unique solution z ∈
W 1,ψ

0 (B,RN ) of (2.16) satisfies

−
ˆ

B

ψ

( |z|
rB

)
dx+ −

ˆ

B

ψ(|Dz|) dx � εψ(μ).

Now, moving on to ϕ-harmonic functions, the following ϕ-harmonic approxima-
tion lemma ([16, lemma 1.1]) is the extension to general convex functions of the
p-harmonic approximation lemma [21], [22, lemma 1], and allows to approximate
‘almost ϕ-harmonic’ functions by ϕ-harmonic functions.

Lemma 2.11. Let ϕ satisfy assumption (2.1). For every ε > 0 and θ ∈ (0, 1) there
exists δ > 0 which only depends on ε, θ, and the characteristics of ϕ such that
the following holds. Let B ⊂ R

n be a ball and let B̃ denote either B or 2B. If
u ∈W 1,ϕ(B̃,RN ) is almost ϕ-harmonic on a ball B ⊂ R

n in the sense that

−
ˆ

B

〈
ϕ′(|Du|)
|Du| Du

∣∣∣∣Dη〉 dx � δ

⎛⎜⎝−
ˆ

B̃

ϕ(|Du|) dx+ ϕ(‖Dη‖∞)

⎞⎟⎠ (2.18)
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14 C. Goodrich, G. Scilla and B. Stroffolini

for all η ∈ C∞
0 (B,RN ), then the unique ϕ-harmonic w ∈W 1,ϕ(B,RN ) with w = u

on ∂B satisfies ⎛⎝−
ˆ

B

|V(Du) − V(Dw)|2θ dx

⎞⎠
1
θ

� ε−
ˆ

B̃

ϕ(|Du|) dx, (2.19)

where V is as in (2.3).

The estimate (2.19) can be improved when ϕ(|Du|) satisfies a reverse Hölder
inequality as follows (see [7, corollary 2.10]).

Lemma 2.12. Let B ⊂ R
n be a ball. Let u ∈W 1,ϕ(2B,RN ) be such that⎛⎝−
ˆ

B

ϕs1(|Du|) dx

⎞⎠
1

s1

� c̃0 −
ˆ

2B

ϕ(|Du|) dx

for s1 > 1 and c̃0 > 0. Then for every ε ∈ (0, 1) there exists δ0 = δ0(n,N, μ1, μ2, s1,
c̃0, ε) > 0 such that the following holds: if u is almost ϕ-harmonic as in (2.18) with
δ0 in place of δ, then the unique ϕ-harmonic function w ∈W 1,ϕ(B,RN ) such that
w = u on ∂B satisfies

−
ˆ

B

|V(Du) − V(Dw)|2 dx � ε −
ˆ

2B

ϕ(|Du|) dx.

3. Partial regularity for functionals

3.1. Caccioppoli inequalities and higher integrability results

As usual, the first step in proving a regularity theorem for the minimizers of
integral functionals is to establish suitable Caccioppoli-type inequalities.

First, we state a ‘zero order’ Caccioppoli inequality. The proof is an adap-
tation to the ϕ-setting of [4, lemma 3.1], we then omit the details (see also
[7, theorem 2.4]).

Lemma 3.1. Let u ∈W 1,ϕ(Ω,RN ) be a minimizer of the functional (1.1), under
assumptions (F1)–(F2). Then, for every u0 ∈ R

N and x0 ∈ Ω and all 0 < � <
dist(x0, ∂Ω) and r ∈ [�/2, �) there holds

−
ˆ

Br(x0)

ϕ(|Du|) dx � c −
ˆ

B�(x0)

ϕ

( |u − u0|
�− r

)
dx

for some constant c = c(ϕ,L, ν) > 0.

From lemma 3.1 together with the Sobolev-Poincaré inequality (theorem 2.5) and
Gehring’s Lemma (lemma 2.7), one can infer in a standard way the following higher
integrability result (see, e.g., [7, theorem 2.5]).
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 15

Lemma 3.2. There exist an exponent s0 = s0(n,N, ϕ, L, ν) > 1 and a constant c
depending only on n,N, ϕ, L, ν such that, if u ∈W 1,ϕ(Ω; RN ) is a minimizer of
the functional (1.1), complying with (F1)–(F2), then the following holds: for every
s ∈ (1, s0], for any x0 ∈ Ω, any radius 0 < � < dist(x0, ∂Ω) and r ∈ [�/2, �), one
has

−
ˆ

Br(x0)

ϕs(|Du|) dx � c

(
�

�− r

)n(s−1)

⎛⎜⎝ −
ˆ

B�(x0)

ϕ(|Du|) dx

⎞⎟⎠
s

.

Another useful tool will be the following global higher integrability result on balls
for minimizers of (1.1), which has been proven in the Orlicz setting for more general
integrands in [10, lemma 4.3].

Lemma 3.3. Let u ∈W 1,ϕ(Br(x0),RN ) be such that ϕ(|Du|) ∈ Ls0(Br(x0),RN )
for some s0 > 1. Then there exists an exponent s = s(n,N, ϕ, L, ν, s0) ∈ (1, s0] and
a constant c = c(n,N, ϕ, L, ν) such that, if v ∈ u +W 1,ϕ

0 (Br(x0),RN ) is a mini-
mizer of the functional G[v] :=

´
Br(x0)

g(Dv) dx with a C1-integrand g : R
N×n → R

complying with the growth assumptions

νϕ(|ξ|) � g(ξ) � Lϕ(1 + |ξ|) and |Dg(ξ)| � Lϕ′(|ξ|)
for all ξ ∈ R

nN , then we have ϕ(|Dv|) ∈ Ls(Br(x0),RN ) and⎛⎜⎝ −
ˆ

Br(x0)

ϕs(|Dv|) dx

⎞⎟⎠
1
s

� c

⎛⎜⎝ −
ˆ

Br(x0)

ϕs0(|Du|) dx

⎞⎟⎠
1

s0

.

We have the following Caccioppoli inequality of second type for local minimizers
of (1.1), involving affine functions.

Lemma 3.4. There exists a constant c = c(n,N,Δ2(ϕ), ν, L) > 0 such that, if u ∈
W 1,ϕ(Ω; RN ) is a minimizer of the functional (1.1) under assumptions (F1)–(F7),
and � : R

n → R
N is an affine function, say �(x) := u0 + Q(x− x0) for some u0 ∈

R
N and Q ∈ R

N×n, then for any ball B�(x0) ⊆ Ω with � � �0 there holds

−
ˆ

B�/2(x0)

ϕ|Q|(|Du − Q|) dx

� c −
ˆ

B�(x0)

ϕ|Q|

( |u − �|
�

)
dx

+ cϕ(|Q|)

⎡⎢⎢⎣ω
⎛⎜⎝ −
ˆ

B�(x0)

|u − u0| + |u − �|dx

⎞⎟⎠
1− 1

s

+ [V(�)]1−
1
s

⎤⎥⎥⎦
for every s ∈ (1, s0] where s0 is that of lemma 3.2.
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16 C. Goodrich, G. Scilla and B. Stroffolini

Proof. We follow the argument of [4, lemma 3.5] for functionals with p-growth, just
mentioning how to obtain the analogous main estimates therein. We assume, with-
out loss of generality, that x0 = 0. For radii �

2 � r < τ < t � 3�
4 with τ := r+t

2 we
consider a cut-off function η ∈ C∞

0 (Bτ ; [0, 1]) such that η ≡ 1 on Br and |Dη| � 4
t−r

on Bτ . Correspondingly, we define the functions ξ := η(u − �) ∈W 1,ϕ(Bτ ; RN )
and ψ := (1 − η)(u − �) ∈W 1,ϕ(Bτ ; RN ). Note that �+ ξ = u −ψ. From the
quasi-convexity assumption (F3), (2.4) and simple manipulations we obtain

ˆ
Bτ

ϕ|Q|(|Dξ|) dx � c(ν, ϕ)
ˆ
Bτ

ϕ′′(|Q| + |Dξ|)|Dξ|2 dx

� c

ˆ
Bτ

[(f(·,u0,Q +Dξ(x)))τ − (f(·,u0,Q))τ ] dx

= c(J1 + J2 + J3 + J4 + J5 + J6 + J7),

(3.1)

where

J1 :=
ˆ
Bτ

[(f(·,u0,Du(x) −Dψ(x)))τ − (f(·,u0,Du(x)))τ ] dx,

J2 :=
ˆ
Bτ

[(f(·,u0,Du(x)))τ − (f(·,u(x),Du(x)))τ ] dx,

J3 :=
ˆ
Bτ

[(f(·,u(x),Du(x)))τ − f(x,u(x),Du(x))] dx,

J4 :=
ˆ
Bτ

[f(x,u(x),Du(x)) − f(x,u(x) − ξ(x),Du(x) −Dξ(x))] dx,

J5 :=
ˆ
Bτ

[f(x,u(x) − ξ(x),Q +Dψ(x)) − f(x,u0,Q +Dψ(x))] dx,

J6 :=
ˆ
Bτ

[f(x,u0,Q +Dψ(x)) − (f(·,u0,Q +Dψ(x)))τ ] dx,

J7 :=
ˆ
Bτ

[(f(·,u0,Q +Dψ(x)))τ − (f(·,u0,Q))τ ] dx.

