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Abstract

A new dissimilarity measure for cluster analysis is presented and used in the context of probabilistic distance (PD) cluster-

ing. The basic assumption of PD-clustering is that for each unit, the product between the probability of the unit belonging to 

a cluster and the distance between the unit and the cluster is constant. This constant is a measure of the classiiability of the 

point, and the sum of the constant over units is called joint distance function (JDF). The parameters that minimize the JDF 

maximize the classiiability of the units. The new dissimilarity measure is based on the use of symmetric density functions 

and allows the method to ind clusters characterized by diferent variances and correlation among variables. The multivariate 

Gaussian and the multivariate Student-t distributions have been used, outperforming classical PD clustering, and its variation 

PD clustering adjusted for cluster size, on simulated and real datasets.

Keywords Cluster analysis · PD-clustering · Multivariate distributions · Dissimilarity measures

Introduction

Cluster analysis refers to a wide range of numerical meth-

ods aiming to ind distinct groups of homogeneous units. 

Clustering in two or three dimensions is a natural task that 

humans can often do visually; however, machine approaches 

are needed for all but such low dimensions. We focus on 

partitioning clustering methods; given a number of clus-

ters K, partitioning methods assign units to the K clusters 

optimizing a given criterion. These methods are generally 

divided into not model-based and model-based, according 

to the distributional assumptions. Model-based clustering or 

inite mixture model clustering assumes that the population 

probability density function is a convex linear combination 

of a inite number of density functions; accordingly, they are 

very well suited to clustering problems. A variety of meth-

ods and algorithms have been proposed for inite mixture 

model parameter estimation. The most widely used strategy 

is to ind the parameters that maximize the complete-data 

likelihood function using the expectation-maximization 

(EM) algorithm, which was proposed in 1977 [10] building 

on prior work (e.g., [5, 7, 23, 24]). The non-model-based 

methods generally optimize a criterion based on distance 

or dissimilarity measures. Diferent dissimilarity measures 

can be used based on the type of data, in this paper we focus 

on continuous data.

Formally, let us consider an n × J data matrix � , with 

generic row vector x
i
= (x

i1,… , x
iJ
) . Partitioning algorithms 

aim to ind a set of K clusters, C
k
 , with k = 1,… , K , such 

that the elements inside a cluster are homogeneous and 

C1 ∪ C2 ∪⋯ ∪ C
K
= X . If, for any pair {k, k�} ∈ 1,… , K  , 

C
k
∩ C

k�
= � , then the clustering technique is called hard or 

crisp, otherwise it is called fuzzy or soft. In the latter case, 

each unit can belong to more than one cluster with certain 

membership degree.

The most frequently used non-model-based methods for 

continuous data are k-means [20] and its fuzzy analogue 

c-means [4], which minimize the sum of the within groups 

sum of squares over all variables. In spite of their simplicity, 

the optimal solution can only be found applying an itera-

tive intuitively reasonable procedure. More recently, [3] 

proposed probabilistic distance (PD) clustering, a distribu-

tion free fuzzy clustering technique (i.e., non-model-based), 
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where the membership degree is deined as heuristic proba-

bility. PD clustering optimization problems represents a spe-

cial case of the Weber–Fermat’s problem, when the number 

of the ‘attraction points’ is greater or equal to three, see [16] 

among others. In this framework, PD clustering assumes 

that the product of the probability of a point belonging to 

a cluster and the distance of the point from the center of 

the cluster is constant, and this constant is a measure of the 

classiicability of the point. The method obtains the centers 

that maximize the classiicability of all the points. A newer 

version of the algorithm that considers clusters of diferent 

size, PDQ-clustering, was proposed by [14] and an extension 

for high-dimensional data was proposed by [35, 36].