Now, we proceed to estimate each term above separately. From the minimizing
property of u we infer that J4 � 0, and by assumptions (F5) and (F4) we obtain
the estimates

J2 �
ˆ
Bτ

ω(|u − u0|)ϕ(|Du|) dx,

J3 �
ˆ
Bτ

v0(·, τ)ϕ(|Du|) dx,

respectively. Again by exploiting property (F5), the monotonicity of ω and ϕ, and
the fact that

|ξ| � |u − �|, and |Dψ| � |Du − Q| + 4
∣∣∣∣u − �
t− τ

∣∣∣∣ ,
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 17

we can estimate J5 as

J5 � c(ϕ)
ˆ
Bτ

ω(|u − u0| + |u − �|)ϕ
(
|Q| + |Du| +

∣∣∣∣u − �
t− τ

∣∣∣∣) dx

� c(ϕ)
ˆ
Bτ

ω(|u − u0| + |u − �|)
[
ϕ(|Q| + |Du|) + ϕ

(∣∣∣∣u − �
t− τ

∣∣∣∣)] dx,

whence, taking into account that by virtue of (2.5),

ϕ

(∣∣∣∣u − �
t− τ

∣∣∣∣) � cϕ|Q|

(∣∣∣∣u − �
t− τ

∣∣∣∣)+ cϕ(|Q|)

� c(ϕ)
∣∣∣∣V|Q|

(∣∣∣∣u − �
t− τ

∣∣∣∣)∣∣∣∣2 + cϕ(|Q|)
(3.2)

and recalling that ω � 1, we get

J5 � c(ϕ)

(ˆ
Bτ

∣∣∣∣V|Q|

(∣∣∣∣u − �
t− τ

∣∣∣∣)∣∣∣∣2 dx

+
ˆ
Bτ

ω(|u − u0| + |u − �|)ϕ (|Q| + |Du|) dx
)
.

For what concerns J6, an analogous computation as for the estimate of J5 based
on (3.2) and the VMO assumption (F4) gives

J6 �
ˆ
Bτ

v0(·, τ)ϕ(|Q +Dψ|) dx

� c(Δ2(ϕ))

(ˆ
Bτ

∣∣∣∣V|Q|

(∣∣∣∣u − �
t− τ

∣∣∣∣)∣∣∣∣2 dx+
ˆ
Bτ

v0(·, τ)ϕ (|Q| + |Du|) dx

)
.

The terms J1 and J7 can be combined together as

J7 + J1 =
ˆ
Bτ

−
ˆ

Bτ

ˆ 1

0

〈Df(y,u0,Q + θDψ(x)) −Df(y,u0,Q)|Dψ(x)〉dθ dy dx

+
ˆ
Bτ

−
ˆ

Bτ

ˆ 1

0

〈Df(y,u0,Q) −Df(y,u0,Du(x)

− (1 − θ)Dψ(x))|Dψ(x)〉dθ dy dx

=: J ′
7 + J ′

1.
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18 C. Goodrich, G. Scilla and B. Stroffolini

From the Cauchy-Schwarz inequality, (2.11) and the fact that Dψ = 0 on Br we
infer

J ′
7 �
ˆ
Bτ

−
ˆ

Bτ

ˆ 1

0

|Df(y,u0,Q + θDψ(x)) −Df(y,u0,Q)||Dψ(x)|dθ dydx

� c

ˆ
Bτ

ˆ 1

0

ϕ′
|Q|(θ|Dψ(x)|)|Dψ(x)|dθ dx

� c

ˆ
Bτ

ϕ|Q|(|Dψ(x)|) dx � c

ˆ
Bτ\Br

|V|Q|(Dψ(x))|2 dx.

We can estimate J ′
1 analogously, by recalling that Du − (1 − θ)Dψ = Q +Dξ +

θDψ, Dψ = 0 on Br and applying the triangle inequality for ϕ′
|Q|, (2.11) and the

Young’s inequality (2.9). In this way we get

J ′
1 �
ˆ
Bτ

−
ˆ

Bτ

ˆ 1

0

|Df(y,u0,Q) −Df(y,u0,Du(x)

− (1 − θ)Dψ(x))||Dψ(x)|dθ dy dx

� c

ˆ
Bτ

ˆ 1

0

ϕ′
|Q|(|Dξ + θDψ|)|Dψ|dθ dx

� c

ˆ
Bτ

ϕ′
|Q|(|Dψ|)|Dψ|dx+ c

ˆ
Bτ

ϕ′
|Q|(|Dξ|)|Dψ|dx

� c

ˆ
Bτ\Br

(|V|Q|(Dψ)|2 + |V|Q|(Dξ)|2) dx.

Recalling the definitions of ξ and ψ, by a simple computation we find that

Dψ = (1 − η)(Du − Q) −Dη ⊗ (u − �),
Dξ = η(Du − Q) +Dη ⊗ (u − �),

whence
ˆ
Bτ\Br

(ϕ|Q|(|Dψ|) + ϕ|Q|(|Dξ|)) dx

� c

ˆ
Bτ\Br

ϕ|Q|(|Du − Q|) dx+ c

ˆ
Bτ

ϕ|Q|

(
u − �
t− r

)
dx,

so that combining with the previous estimates we get

J1 + J7 � c

(ˆ
Bτ\Br

|V|Q|(Du − Q)|2 dx+
ˆ
Bτ

∣∣∣∣V|Q|

(
u − �
t− r

)∣∣∣∣2 dx

)
.
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 19

Since ξ = u − � on Br and τ � �, from (3.1) and the estimates for J1 − J7 we obtain

ˆ
Br

|V|Q|(Du − Q)|2 dx

� c̃

(ˆ
Bτ\Br

|V|Q|(Du − Q)|2 dx+
ˆ
B�

∣∣∣∣V|Q|

(
u − �
t− r

)∣∣∣∣2 dx

)

+ c̃

ˆ
Bτ

(ω(|u − u0| + |u − �|) + v0(·, τ))ϕ(|Q| + |Du|) dx.

Now, in a standard way we ‘fill the hole’ thus obtaining

ˆ
Br

|V|Q|(Du − Q)|2 dx

� σ

ˆ
Bτ

|V|Q|(Du − Q)|2 dx+
ˆ
B�

∣∣∣∣V|Q|

(
u − �
t− r

)∣∣∣∣2 dx

+
ˆ
Bτ

(ω(|u − u0| + |u − �|) + v0(·, τ))ϕ(|Q| + |Du|) dx, (3.3)

where σ := c̃
c̃+1 < 1. In order to bound the latter term further, we exploit the higher

integrability result of lemma 3.2. Thus, with fixed s ∈ (1, s0], as a consequence of
Hölder’s inequality, the concavity of ω, the bounds ω � 1 and v0 � 2L, and Jensen’s
inequality also we obtain

ˆ
Bτ

(ω(|u − u0| + |u − �|) + v0(·, τ))ϕ(|Q| + |Du|) dx

� c|Bτ |

⎛⎜⎝−
ˆ

B�

ω(|u − u0| + |u − �|) s
s−1 dx+ −

ˆ

Bτ

v0(·, τ) s
s−1 dx

⎞⎟⎠
1− 1

s

×
⎛⎝−
ˆ

Bτ

ϕs(|Q|) + ϕs(|Du|) dx

⎞⎠
1
s

� cτn
(

t

t− r

)n(s−1)

⎡⎢⎢⎣ω
⎛⎜⎝−
ˆ

B�

|u − u0| + |u − �|dx

⎞⎟⎠
1− 1

s

+ V(τ)1−
1
s

⎤⎥⎥⎦
× −
ˆ

Bt

ϕ(|Q|) + ϕ(|Du|) dx
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20 C. Goodrich, G. Scilla and B. Stroffolini

� c

(
�

t− r

)n(s−1)

⎡⎢⎢⎣ω
⎛⎜⎝−
ˆ

B�

|u − u0| + |u − �|dx

⎞⎟⎠
1− 1

s

+ V(τ)1−
1
s

⎤⎥⎥⎦
× −
ˆ

B3�/4

ϕ(|Q|) + ϕ(|Du|) dx,

where c = c(n,N,Δ2(ϕ), ν, L). This estimate, combined with (3.3) gives

ˆ
Br

|V|Q|(Du − Q)|2 dx

� σ

ˆ
Bt

|V|Q|(Du − Q)|2 dx+ c

ˆ
B�

∣∣∣∣V|Q|

(
u − �
t− r

)∣∣∣∣2 dx

+ c

(
�

t− r

)n(s−1)

⎡⎢⎢⎣ω
⎛⎜⎝−
ˆ

B�

|u − u0| + |u − �|dx

⎞⎟⎠
1− 1

s

+ V(τ)1−
1
s

⎤⎥⎥⎦
× −
ˆ

B3�/4

ϕ(|Q|) + ϕ(|Du|) dx,

=: σ
ˆ
Bt

|V|Q|(Du − Q)|2 dx+ c

ˆ
B�

∣∣∣∣V|Q|

(
u − �
t− r

)∣∣∣∣2 dx+ c

(
�

t− r

)n(s−1)

U .