Generally, non-model-based clustering techniques are only 

based on the distances between the points and the centers; 

therefore, they do not take into account the shape and the size of 

the clusters. Accordingly, these techniques may fail when clus-

ters are either non-spherical or spherical with diferent radii. To 

overcome this issue we propose a new dissimilarity measure 

based on symmetric density functions that have the advantage 

of considering the variability and the correlation among the 

variables. We use two diferent density functions, the multi-

variate Gaussian and the multivariate Student-t, but it could 

be extended to other symmetric densities. We then integrate 

this measure with PD-clustering and obtain new more lexible 

clustering techniques. Preliminary results can be found in [29].

After a background section on PD-clustering and PDQ-

clustering, Sect. "Background", we introduce the new dis-

similarity measure and the new techniques, Sect. "Flexible 

Extensions of PD-Clustering". We then compare them with 

some model-based and distance-based algorithms on simu-

lated and real datasets, Sect. Empirical Evidence from Simu-

lated and Real Data.

Background

In this section we briely introduce PD-clustering [3], a 

distance-based soft clustering algorithm, and its extension, 

PD-clustering adjusted for cluster size [14].

Probabilistic Distance Clustering

Ben-Israel and Iyigun [3] proposed a non-hierarchical dis-

tance-based clustering method, called probabilistic distance 

(PD) clustering. They then extended the method to account 

for clusters of diferent size, i.e., PDQ [14]. Tortora et al. 

[35] proposed a factor version of the method to deal with 

high-dimensional data. Recently, [29] further extended the 

method to include more lexibility.

In PD-clustering, the number of clusters K is assumed to 

be a priori known, and a wide review on how to choose K can 

be found in [8]. Given some random centers, the probability 

of any point belonging to a cluster is assumed to be inversely 

proportional to the distance from the center of that cluster [13]. 

Suppose we have a data matrix � with N units and J variables, 

and consider K (non-empty) clusters. PD-clustering is based 

on two quantities: the distance of each data point x
i
 from each 

cluster centre �
k
 , denoted d(x

i
, �

k
) , and the probability of each 

point belonging to a cluster, i.e., p(xi, �k) , for k = 1,… , K and 

i = 1,… , N.

For convenience, deine pik∶=p(xi, �k) and d
ik
∶=d(x

i
, �

k
) . 

PD-clustering is based on the principle that the product of 

the distances and the probabilities is a constant depending 

only on x
i
 [3]. Denoting this constant as F(xi) , we can write 

this principle as

where F(xi) depends only on x
i
 , i.e., F(xi) does not depend 

on the cluster k. As the distance from the cluster centre 

decreases, the probability of the point belonging to the 

cluster increases. The quantity F(xi) is a measure of the 

closeness of x
i
 to the cluster centres, and it determines the 

classiicability of the point x
i
 with respect to the centres �

k
 , 

for k = 1,… , K . The smaller the F(xi) value, the higher the 

probability of the point belonging to one cluster. If all of the 

distances between the point x
i
 and the centers of the clusters 

are equal to d
i
 , then F(xi) = di∕K and all of the probabilities 

of belonging to each cluster are equal, i.e., pik = 1∕K . The 

sum of F(xi) over i is called joint distance function (JDF). 

Starting from (1), it is possible to compute pik , i.e.,

for k = 1,…K , and i = 1,… , N . The whole clustering prob-

lem consists in the identiication of the centers that minimize 

the JDF:

Extensive details on PD clustering are given in [3], who 

suggest using p2 in (3) because it is a smoothed version of 

the problem. It follows that the optimized functions become

and the centers can be computed as

with uik = p2
ik
∕dik.

(1)pikdik = F(xi),

(2)pik =

∏

m≠k
d

im

∑K

m=1

∏

r≠m
d

ir

,

(3)JDF =

n∑
i=1

K∑
k=1

dikpik.

(4)JDF =

n∑
i=1

K∑
k=1

dikp2

ik
,

(5)ck =

∑N

i=1
uikxi

∑N

j=1
ujk

,
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It is worth noting that the function pik respects all neces-

sary conditions to be a probability and yet no assumptions 

are made on the distribution of this function; further, pik can 

only be computed given x
i
 and for every �

k
 [28]. Following 

[13], we refer to pik as subjective probabilities, which are 

based on degree of belief (see [2]).