Now, since the previous estimate holds for arbitrary radii r, t such that �/2 �
r < t � 3�/4, the constant c depends only on n,N,Δ2(ϕ), ν, L and σ < 1, as a
consequence of lemma 2.6 applied with β := n(s− 1) we obtain

ˆ
B�/2

|V|Q|(Du − Q)|2 dx � c

ˆ
B�

∣∣∣∣V|Q|

(
u − �
�

)∣∣∣∣2 dx+ cU . (3.4)

In view of lemma 3.1 applied with � in place of t− s and from (3.2) we get

ˆ
B3�/4

ϕ(|Du|) dx � c

ˆ
B�

ϕ

(∣∣∣∣u − u0

�

∣∣∣∣) dx

� c

ˆ
B�

ϕ

(∣∣∣∣u − �
�

∣∣∣∣) dx+ cϕ(|Q|)

� c

[ˆ
B�

∣∣∣∣V|Q|

(
u − �
�

)∣∣∣∣2 dx+ ϕ(|Q|)
]
,
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 21

which combined with (3.4) and using the fact that ω � 1 as well as V(�) � 2L gives

ˆ
B�/2

|V|Q|(Du − Q)|2 dx

� c

ˆ
B�

∣∣∣∣V|Q|

(
u − �
�

)∣∣∣∣2 dx

+ c�nϕ(|Q|)

⎡⎢⎢⎣ω
⎛⎜⎝−
ˆ

B�

|u − u0| + |u − �|dx

⎞⎟⎠
1− 1

s

+ V(τ)1−
1
s

⎤⎥⎥⎦ ,
where c = c(n,N,Δ2(ϕ), ν, L). The Caccioppoli inequality then follows by taking
means on both sides of the latter inequality. �

We can apply lemma 3.4 to affine functions �x0,r(x) := (u)x0,� + Q(x− x0) for
some Q ∈ R

N×n, and the resulting Caccioppoli inequality can be compared with
that of [7, theorem 3.1]. We notice that, apart from an extra VMO term due to
assumption (F4), the dependence of the integrand f also on u implies that the
remainder term inside ω; i.e.,

R(x0, �,u,Q) := −
ˆ

B�(x0)

|u − (u)x0,�| + |u − �x0,�|dx (3.5)

is, in general, non-monotone in the radius �. Indeed, it can be estimated from above
by the Morrey-type excess

Θ(x0, �) := �ϕ−1

⎛⎜⎝ −
ˆ

B�(x0)

ϕ(|Du|) dx

⎞⎟⎠ , (3.6)

which fails to be monotone for small � (lemma 3.5(i)). This does not allow, in
general, for an application of Gehring’s lemma in order to infer an higher integra-
bility result: for this purpose, a suitable ‘smallness’ regime (3.9) has to be imposed
(lemma 3.5(ii)).

Lemma 3.5. Let �x0,� be an affine function as above, and R(x0, �,u, �x0,�) be defined
as in (3.5). Then

(i)

R(x0, �,u,Q) � cΘ(x0, �) + �|Q|. (3.7)

In particular, if Q = (Du)x0,�, we have

R(x0, �,u,Q) � cΘ(x0, �). (3.8)
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22 C. Goodrich, G. Scilla and B. Stroffolini

(ii) if the smallness assumption

−
ˆ

B�(x0)

ϕ|Q|(|Du − Q|) dx � Λϕ(|Q|) (3.9)

holds for some Λ ∈ (0, 1], then there exists a constant c = c(ϕ) > 0 such that⎛⎜⎝ −
ˆ

B�(x0)

|u − (u)x0,�|μ1 dx

⎞⎟⎠
1

μ1

� cΘ(x0, �) � c�(|Q|) ; (3.10)

hence

R(x0, �,u,Q) � c�(|Q|).

Proof. (i) First, from Poincaré inequality and Jensen’s inequality we obtain

ϕ

⎛⎜⎝ −
ˆ

B�(x0)

|u − (u)x0,�|
�

dx

⎞⎟⎠ � −
ˆ

B�(x0)

ϕ

( |u − (u)x0,�|
�

)
dx � c −

ˆ

B�(x0)

ϕ(|Du|) dx,

whence

−
ˆ

B�(x0)

|u − (u)x0,�|dx � cΘ(x0, �).

Then, recalling the definition of �x0,r, it is immediate to infer the estimate (3.7).
As for (3.8), it follows from (3.7) since �|(Du)x0,�| � cΘ(x0, �).

(ii) We note from (ϕ2) that ϕ(t1/μ1) is convex for t � 0. Applying Jensen’s
inequality, the Poincaré type estimate in theorem 2.5 and the change-shift formula
(2.7) with a = 0, and using assumption (3.9) , we obtain

ϕ

⎛⎜⎜⎝
⎛⎜⎝ −
ˆ

B�(x0)

[ |u − (u)x0,�|
�

]μ1

dx

⎞⎟⎠
1

μ1

⎞⎟⎟⎠
� −
ˆ

B�(x0)

ϕ

( |u − (u)x0,�|
�

)
dx � c −

ˆ

B�(x0)

ϕ(|Du|) dx

� c −
ˆ

B�(x0)

ϕ(|Du − Q|) dx+ cϕ(|Q|)

� c −
ˆ

B�(x0)

ϕ|Q|(|Du − Q|) dx+ cϕ(|Q|) � ϕ(c(|Q|)),

which yields (3.10) up to applying ϕ−1 to both sides. �
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 23

Now, we are in position to establish a ‘conditioned’ higher integrability result
for ϕ|Q|(|Du − Q|), under the smallness assumption (3.9). The result follows as a
consequence of Gehring’s lemma with increasing supports (lemma 2.7):

Corollary 3.6. If u ∈W 1,ϕ(Ω; RN ) is a minimizer of the functional (1.1) under
assumptions (F1)–(F7), and Q ∈ R

N×n is such that (3.9) holds for some Λ ∈ (0, 1],
then there exist a constant c = c(n,N,Δ2(ϕ), ν, L) > 0 and σ > 1 such that⎛⎜⎝ −

ˆ

B�/2(x0)

ϕσ|Q|(|Du − Q|) dx

⎞⎟⎠
1
σ

� c −
ˆ

B�(x0)

ϕ|Q|(|Du − Q|) dx+ cϕ(|Q|)
[
ω (�|Q|)1− 1

s + [V(�)]1−
1
s

]
(3.11)

holds for every s ∈ (1, s0] where s0 is that of lemma 3.2.

Proof. Let y ∈ Ω and r > 0 be such that B2r(y) ⊂⊂ B�(x0). In view of lemma 3.4
applied with � = 2r, x0 = y, u0 = (u)y,2r and an arbitrary Q, we obtain

−
ˆ

Br(y)

ϕ|Q|(|Du − Q|) dx � c −
ˆ

B2r(y)

ϕ|Q|

( |u − (u)y,2r − Q(x− y)|
2r

)
dx

+ cϕ(|Q|)
[
ω

⎛⎜⎝ −
ˆ

B2r(y)

|u − (u)y,2r| + |Q||x− y|dx

⎞⎟⎠
1− 1

s

+ V(2r)1−
1
s

]
.

(3.12)

Here, we observe that

−
ˆ

B2r(y)

|u − (u)y,2r| + |Q||x− y|dx � c −
ˆ

B2r(y)

|u − (u)y,2r|dx+ c|Q|r

� c

⎛⎜⎝ 1
�|Q| −

ˆ

B2r(y)

|u − (u)y,2r|dx+ 1

⎞⎟⎠ �|Q|,

which, recalling that ω(ct) � cω(t) when c � 1 since ω is concave and ω(0) = 0,
yields

ω

⎛⎜⎝ −
ˆ

B2r(y)

|u − (u)y,2r| + |Q||x− y|dx

⎞⎟⎠
1− 1

s

� c

⎛⎜⎝ 1
�|Q| −

ˆ

B2r(y)

|u − (u)y,2r|dx+ 1

⎞⎟⎠ω(�|Q|)1− 1
s .
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24 C. Goodrich, G. Scilla and B. Stroffolini

Moreover, as −́
B2r(y)

u − (u)y,2r − Q(x− y) dx = 0, by the Sobolev–Poincaré type
inequality (2.12),

−
ˆ

B2r(y)

ϕ|Q|

( |u − (u)y,2r − Q(x− y)|
r

)
dx � c

⎛⎜⎝ −
ˆ

B2r(y)

ϕα|Q|(|Du − Q|) dx

⎞⎟⎠
1
α

for some α ∈ (0, 1). Therefore, plugging the preceding two estimates into (3.12) and
taking into account that

−
ˆ

B2r(y)

|u − (u)y,2r|dx � 2 −
ˆ

B2r(y)

|u − (u)x0,�|dx,

we obtain

−
ˆ

Br(y)

ϕ|Q|(|Du − Q|) dx

� c

⎛⎜⎝ −
ˆ

B2r(y)

ϕα|Q|(|Du − Q|) dx

⎞⎟⎠
1
α

+ c
ϕ(|Q|)ω(�|Q|)1− 1

s

�|Q| −
ˆ

B2r(y)

|u − (u)x0,�|dx+ cϕ(|Q|)

×
[
ω (�|Q|)1− 1

s + V(�)1−
1
s

]
.

Now, since u − (u)x0,� ∈ Lμ1(B�(x0)), as a consequence of Gehring’s lemma there
exists σ = σ(n,N, μ1, μ2, ν, L) ∈ (1, μ1) such that⎛⎜⎝ −

ˆ

Bρ/2(x0)

ϕσ|Q|(|Du − Q|) dx

⎞⎟⎠
1
σ

� c −
ˆ

B�(x0)

ϕ|Q|(|Du − Q|) dx

+ c
ϕ(|Q|)ω(�|Q|)1− 1

s

�|Q|

⎛⎜⎝ −
ˆ

B�(x0)

|u − (u)x0,�|σ dx

⎞⎟⎠
1
σ

+ cϕ(|Q|)
[
ω (�|Q|)1− 1

s + V(�)1−
1
s

]
.

Finally, applying lemma 3.5 (ii), we obtain (3.11). �

We conclude this section by introducing the excess functional and other tools
useful in the sequel. Let Lx0,� : R

n → R
N be the affine function associated to u
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 25

defined as

Lx0,�(x) := (u)x0,� + Qx0,�(x− x0), (3.13)

where Qx0,� := (Du)x0,�. For x0 ∈ Ω and � ∈ (0,dist(x0, ∂Ω)), � � 1, we define the
excess functional as

Φ(x0, �) ≡ Φ(x0, �,Lx0,�) := −
ˆ

B�(x0)

ϕ|(Du)x0,�|(|Du − (Du)x0,�|) dx (3.14)

and

Ψ(x0, �) := −
ˆ

B�(x0)

ϕ

( |u − (u)x0,�|
�

)
dx. (3.15)

Moreover, we define also

H(x0, �) :=
1

1 + (2L)1−
1
s

(
[ω(�|(Du)x0,�|)]1−

1
s + [V(�)]1−

1
s

)
, (3.16)

and

H̃(x0, �) :=
1

1 + (2L)1−
1
s

(
[ω(Θ(x0, �))]1−

1
s + [V(�)]1−

1
s

)
, (3.17)

where s ∈ (1, s0] is the exponent of lemma 3.3 and Θ(x0, �) is the excess defined in
(3.6). Since ω � 1 and V(�) � 2L, we have that H(x0, �), H̃(x0, �) � 1, and

H(x0, �) � cH̃(x0, �)

as a consequence of lemma 3.5(i). Under the smallness assumption Φ(x0, �) �
Λϕ(|(Du)x0,�|), by virtue of lemma 3.5(ii) there exists a constant c̃ = c̃(ϕ) such
that

1
c̃
H̃(x0, �) � H(x0, �) � cH̃(x0, �).

We can rewrite the Caccioppoli inequality (3.11) as

Φ(x0, �/2) � cΦ(x0, �) + cϕ(|(Du)x0,�|)H(x0, �). (3.18)

Note also that by (2.6) and, e.g., [13, lemma A.2] we have the following equivalence:

Φ(x0, �) ∼ −
ˆ

B�(x0)

|V(Du) − V((Du)x0,�)|2 dx ∼ −
ˆ

B�(x0)

|V(Du) − (V(Du))x0,�|2 dx.

In the case x0 = 0, we will use the shorthands Φ(�), Ψ(�), Θ(�), H(�) and H̃(�)
in place of Φ(0, �), Ψ(0, �), Θ(0, �), H(0, �) and H̃(0, �), respectively.
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26 C. Goodrich, G. Scilla and B. Stroffolini

3.2. Comparison maps via Ekeland’s variational principle

The proof of the main results will require suitable comparison functions, which
will be constructed with a freezing argument in the variables (x,u) based on Eke-
land’s variational principle. We recall below a version of this classical tool, whose
proof can be found, e.g., in [25, theorem 5.6].

Lemma 3.7 (Ekeland’s principle). Let (X, d) be a complete metric space, and
assume that F : X → [0,∞] be not identically ∞ and lower semicontinuous with
respect to the metric topology on X. If for some u ∈ X and some κ > 0, there holds

F (u) � inf
X
F + κ,

then there exists v ∈ X with the properties

d(u, v) � 1 and F (v) � F (w) + κd(v, w) ∀w ∈ X.

Although a similar analysis in the Orlicz setting, for integrands f = f(x, ξ), has
been performed in [7, theorem 3.3], we will follow a quite different argument,
which refers to the case of p-growth as in [4, lemma 3.7]. We will also specify
the appropriate complete metric space X, which is not explicitly mentioned in
[7, theorem 3.3].

To this aim, let B�(x0) ⊆ Ω with � � �0 and set

g(ξ) ≡ gx0,�(ξ) := (f(·, (u)x0,�, ξ))x0,� for allξ ∈ R
N×n, (3.19)

and

K(x0, �) := H̃(x0, �)Ψ(x0, �) (3.20)

where H̃(x0, �) and Ψ(x0, �) are defined as in (3.17) and (3.15), respectively.
As for the complete metric space (X, d), following [36, lemma 4.4] we consider

X :=

⎧⎪⎨⎪⎩w ∈ u +W 1,1
0 (B�/2(x0)) : −

ˆ

B�/2(x0)

ϕ(|Dw|) dx � −
ˆ

B�/2(x0)

ϕ(|Du|) dx

⎫⎪⎬⎪⎭
with the metric

d(w1,w2) :=
1

c∗ϕ−1(K(�))
−
ˆ

B�/2(x0)

|Dw1 −Dw2|dx,

for w1,w2 ∈ u +W 1,1
0 (B�/2(x0),R

N ), and note that the functional

G[w] := −
ˆ

B�/2(x0)

g(Dw) dx in u +W 1,1
0 (B�/2(x0),RN ), (3.21)

is lower semicontinuous in the metric topology. We would get a comparison map
v ∈ u +W 1,1

0 (B�/2(x0),RN ) by proving the following lemma.
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 27

Lemma 3.8. Assume that u ∈W 1,ϕ(Ω,RN ) is a minimizer of the functional
(1.1), under assumptions (F1)–(F6). Then there exists a minimizer v ∈ u +
W 1,1

0 (B�/2(x0),RN ) of the functional

G̃[w] := −
ˆ

B�/2(x0)

g(Dw) dx+
K(x0, �)

ϕ−1(K(x0, �))
−
ˆ

B�/2(x0)

|Dv −Dw|dx,

that satisfies

−
ˆ

B�/2(x0)

|Dv −Du|dx � c∗ϕ−1(K(x0, �)) (3.22)

for some constant c∗ = c∗(n,N,Δ2(ϕ), ν, L). Moreover, v fulfils the following Euler-
Lagrange variational inequality:

∣∣∣∣∣∣∣ −
ˆ

B�/2(x0)

〈Dg(Dv)|Dη〉dx

∣∣∣∣∣∣∣ � K(x0, �)
ϕ−1(K(x0, �))

−
ˆ

B�/2(x0)

|Dη|dx (3.23)

for every η ∈ C∞
0 (B�/2(x0),RN ).