PD Clustering Adjusted for Cluster Size

The probabilities obtained using 1 do not consider the clus-

ter size, and the algorithm tends to fail when clusters are 

unbalanced. Moreover, the resulting clusters have similar 

variance and covariance matrices. To overcome these issues 

[14] proposed PD-clustering adjusted for cluster size (PDQ). 

They assume that

where qk is the cluster size, with the constraint that 
∑K

k=1
qk = N . The pik can then be computed via

The cluster size is considered a variable, the value of qk that 

minimizes (6) is

for k = 1,… , K − 1 , and

Flexible Extensions of PD-Clustering

Gaussian PD-Clustering

The PDQ algorithm can detect clusters of diferent size and 

with diferent within-cluster variability; however, it can still 

fail at detecting the clustering partition when variables are 

correlated or when there are outliers in the data. To over-

come these issues we proposed a new dissimilarity measure 

based on a density function. Let Mk = max{f (xi;�k,�k)} and 

deine the quantity

(6)
p2

ik
dik

qk

= F(xi),

(7)pik =

∏

m≠k
d

im
∕q

m

∑K

m=1

∏

r≠m
dir∕qr

.

(8)qk = N

�

∑N

i=1
dikp2

ik

�1∕2

∑K

k=1

�

∑N

i=1
dikp2

ik

�1∕2
,

q
K
= N −

K−1∑
k=1

qk.

(9)�ik = log
(
Mkf (xi;�k,�k)

−1
)
,

which is a dissimilarity measure where f (xi;�k,�k) is a sym-

metric unimodal density function with location parameter �
k
 

and parameter vector �
k
 . See appendix for the proof.

Recall that the density of a multivariate Gaussian distribu-

tion is

and deine �ik∶=�(xi;�k,�k) , where k = 1,… , K  . Using 

(10) in (9) and the result in (6), the JDF becomes

This technique is called Gaussian PD-clustering, GPDC, and 

it ofers many advantages when compared to PD-clustering. 

The new dissimilarity measure already takes into account 

the impact of diferent within cluster variances and the cor-

relation among variables.

The clustering problem now consists in the estimation of �
k
 

and �
k
 , with k = 1,… , K , that minimize (11). A diferentia-

tion procedure leads to these estimates. An iterative algorithm 

is then used to compute the belonging probabilities and update 

the parameter estimates. More speciically, diferentiating (11) 

with respect to �
k
 gives

Setting (12) equal to zero and solving for �
k
 gives

Now, diferentiating (11) with respect to �
k
 gives

Setting (14) equal to zero and solving for �
k
 gives

It follows that, at generic iteration (t + 1) , the parameters that 

minimize the (11) are:

(10)

�(x
i
;�,�) =

1

(2�)
J

2

|�|−
1

2 exp
{
−

1

2
(x − �)��−1(x − �)

}
,

(11)

JDF =

n∑
i=1

K∑
k=1

p2
ik

qk

log(Mk) +

n∑
i=1

K∑
k=1

1

2

p2
ik

qk

log
(
(2�)J|�k|

)

+

n∑
i=1

K∑
k=1

1

2

p2
ik

qk

(xi − �k)
��−1

k
(xi − �k).

(12)
�JDF

��
k

= −
1

2

n∑
i=1

p2
ik

qk

�
−1
k
(xi − �k).

(13)�
k
=

∑n

i=1
p2

ik
xi

∑n

i=1
p2

ik

(14)

�JDF

��k

=

n∑
i=1

1

2

p2
ik

qk

�−1
k

−�−1
k

n∑
i=1

1

2
(xi − �k)(xi − �k)

�
p2

ik

qk

�−1
k

=
1

2
�−1

k

[

n∑
i=1

p2
ik

qk

−

n∑
i=1

(xi − �k)(xi − �k)
�p2

ik
�−1

k

]

.

(15)�k =

∑n

i=1
(xi − �k)(xi − �k)

�p2

ik
∑n

i=1
p2

ik

.
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Our iterative procedure for Gaussian mixture model-based 

clustering parameter estimation can be summarized as 

follows:

Generalization to a Multivariate Student-t 
Distribution

The same procedure can be generalized to any symmet-

ric distribution. In this subsection we use the multivariate 

Student-t distribution, generating an algorithm identiied as 

Student-t PD-Clustering (TPDC). TPDC can detect clusters 

characterized by heavy tails; furthermore, the Student-t dis-

tribution has been often used on datasets characterized by 

outliers [17]. Now, replace (10) with a multivariate Student-t 

distribution, i.e.,

where �(x,�,�) = (x − �)��−1(x − �) , and proceed as in 

Sect. 3.1 Then, the JDF becomes:

(16)�
(t+1)

k
=

∑n

i=1
p2

ik
xi

∑n

i=1
p2

ik

,

(17)�
(t+1)

k
=

∑n

i=1
(xi − �

(t+1)

k
)(xi − �

(t+1)

k
)�p2

ik
∑n

i=1
p2

ik

.

(18)f (x,�,�, v) =
�

�

v+J

2

)
|�|−

1

2

(�v)
1

2
J
�

(
v

2

){
1 +

�(x,�,�)

v

} 1

2
(v+J)

,

(19)

JDF =

n∑
i=1

K∑
k=1

p2
ik

qk

log(Mk)

+

n∑
i=1

K∑
k=1

p2
ik

qk

�
− log

�
�

�
vk + J

2

�
��k�−

1

2

��

+

n�
i=1

K�
k=1

p2
ik

qk

log

⎧
⎪⎨⎪⎩
(�vk)

J

2 �

�vk

2

��
1+

�
�
xi,�k,�k

�
vk

� vk+J

2
⎫
⎪⎬⎪⎭

.

The parameters that optimize (19) can be found by difer-

entiating with respect to �
k
 , �

k
 , and vk , respectively. Spe-

ciically, at a generic iteration (t + 1) , the parameters that 

minimize (19) are:

with wik = p2
ik
∕[v

(t)

k
+ �(xi,�

(t)

k
,�

(t)

k
)],

with s
ik
= (v

(t)

k
+ J)∕[v

(t)

k
+ �(x

i
,�

(t+1)

k
,�

(t)

k
)] , and the degrees 

of freedom update v
(t+1)

k
 is the solution to the following 

equation:

where

Our iterative algorithm can be summarized as follows:

Algorithm Details

All the proposed techniques require a random initialization. 

Random starts can lead to unstable solutions, to avoid this 

(20)�
(t+1)

k
=

∑n

i=1
wikxi

∑n

i=1
wik

,

(21)�
(t+1)

k
=

∑n

i=1
p2

ik
(xi − �

(t+1)

k
)(xi − �

(t+1)

k
)�sik

∑n

i=1
p2

ik

,

(22)

n∑
i=1

p2

ik

�
�

�vk

2

�
− �

�
vk + J

2

�
+

J

2vk

�

+

n∑
i=1

p2

ik

⎡⎢⎢⎢⎣
1

2
log

⎛⎜⎜⎜⎝
1 +

�

�
xi,�

(t+1)

k
,�

(t+1)

k

�

v
(t)

k

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

−
1

2

vk + J

vk

n∑
i=1

p2

ik

�

�
xi,�

(t+1)

k
,�

(t+1)

k

�

v
(t)

k
+ �

�
xi,�

(t+1)

k
,�

(t+1)

k

� = 0,

�(v) =

(

1

� (v)

)

�� (v)