Proof. We may assume, without loss of generality, that x0 = 0 and, correspondingly,
we use the shorthand K(�) for K(0, �). As a first remark, we recall that from lemma
3.1 with r = 3

4� we have

−
ˆ

B3�/4

ϕ(|Du|) dx � c−
ˆ

B�

ϕ

( |u − (u)�|
�

)
dx = cΨ(�), (3.24)

where c = c(Δ2(ϕ), L, ν). We then denote by ṽ∈X a minimizer of the func-
tional (3.21) whose existence is ensured by the direct method under assumptions
(F1)–(F2). From the minimality of ṽ, assumption (F1) and (2.10) we get

−
ˆ

B�/2

ϕ(|Dṽ|) dx � 1
ν

−
ˆ

B�/2

g(Dṽ) − g(0) dx

� 1
ν

−
ˆ

B�/2

g(Du) − g(0) dx � c(ϕ)L
ν

−
ˆ

B�/2

ϕ(|Du|) dx.
(3.25)
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28 C. Goodrich, G. Scilla and B. Stroffolini

By the sublinearity of ϕ, the Poincaré inequality (theorem 2.5), Jensen’s inequality
and (3.24) this gives

ϕ

⎛⎜⎝ −
ˆ

B�/2

|ṽ − (u)�|
�

dx

⎞⎟⎠

� c

⎛⎜⎝ −
ˆ

B�/2

ϕ

( |ṽ − u|
�

)
dx+ −

ˆ

B�/2

ϕ

( |u − (u)�|
�

)
dx

⎞⎟⎠

� c

⎡⎢⎢⎣
⎛⎜⎝ −
ˆ

B�/2

ϕα(|Dṽ −Du|) dx

⎞⎟⎠
1
α

+

⎛⎜⎝ −
ˆ

B�/2

ϕα(|Du|) dx

⎞⎟⎠
1
α

⎤⎥⎥⎦
� c −
ˆ

B�/2

ϕ(|Dṽ|) + ϕ(|Du|) dx

� c −
ˆ

B�/2

ϕ(|Du|) dx,

whence

−
ˆ

B�/2

|ṽ − (u)�|dx � cΘ(�) (3.26)

where c = c(ϕ, n, L, ν). Moreover, as a consequence of the higher integrability results
of both lemmas 3.2 and 3.3, together with (3.25) and (3.24), we infer the higher
integrability result

⎛⎜⎝ −
ˆ

B�/2

ϕs(|Dṽ|) dx

⎞⎟⎠
1
s

� c −
ˆ

B3�/4

ϕ(|Du|) dx � cΨ(�), (3.27)

where c = c(n,N, ϕ, ν, L) and s = s(n,N, ϕ, ν, L) ∈ (1, s0].
Now we prove that u is an almost minimizer of the functional G. Indeed, from

the minimality of u and assumptions (F4), (F3) we get

−
ˆ

B�/2

f(x,u,Du) dx− G[ṽ] � −
ˆ

B�/2

f(x, ṽ,Dṽ) dx− G[ṽ]

= −
ˆ

B�/2

f(x, ṽ,Dṽ) − (f(·, ṽ,Dṽ))� dx
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+ −
ˆ

B�/2

(f(·, ṽ,Dṽ))� − (f(·, (u)�,Dṽ))� dx

� c(L) −
ˆ

B�/2

[v0(·, �) + ω(|ṽ − (u)�|)]ϕ(|Dṽ|) dx.

Then, by using Jensen’s inequality, the concavity and sub-linearity of ω, (3.26) and
(3.27), from the previous estimate we obtain

−
ˆ

B�/2

f(x,u,Du) dx− G[ṽ]

� c

⎡⎢⎢⎣ω
⎛⎜⎝ −
ˆ

B�/2

|ṽ − (u)�|dx

⎞⎟⎠
1− 1

s

+ [V(�)]1−
1
s

⎤⎥⎥⎦
⎛⎜⎝ −
ˆ

B�/2

ϕs(|Dṽ|) dx

⎞⎟⎠
1
s

� c
[
ω(Θ(�))1−

1
s + [V(�)]1−

1
s

]
Ψ(�) = cK(�), (3.28)

where c = c(n,N,Δ2(�), ν, L). Arguing similarly, we can estimate

G[u] − −
ˆ

B�/2

f(x,u,Du) dx = −
ˆ

B�/2

[(f(·, (u)�,Du))� − f(x, (u)�,Du)] dx

+ −
ˆ

B�/2

[f(x, (u)�,Du) − f(x,u,Du)] dx

� c
[
ω(Θ(�))1−

1
s + [V(�)]1−

1
s

]
Ψ(�) = cK(�), (3.29)

where the constant c has the same dependencies as before. Adding term by term
(3.28)–(3.29) and taking into account the minimality of ṽ, we infer

G[u] � G[ṽ] + c∗K(�) = min
u+W 1,1

0 (B�/2,RN )
G + c∗K(�),

for a constant c∗ = c∗(n,N,Δ2(ϕ), ν, L). Finally, Ekeland’s variational principle
(lemma 3.7) with the choice κ = c∗K(�) provides the existence of a function
v ∈ X with the desired property of minimality for the functional G̃ and such that
d(u,v) � 1, which corresponds to (3.22). The inequality (3.23) follows from the
validity of the associated Euler-Lagrange variational inequality for v in a standard
way. �

3.3. Approximate A-harmonicity and ϕ-harmonicity

In this section, we provide two different linearization strategies for the minimiza-
tion problem, along the lines of [4, section 3.2], where an analogous analysis has
been performed for functionals with p-growth. On the one hand, with lemma 3.9
we will show that the minimizer u of F is an almost A-harmonic function for a
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30 C. Goodrich, G. Scilla and B. Stroffolini

suitable elliptic bilinear form A. On the other hand, this u turns out to be an
almost ϕ-harmonic function (see lemma 3.10). These results will allow us to apply
the A-harmonic approximation lemma, respectively the ϕ-harmonic approximation
lemma. The proof will require, in both cases, the comparison maps obtained with
lemma 3.8.

We start by proving the approximate A-harmonicity of a minimizer to (1.1). To
this aim, only assumptions (F1)–(F6) are required on f .

Let Lx0,� be the affine function associated to u as in (3.13), which complies with
Lx0,�(x0) = (u)x0,� and DLx0,� = (Du)x0,� =: Qx0,�. We set

A :=
D2g((Du)x0,�)
ϕ′′(|(Du)x0,�|)

≡
(
D2f(·, (u)x0,�, (Du)x0,�)

)
x0,�

ϕ′′(|(Du)x0,�|)
.

We point out that A defined above is a bilinear form on R
N×n, satisfying the

ellipticity assumption (2.13) by virtue of (F2) and (F3).

Lemma 3.9. Let u ∈W 1,ϕ(Ω,RN ) be a minimizer of the functional (1.1), under
assumptions (F1)–(F6), and assume that for a ball B�(x0) ⊆ Ω the non-degeneracy
assumptions

Φ(x0, �) � ϕ(|(Du)x0,�|) and � � 1,

are satisfied. Then, u is approximately A-harmonic on the ball B�/2(x0), in the
sense that there exists β1 = β1(n,N, μ1, μ2, ν, L, β0) ∈ (0, 1

2 ) such that∣∣∣∣∣∣∣ −
ˆ

B�/2(x0)

〈A(Du − (Du)x0,�)|Dη〉dx

∣∣∣∣∣∣∣
� c|(Du)x0,�|‖Dη‖∞

⎧⎨⎩[H(x0, �)]β1 +
Φ(x0, �)

ϕ(|(Du)x0,�|)
+
(

Φ(x0, �)
ϕ(|(Du)x0,�|)

) 1+β0
2

⎫⎬⎭
(3.30)

holds for every η ∈ C∞
c (B�/2(x0),RN ) for some constant c = c(n,N, μ1, μ2, ν,

c0, L) > 0, where μ1, μ2 are the characteristics of ϕ and c0, β0 are the constants
of assumption (F6).

Proof. See [7, lemma 4.1]. �

If, in addition, f complies also with (F7), we can show that each local minimizer
of the functional F(u) (eq. (1.1)) is almost ϕ-harmonic.