�v
.
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problem the algorithms use multiple starts. Moreover, the 

functions include the option to use PD-clustering or parti-

tion around medoids (PAM; [15]) to start. As for many other 

clustering techniques, the optimized function, the JDF in 

(4), is not convex—not even quasi-convex—and may have 

other stationary points. For a ixed value of �
k
 , the JDF is a 

monotonically decreasing function, this guarantees that the 

function converges to a minimum, not necessarily a global 

minimum. The proposed techniques, GPDC and TPDC, 

introduce the estimate of �
k
 , giving much more lexibility, 

albeit the JDF is no longer monotonically decreasing. Using 

(9) in (4), we obtain

with Mk ≥ �(xi;�k,�k) . Therefore, for every k = 1,… , K , 

the function is upper-bounded for non-degenerate density 

functions. The convergence of the algorithm cannot depend 

on the JDF but is based on �
k
 . The time complexity of the 

algorithm is comparable to the EM algorithm, both algo-

rithms require the inversion and the determinant of a J × J 

matrix, therefore, the time complexity is of O(n3
JK) , where 

n is the number of observations, J the number of variables, 

and K the number of clusters.

Empirical Evidence from Simulated and Real 
Data

The proposed algorithm has been evaluated on real and sim-

ulated datasets. The simulated datasets have been used to 

illustrate the ability of the algorithms to recover the param-

eters of the distributions and to compare the new techniques 

with some existing methods. In the following sessions we 

used the software R [26], the functions for both GPDC and 

TPDC are included in the R package FPDclustering 

[37].

Simulation Study

The same design was used twice, the irst time each clus-

ter was generated from a multivariate Gaussian distribution 

with three variables and K = 3 clusters. The second time, 

using a multivariate Student-t distribution with ive degrees 

of freedom, same number of variables and clusters. We set 

the parameter using a four factor full factorial design. There 

are two factors per each level, where the levels are

– Overlapping and not overlapping clusters

– Diferent number of elements per clusters

– Unitary variance and variance bigger than 1

– Uncorrelated and correlated variables

JDF =

n∑
i=1

K∑
k=1

p2
ik
(log Mk − log�(xi;�k,�k))

Table 1 shows the parameters used in the simulation study.

The datasets have been generated using the R package 

mvtnorm [11]. Tables 5, 6, 7, 8, 9, 10, 11,  12 in Appen-

dix B.2 show the true and the average estimated values of 

the parameters obtained from 50 runs of the GPDC and 

TPDC algorithms. For sake of space, comments are limited 

to groups of scenarios. The factors that afect the estimates 

the most are the change in variances and the amount of 

overlap. Speciically, when data are simulated using mul-

tivariate Gaussian distributions, in cases 5–8 and 13–16, 

the variances are not homogeneous and the GPDC tends 

to underestimate the bigger variances and overestimate the 

smaller ones. The TPDC is less afected by this issue, i.e., 

it underestimates some of the variances but the degrees of 

freedom recover; however, in the two extreme scenarios, 

8 and 16, it cannot recover the cluster structures. Similar 

outcomes occur when data are simulated using a multivari-

ate Student-t distribution; moreover, as expected on those 

datasets, the GPDC tends to overestimate the variances and 

TPDC tends to underestimate the variances and compensate 

with the degrees of freedom.

On the same datasets we used the functions gpcm, option 

VVV, of the R package mixture [6] for the Gaussian mix-

ture models (GMM) and the function teigen, option 

UUUU , of the homonymous R package [1] for the mixtures 

of multivariate Student-t distributions (TMM). The k-means 

Table 1  Model parameters used to generate the simulated datasets

Not overlapping Overlapping

�1 = (0, 0, 0)� �1 = (0, 0, 0)�

�2 = (−7, 7, 0)� �2 = (−4, 4, 0)�

�3 = (−7, 0, 7)� �3 = (−4, 0, 4)�

Option 1 Option 2

n1 = 200 n
1
= 200

n2 = 300 n
2
= 100

n3 = 100 n3 = 300

Unitary variance bigger than 1

diag(�1) = 1 diag(�1) = 1

diag(�2) = 1 diag(�2) = 16

diag(�
3
) = 1 diag(�

3
) = 2.25

Not correlated Correlated
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algorithm is part of the stats package [27], and the PDQ-

clust function for PDQ clustering is part of the FPD-

clustering package [37].

To compare the clustering performance of the methods 

we used the adjusted Rand index (ARI) [12]. It compares 

predicted classiications with true classes. The ARI corrects 

the Rand index [30] for chance, its expected value under ran-

dom classiication is 0, and it takes a value of 1 when there 

is perfect class agreement. Steinley [31] gives guidelines for 

interpreting ARI values. Table 2 shows the average ARI and 

the standard deviation on 50 runs for each algorithm.

As pointed out in the previous sections, GPDC and 

TPDC are framed in a non-parametric view; however, to 

evaluate the performance we compare them with the GMM 

and TMM. The performance is not expected to be better 

than those techniques, although in most scenarios GPDC 

and TPDC perform as well as inite mixture models. As 

expected, k-means results are impacted by correlations and 

not homogeneous variances. PDQ cannot recover the correct 

clustering partition in case of overlapping and not homoge-

neous variance. It is not afected by changes in group size 

or correlation. The proposed techniques GPDC and TPDC 

outperform k-means and PDQ in most scenarios, they show 

weakness in the two most extreme situations, i.e., scenarios 

8 and 16. Speciically, when clusters have diferent variances 

and the biggest variance is associated with the smallest 

Table 2  Average ARI and standard deviation on 50 datasets per scenario

Correlated Unitary 

Variance

Over-lapping n
k

GPDC TPDC PDQ k-means GMM TMM

ARI SD ARI SD ARI SD ARI SD ARI SD ARI SD

Multivariate Gaussian distribution

1 No Yes No Op 1 1.00 0.00 1.00 0.00 1.00 0.00 0.91 0.20 0.99 0.06 1.00 0.00

2 No Yes no Op 2 1.00 0.00 1.00 0.00 1.00 0.00 0.92 0.18 0.96 0.12 1.00 0.00

3 No Yes Yes Op 1 0.97 0.01 0.98 0.01 0.98 0.01 0.99 0.01 0.99 0.01 0.99 0.01

4 No Yes Yes Op 2 0.97 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.99 0.01 0.99 0.01

5 No No No Op 1 0.80 0.03 0.84 0.03 0.74 0.04 0.61 0.08 0.93 0.07 0.93 0.02

6 No No No Op 2 0.94 0.02 0.93 0.02 0.74 0.05 0.89 0.09 0.97 0.01 0.97 0.01

7 No No Yes Op 1 0.59 0.04 0.60 0.05 0.30 0.04 0.35 0.06 0.76 0.08 0.76 0.04

8 No No Yes Op 2 0.56 0.12 0.50 0.09 0.60 0.06 0.75 0.08 0.87 0.02 0.87 0.02

9 Yes Yes No Op 1 1.00 0.00 1.00 0.00 1.00 0.00 0.86 0.22 0.95 0.14 1.00 0.00

10 Yes Yes No Op 2 1.00 0.00 1.00 0.00 1.00 0.00 0.91 0.19 0.91 0.18 1.00 0.00

11 Yes Yes Yes Op 1 0.97 0.02 0.98 0.02 0.98 0.01 0.93 0.15 0.96 0.09 0.99 0.01

12 Yes yes Yes Op 2 0.98 0.02 0.99 0.01 0.98 0.01 0.98 0.07 0.98 0.08 1.00 0.00

13 Yes No No Op 1 0.76 0.08 0.90 0.03 0.67 0.05 0.52 0.08 0.95 0.07 0.96 0.01

14 Yes No No Op 2 0.97 0.02 0.96 0.02 0.77 0.06 0.91 0.02 0.99 0.01 0.99 0.01

15 Yes No Yes Op 1 0.44 0.08 0.45 0.08 0.33 0.05 0.32 0.04 0.82 0.09 0.83 0.03

16 Yes No Yes Op 2 0.54 0.07 0.45 0.08 0.54 0.08 0.80 0.10 0.94 0.01 0.94 0.01

Multivariate Student-t distribution, 5 df

1 no Yes No Op 1 0.98 0.01 0.99 0.01 0.99 0.01 0.98 0.07 0.97 0.06 0.99 0.01