For this, we preliminarily note (see [7, eq. (4.19)–(4.20)]) that assumption (F7)
implies the following:

for all δ > 0, exists σ = σ(δ) > 0 such that
∣∣∣∣Dg(P) − P

|P|ϕ
′(|P|)

∣∣∣∣ � δϕ′(|P|),
(3.31)
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 31

for every P ∈ R
N×n with 0 < |P| � σ, where the function g has been introduced

in (3.19).
We then have the following result.

Lemma 3.10. Let u ∈W 1,ϕ
loc (Ω,RN ) be a local minimizer of the functional

(1.1), and assume that f complies also with (F7). Then there exists β2 =
β2(n,N, μ1, μ2, c0, L) ∈ (0, 1

2 ) such that, for every δ > 0 and for σ = σ(δ) > 0 given
by (3.31), the inequality∣∣∣∣∣∣∣ −

ˆ

B�/2(x0)

〈
ϕ′(|Du|)
|Du| Du

∣∣∣∣Dη〉 dx

∣∣∣∣∣∣∣
� c

(
δ + [H̃(x0, �)]β2 +

ϕ−1(Ψ(x0, �))
σ

)⎛⎜⎝ −
ˆ

B�(x0)

ϕ(|Du|) dx+ ϕ(‖Dη‖∞)

⎞⎟⎠
holds for every η ∈ C∞

c (B�/2(x0),RN ) for some constant c = c(n,N, μ1, μ2, c0,
ν, L) > 0.

Proof. See [7, lemma 4.3]. �

3.4. Excess decay estimates: the non-degenerate regime

We start by establishing excess improvement estimates in the non-degenerate
regime characterized by (3.33) below, i.e. the fact that Φ(x0, �) � cϕ(|(Du)x0,�|).
The strategy of the proof is to exploit lemma 3.9 to approximate the given minimizer
by A-harmonic functions, for which suitable decay estimates are available from
theorem 2.9.

We introduce the hybrid excess functional

Φ∗(x0, �) := Φ(x0, �) + ϕ(|(Du)x0,�|)[H(x0, �)]β1 , (3.32)

where β1 is the exponent of lemma 3.9. Since β1 < 1/2 and H(x0, �) � 1, we deduce,
in particular, that H(x0, �) � [H(x0, �)]β1 . Thus, the Caccioppoli inequality (3.18)
can be re-read as

Φ(x0, �/2) � cΦ∗(x0, �),

where c = c(n,N, μ1, μ2, ν, L).

Lemma 3.11. For every ε ∈ (0, 1) there exist δ1, δ2 ∈ (0, 1], where δi =
δi(n,N, μ1, μ2, β0, ν, L, ε), i = 1, 2, with the following property: if

Φ(x0, �)
ϕ(|(Du)x0,�|)

� δ1 (3.33)

[H(x0, �)]β1 � δ2 (3.34)
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32 C. Goodrich, G. Scilla and B. Stroffolini

then the excess improvement estimate

Φ(x0, ϑ�) � cdecϑ
2
[
1 +

ε

ϑn+2

]
Φ∗(x0, �) (3.35)

holds for every ϑ ∈ (0, 1) for some constant cdec = cdec(n,N, μ1, μ2, ν, L, c1) > 0,
where Φ∗ is defined in (3.32).

Proof. The proof follows the argument of [7, lemma 4.2]. We emphasize that
corollary 3.6 is crucial in order to obtain the estimate⎛⎜⎝ −

ˆ

B�/2

[
ϕ|Q�|(|Du − Q�|)

ϕ(|Q�|)
]s0

dx

⎞⎟⎠
1

s0

� c

ϕ(|Q�|) −
ˆ

B�

ϕ|Q�|(|Du − Q�|) dx+ c[H(�)]β1

� c
Φ∗(�)
ϕ(|Q�|) ,

which comes into play in applying the A-harmonic approximation theorem in the
modified version of remark 2.10. �

Lemma 3.12. Let ϑ ∈ (0, 1), and assume that

Φ(x0, �)
ϕ(|(Du)x0,�|)

� ϑn

2μ2+1cμ2

, (3.36)

where cμ2 is the constant of the change of shift formula (2.7) with η = 1
2μ2+1 . Then

it holds that

|(Du)x0,�| � 2|(Du)x0,ϑ�|. (3.37)

Proof. As a consequence of (2.7) for η = 1
2μ2+1 and with (3.36) we get

ϕ(|(Du)x0,� − (Du)x0,ϑ�|) � −
ˆ

Bϑ�(x0)

ϕ(|Du − (Du)x0,�|) dx

� cμ2ϑ
−nΦ(x0, �) +

1
2μ2+1

ϕ(|(Du)x0,�|)

� 1
2μ2

ϕ(|(Du)x0,�|),

whence, passing to ϕ−1 and taking into account (2.2), we obtain

|(Du)x0,� − (Du)x0,ϑ�| � 1
2
|(Du)x0,�|.

Now,

|(Du)x0,�| � |(Du)x0,� − (Du)x0,ϑ�| + |(Du)x0,ϑ�| � 1
2
|(Du)x0,�| + |(Du)x0,ϑ�|,
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 33

whence (3.37) follows by re-absorbing the first term of the right-hand side into the
left. �

The excess-decay estimate (3.35) can be iterated, as the non-degeneracy con-
ditions (3.33)–(3.34) are also satisfied on any smaller ball Bϑm�(x0), m ∈ N,
ϑ < 1.

Lemma 3.13. Let Φ(x0, �) and Θ(x0, �) be defined as in (3.14) and (3.6), respec-
tively. Then there exist constants δ∗, ε∗, �∗ ∈ (0, 1] and ϑ such that the following
holds: if the conditions

Φ(x0, �)
ϕ(|(Du)x0,�|)

� ε∗ and Θ(x0, �) � δ∗. (3.38)

hold on B�(x0) ⊆ Ω for � ∈ (0, �∗], then

Φ(x0, ϑ
m�)

ϕ(|(Du)x0,ϑm�|) � ε∗ and Θ(x0, ϑ
m�) � δ∗ (3.39)

for every m = 0, 1, . . . .. As a consequence, for any α ∈ (0, 1) the following Morrey-
type estimate holds:

Θ(y, r) � cδ∗

(
r

�

)α
(3.40)

for all y ∈ B�/2(x0) and r ∈ (0, �/2].

Proof. As usual, we omit the explicit dependence on x0. Let ϑ ∈ (0, 1) be such that

ϑ � min
{

(6cdec2μ2)−
1
2 ,

1
2μ2

,
1

2
μ2

μ1(1−α)

}
, (3.41)

where cdec is the constant of lemma 3.11 depending only on n,N, μ1, μ2, ν, L, c0.
Correspondingly, let δi = δi(n,N, μ1, μ2, β0, ν, L, ϑ), i = 1, 2 be the constants of
lemma 3.11, applied with the choice ε = ϑn+2. We choose ε∗ > 0 such that

ε∗ � min

{
δ1
3
,
δ2
2
,

ϑn

max{2c 1
2
, 2μ2+1cμ2}

}
, (3.42)

where c 1
2

is the constant in the change-shift formula (2.7) with η = 1
2 , and we fix

the constant δ∗ > 0 so small that(
ω(δ∗)1−

1
s

1 + (2L)1−
1
s

)β1

< ε∗. (3.43)

Moreover, we choose a radius �∗ > 0 such that

�∗ � 1 and

(
V(�∗)1−

1
s

1 + (2L)1−
1
s

)β1

< ε∗. (3.44)

As a consequence, ε∗, δ∗ and �∗ have the same dependencies as δ1, δ2. In addition,
δ∗ depends also on ω, while �∗ also on ω and V.
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34 C. Goodrich, G. Scilla and B. Stroffolini

We argue by induction on m. Since (3.39) are trivially true for m = 0 by assump-
tion (3.38), our aim is to show that if (3.39) holds for some m � 1, then the
corresponding inequalities hold with m+ 1 in place of m. Setting

E(Bϑm�) := −
ˆ

Bϑm�

ϕ(|Du|) dx,

in order to prove the second inequalities in (3.39) it will suffice to show that

E(Bϑm�) � ϕ

(
δ∗
ϑm�

)
. (3.45)

We have, with (3.39) at step m, the shift-change formula (2.7) with η = 1
2 and

(3.42), the estimate

E(Bϑm+1�) � 2μ2−1

(
c 1

2
ϑ−nΦ(ϑm�) +

1
2
ϕ(|(Du)ϑm�|) + ϕ(|(Du)ϑm�|)

)
� 2μ2−1

(
c 1

2
ϑ−nΦ(ϑm�) +

3
2
E(Bϑm�)

)
� 2μ2−1

(
c 1

2
ϑ−nε∗ +

3
2

)
E(Bϑm�)

� 2μ2−1

(
c 1

2
ϑ−nε∗ +

3
2

)
ϑϕ

(
δ∗

ϑm+1�

)
� ϕ

(
δ∗

ϑm+1�

)
.

(3.46)

Now, we prove by induction the first inequality in (3.39) for m+ 1. From (3.39)
at step k and the choices of δ∗ and �∗ as in (3.43)–(3.44), we have

Φ(ϑm�)
ϕ(|(Du)ϑm�|) � ε∗ < 3ε∗ � δ1,

[H(ϑm�)]β1 < 2ε∗ � δ2,

and

Φ∗(ϑm�) = Φ(ϑm�) + ϕ(|(Du)ϑm�|)[H(ϑm�)]β1 � 3ε∗ϕ(|(Du)ϑm�|).

Then, by virtue of lemma 3.11 and lemma 3.12 applied with radius ϑm� in place of
�, and recalling the choice of ϑ (3.41), we get

Φ(ϑm+1�) � 2cdecϑ
2Φ∗(ϑm�) � 6cdecε∗ϑ2ϕ(|(Du)ϑm�|)

� ε∗ϕ(|(Du)ϑm+1�|).
Finally, since the iteration starting fromm= 0 of the estimate ϕ−1(E(Bϑm+1�)) �

2
μ2
μ1 ϕ−1(E(Bϑm�)), obtained by (3.46) and (2.2), with (3.41) yields

(ϑm�)1−αϕ−1(E(Bϑm�)) � �1−αϕ−1(E(B�)) � δ∗�−α,
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Partial regularity for Minimizers of Discontinuous Quasiconvex Integrals 35

and this estimate a fortiori holds if we consider E(Bϑm�(y)) for y ∈ B�/2 in place
of E(Bϑm�), we deduce the Morrey-type estimate

r1−αϕ−1(E(Br(y))) � cδ∗�−α

for all y ∈ B�/2 and r � �/2, which is equivalent to (3.40). The proof is now
concluded. �

3.5. Excess decay estimate: the degenerate regime

In this section, with lemma 3.14 we will establish an excess improvement estimate
for the degenerate case which is characterized by the fact that Φ(x0, �) is ‘large’
compared to ϕ(|(Du)x0,�|).

In view of lemma 3.10, this will be achieved via the ϕ-harmonic approxima-
tion lemma (lemma 2.11) which allows to approximate the original minimizer by
a ϕ-harmonic function. In this way, one can transfer the a priori estimates for
ϕ-harmonic functions (proposition 2.8) to the minimizer.

Lemma 3.14. Let γ0 > 0 be the exponent of proposition 2.8. Then, for every 0 <
γ < γ0 and every κ, μ ∈ (0, 1) there exist ε#, τ ∈ (0, 1) and �# ∈ (0, 1] depending
on n,N, μ1, μ2, c0, β0, L, ν, γ, γ0, μ and κ (ε# also depends on τ and σ(δ), where δ
satisfies (3.51) below, and �# also depends on ω and V) with the following property:
if

κϕ(|(Du)x0,�|) � Φ(x0, �) � ε# (3.47)

for B�(x0) ⊆ Ω with � ∈ (0, �#], then

Φ(x0, τ�) � τ2γΦ(x0, �) and Θ(x0, τ�) < μ. (3.48)

Proof. Without loss of generality, we assume that x0 = 0 and, correspondingly, we
use the abbreviations Φ(�) = Φ(0, �), Ψ(�) = Ψ(0, �), Θ(�) = Θ(0, �). Let 0 < γ <
γ0 be fixed, τ ∈ (0, 1

2μ2 ] to be specified later, and we set ε := τ2γ0+n. Furthermore,
let δ0 = δ0(n,N, ϕ, ν, L, ε) ∈ (0, 1] be the constant according to the ϕ-harmonic
approximation (lemma 2.11) with θ the exponent of higher integrability as in (2.19).

Now, we have to check that u complies with (2.18), in order to apply lemma 2.11.
From the Poincaré inequality, the shift change formula (2.7) with η = κ and (3.47)
we have

Ψ(�) � cP −
ˆ

B�

ϕ(|Du|) dx � 2μ2−1cP (cκ + 1 + κ−1)Φ(�) � cP c(κ, μ2)ε#, (3.49)

where c(κ, μ2) := 2μ2−1(cκ + 1 + κ−1) > 1. An analogous computation and the
concavity of ϕ−1 give

E(B�) := −
ˆ

B�

ϕ(|Du|) dx � ϕ

(
ϕ−1

(
c(κ, μ2)ε#

�

))

� ϕ

(
(c(κ, μ2))

1
μ1 ϕ−1(ε#)
�

)
,
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36 C. Goodrich, G. Scilla and B. Stroffolini

whence

Θ(�) � (c(κ, μ2))
1

μ1 ϕ−1(ε#) =: c̃(κ, μ1, μ2)ϕ−1(ε#). (3.50)

In applying lemma 3.10 we choose δ > 0 (which, in turn, determines σ = σ(δ) > 0
such that (3.31) holds) in such a way that

c∗δ � δ0
2
, (3.51)

where c∗ is the constant of lemma 3.10. Then, we choose ε# < 1 such that

ε# � min

{
1

cP c(κ, μ2)
ϕ

(
δ0σc∗

4

)
, ϕ

(
μ

c̃(κ, μ1, μ2)

)
,
τn

2c 1
2

ϕ(μ)

}
,

so that, with (3.49)–(3.50), we have

ϕ−1(Ψ(�))
σ

� δ0
4

and Θ(x0, �) � μ.

We also determine a radius �# ∈ (0, 1] according to[
ω(μ)1−

1
s + V(�#)1−

1
s

]β2

� δ0
4
,

where β2 is defined in lemma 3.10. Recalling the definition of H̃(�), for � � �# we
then have

[H̃(�)]β2 � δ0
4
.

For such choice of ε# and �# it holds that

c∗

(
δ + [H̃(�)]β2 +

ϕ−1(Ψ(�))
σ

)
� δ0,

so that, by lemma 2.11, there exists a unique ϕ-harmonic w ∈W 1,ϕ(B�/2,RN ) with
w = u on ∂B�/2 that satisfies⎛⎜⎝ −

ˆ

B�/2

|V(Du) − V(Dw)|2θ dx

⎞⎟⎠
1
θ

� τ2γ0+n −
ˆ

B�

ϕ(|Du|) dx,

and

−
ˆ

B�/2

ϕ(|Dw|) dx � c −
ˆ

B�/2

ϕ(|Du|) dx.

Taking into account the higher integrability result of lemma 3.2, lemma 2.12 implies
that

−
ˆ

B�/2

|V(Du) − V(Dw)|2 dx � τ2γ0+n −
ˆ

B�

ϕ(|Du|) dx, (3.52)
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and since τ < 1
2 , from proposition 2.8 we also have

ˆ
−
Bτ�

|V(Dw) − (V(Dw))τ�|2 dx � c τ2γ0

ˆ
−
B�/2

|V(Dw) − (V(Dw))�/2|2 dx.

(3.53)
Thus, with (3.52) and (3.53) we infer

Φ(τ�) � 4
ˆ
−
Bτ�

|V(Du) − (V(Dw))τ�|2 dx

� 8
ˆ
−
Bτ�

|V(Du) − V(Dw)|2 dx+ 8
ˆ
−
Bτ�

|V(Dw) − (V(Dw))τ�|2 dx

� cτ−n(τ2γ0+n) −
ˆ

B�

ϕ(|Du|) dx+ cτ2γ0

ˆ
−
B�/2

|V(Dw) − (V(Dw))�/2|2 dx

� c̃1τ
2γ0 −
ˆ

B�

ϕ(|Du|) dx

for some constant c̃1 = c̃1(n,N, μ1, μ2, c1) > 0. Now, by virtue of the computation
in (3.49) we conclude that

Φ(τ�) � c̃1c(κ, μ2)τ2γ0Φ(�),

whence (3.48) follows if we choose τ such that

τ �
(

1
c̃1c(κ, μ2)

) 1
2(γ0−γ)

.

As for the second assertion in (3.48), the shift change formula (2.7) for η = 1
2 , with

(3.47), (3.50) and the choice of ε# shows that

E(Bτ�) := −
ˆ

Bτ�

ϕ(|Du|) dx

� 2μ2−1

⎛⎜⎝c 1
2
τ−n −
ˆ

B�

ϕ|(Du)�|(|Du − (Du)�|) dx+
3
2
ϕ(|(Du)�|)

⎞⎟⎠
� 2μ2−1

(
c 1

2
τ−nΦ(�) +

3
2
E(B�)

)
� 2μ2−1

(
c 1

2
τ−nε# +

3
2
E(B�)

)
� 2μ2τϕ

(
μ

τ�

)
whence the assertion follows since τ � 1

2μ2 . �
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3.6. Proof of theorem 1.1

Lemma 3.15. Under the assumptions of theorem 1.1, let α ∈ (0, 1). Then there exist
constants ε#, δ∗ and �̃ such that the conditions

Φ(x0, �) < ε# and Θ(x0, �) < δ∗, (3.54)

for B�(x0) ⊆ Ω with � ∈ (0, �̃] imply

u ∈ C0,α(B�/2(x0)). (3.55)

Proof. Without loss of generality, we assume that x0 = 0 and, correspondingly, we
omit the dependence on it. Let ε∗, δ∗, ϑ ∈ (0, 1) and �∗ ∈ (0, 1] be the constants of
lemma 3.13. We then choose μ = δ∗ in lemma 3.14 leaving κ unchanged. This fixes
the constants ε#, τ and �#. We set �̃ := min{�∗, �#}.

We introduce the set of integers

S :=
{
k ∈ N0 : κϕ(|(Du)�|) � Φ(τk�)

}
,

and we distinguish between the cases S = N0 and S �= N0.
The case S = N0. We prove by induction that the bounds

Φ(τk�) < ε# and Θ(τk�) < δ∗ (3.56)

hold for every k ∈ N0. The case k = 0 is trivial from the assumption (3.54). Now,
since k ∈ S = N0, the assumption (3.47) of lemma 3.14 hold with τk� in place of �.
Then, an application of lemma 3.14 gives (3.56) for k + 1 (recall that τ < 1). The
validity of (3.56) implies, as in lemma 3.13, that the Morrey-type estimate

Θ(y, r) � cδ∗

(
r

�

)α
(3.57)

holds for every α ∈ (0, 1), for all y ∈ B�/2(x0) and r ∈ (0, �/2]. For y, z ∈ B�/2, with
|y − z| � �/4 we estimate the telescopic sum

|u(y) − u(z)|
|y − z| �

∑
j∈Z

1
2j

−
ˆ

Brj

|u(x) − (u)j |
|y − z| dx �

∑
j∈Z

1
2j

−
ˆ

Brj

|u(x) − (u)j |
rj

dx,

where Brj
:= B21−j |y−z|(y) for j � 0 and Brj

:= B21+j |y−z|(z) for j < 0. Now, with
the Poincaré inequality we get

|u(y) − u(z)|
|y − z| � c

∑
j∈Z

−
ˆ

Brj

|Du|dx

� c
∑
j∈Z

ϕ−1

⎛⎜⎝ −
ˆ

Brj

ϕ(|Du|) dx

⎞⎟⎠
� c

∑
j�0

Θ(y, 21−j |y − z|)
21−j |y − z| + c

∑
j<0

Θ(z, 21+j |y − z|)
21+j |y − z| .
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Finally, with the estimate (3.57) we infer

|u(y) − u(z)| � cδ∗|y − z|α�−α
⎛⎝∑
j�0

2(α−1)(1−j) +
∑
j<0

2(α−1)(1+j)

⎞⎠
� cδ∗|y − z|α�−α,

(3.58)

which, in particular, implies that u ∈ C0,α(B�/2).
The case S �= N0. In this case, there exists k0 := min N\S. Since k ∈ S for any

integer k < k0 we can iterate as in the case S = N0 for k = 0, 1, . . . , k0 − 1 to infer
that (3.56) holds for any k � k0. By the definition of S we have

Φ(τk0�) < κϕ(|(Du)�|),

which together with the second inequality in (3.56) with k = k0 ensures that the
assumptions (3.38) of lemma 3.13 are satisfied for � replaced by τk0�. Then, by
virtue of this lemma, we have

Φ(ϑmτk0�)
ϕ(|(Du)ϑmτk0�|)

� κ and Θ(ϑmτk0�) � δ∗ (3.59)

for every m ∈ N0.
Now, we consider an arbitrary radius r ∈ (0, �]. If r ∈ (τk0�/2, �] we find 0 � k �

k0 such that τk+1 � r � θk and then we can argue as in the case S = N0. In the
case r ∈ (0, τk0�/2], instead, we find m ∈ N0 such that ϑm+1τk0� < r � ϑmτk0�.
Then arguing as in the proof of (3.40) and taking into account the second estimate
in (3.59), we have

r1−αϕ−1(E(Br(y))) � c(ϑmτk0�)1−αϕ−1(E(Bϑmτk0�)) � cδ∗
(ϑmτk0�)α

for every y ∈ Bϑmτk0�/2 ⊆ B�/2 whence

Θ(y, r) � c
δ∗

(ϑmτk0)α

(
r

�

)α
.

At this point, we can argue as in the case S = N0 for the proof of (3.58), whence
(3.55) follows thus concluding the proof. �

Proof of theorem 1.1. Let ε#, δ∗ and �̃ be the constants of lemma 3.15. Let Σ1

and Σ2 be defined as in the statement of theorem 1.1. Note that, by Lebesgue’s
differentiation theorem, it holds that |Σ1 ∪ Σ2| = 0. Thus, we are reduced to show
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40 C. Goodrich, G. Scilla and B. Stroffolini

that each x0 ∈ Ω\(Σ1 ∪ Σ2) belongs to the set

Ω0 :=
{
z0 ∈ Ω : u ∈ C0,α(Uz0 ,R

N ) for every α ∈ (0, 1) and for some Uz0 ⊂ Ω
}
,

where Uz0 is an open neighbourhood of z0. For this, let x0 ∈ Ω be such that both
the conditions

lim inf
�↘0

−
ˆ

B�(x0)

|V|(Du)x0,�|(Du − (Du)x0,�)|2 dx = 0 and

mx0 := lim sup
�↘0

|(Du)x0,�| < +∞ (3.60)

hold.
We set

σ := min

{
1

cϕc 1
2
2μ2

ϕ (δ∗) ,
ε#
cϕ

}
, (3.61)

where the constants cϕ, c 1
2

are specified later and, correspondingly, with (3.60) we
can find a radius �̄ such that

�̄ � ϕ(δ∗)
3 · 2μ2+1ϕ(mx0 + 1)

(3.62)

and

−
ˆ

B�̄(x0)

|V|(Du)x0,�̄|(Du − (Du)x0,�̄)|2 dx � σ and |(Du)x0,�̄| � mx0 + 1.

(3.63)
Now, recalling that

Φ(x0, �̄) � cϕ −
ˆ

B�̄(x0)

|V|(Du)x0,�̄|(Du − (Du)x0,�̄)|2 dx

and observing that, as a consequence of the shift-change formula (2.7) with η =
1
2
,

conditions (3.63) imply

−
ˆ

B�̄(x0)

ϕ(|Du|) dx

� 2μ2−1

⎛⎜⎝c 1
2
cϕ −
ˆ

B�̄(x0)

|V|(Du)x0,�̄|(Du − (Du)x0,�̄)|2 dx+
3
2
ϕ(|(Du)x0,�̄|)

⎞⎟⎠
� 2μ2−1

(
c 1

2
cϕσ +

3
2
ϕ(mx0 + 1)

)
� 1

2
ϕ(δ∗) +

1
2�̄
ϕ(δ∗) � ϕ

(
δ∗
�̄

)
,
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with the choice of σ (3.61), corresponding to the radius �̄ ∈ (0, �̃] as in (3.62) there
holds

Φ(x0, �̄) < ε# and Θ(x0, �̄) < δ∗.

By the absolute continuity of the integral, we can find an open neighbourhood Ux0

of x0 such that

Φ(x, �̄) < ε# and Θ(x, �̄) < δ∗

for every x ∈ Ux0 . We can apply lemma 3.15 at each point of Ux0 , proving that u ∈
C0,α(Ux0 ,R

N ) for every α ∈ (0, 1). Thus, x0 ∈ Ω0 and the proof is concluded. �
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9 J. Danéćek and E. Viszus. C0, γ-regularity for vector-valued minimizers of quasilinear
functionals with VMO-coefficients. Mediterr J. Math. 12 (2015), 1287–1305.

10 C. De Filippis. On the regularity of the ω-minima of ϕ-functionals. Nonlinear Anal. 194
(2020), 111464.

11 C. De Filippis and G. Mingione. On the regularity of minima of non-autonomous functionals.
J. Geom. Anal. 30 (2020), 1584–1626.

12 L. Diening and F. Ettwein. Fractional estimates for non-differentiable elliptic systems with
general growth. Forum Math. 20 (2008), 523–556.
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