2 No Yes No Op 2 0.99 0.01 0.99 0.01 0.99 0.01 0.93 0.17 0.95 0.11 0.99 0.01

3 No Yes Yes Op 1 0.88 0.02 0.89 0.02 0.91 0.02 0.90 0.02 0.90 0.02 0.91 0.02

4 No Yes Yes Op 2 0.88 0.03 0.89 0.02 0.90 0.02 0.89 0.07 0.89 0.05 0.90 0.02

5 No No No Op 1 0.92 0.02 0.94 0.02 0.94 0.02 0.89 0.07 0.93 0.07 0.95 0.01

6 No No No Op 2 0.96 0.02 0.96 0.01 0.93 0.02 0.96 0.01 0.91 0.06 0.96 0.01

7 No No Yes Op 1 0.69 0.04 0.71 0.04 0.70 0.04 0.63 0.04 0.56 0.11 0.76 0.03

8 No No Yes Op 2 0.76 0.03 0.76 0.03 0.62 0.05 0.81 0.03 0.66 0.06 0.78 0.05

9 Yes Yes No Op 1 0.99 0.01 0.99 0.01 0.99 0.01 0.90 0.19 0.92 0.17 0.99 0.01

10 Yes Yes No Op 2 0.99 0.01 0.99 0.01 0.99 0.01 0.87 0.22 0.93 0.14 0.99 0.01

11 Yes Yes Yes Op 1 0.87 0.03 0.88 0.03 0.90 0.02 0.83 0.16 0.90 0.07 0.93 0.02

12 Yes Yes Yes Op 2 0.87 0.05 0.89 0.04 0.93 0.02 0.92 0.11 0.94 0.06 0.96 0.01

13 Yes No No Op 1 0.93 0.02 0.95 0.02 0.92 0.02 0.79 0.17 0.93 0.10 0.96 0.01

14 Yes No No Op 2 0.97 0.01 0.98 0.01 0.95 0.02 0.97 0.01 0.96 0.03 0.98 0.01

15 Yes No Yes Op 1 0.56 0.10 0.59 0.08 0.65 0.04 0.55 0.08 0.72 0.13 0.82 0.03

16 Yes No Yes Op 2 0.49 0.29 0.51 0.32 0.56 0.31 0.67 0.37 0.64 0.35 0.71 0.38
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cluster, they fail detecting the clustering partitions. Fig-

ures 5, 6, 7, 8, 9, 10, 11, 12 in Appendix B.2 show examples 

of simulated datasets for each scenario.

Real Data Analysis

We performed a real data analysis on three datasets that 

difer in size and number of clusters (details in Table 3). 

We performed variable selection prior to cluster analysis 

(details in Appendix B.1). The seed dataset1 contains infor-

mation about kernels belonging to three diferent varieties of 

wheat—Kama, Rosa and Canadian—with 70 observations 

per variety (see Fig. 1). We used the variables: compactness, 

length of kernel, width of kernel, and asymmetry coeicient. 

The hematopoietic steam cell transplant (HSCT) data were 

collected in the Terry Fox Lab at the British Columbia Can-

cer Agency. It contains information about 9780 cells, each 

stained with four luorescent dyes. Experts identiied four 

clusters; moreover, 78 cells were deemed “dead”, leaving a 

total of 9702 observation, we selected the three most inform-

ative variables. Figure 2 shows the partitions deined by the 

experts. The Australian Institute of sport dataset2. contains 

data on 102 male and 100 female athletes for the Australian 

institute of sports. We selected the variables: height in cm, 

hematocrit, plasma ferritin concentration, and percent body 

fat, see Fig. 3.

Table 4 shows the ARI on the three datasets. On the seed 

dataset, GPDC and TPDC perform better than PDQ and 

k-means. The improvement from PDQ is noticeable, PDQ 

gives an ARI of 0.17, while GPDC gives an ARI of 0.41. 

On this dataset, TMM gives the best performance. On the 

HSCT dataset, GPDC, TPDC, PDQ, and TMM have a very 

high ARI. On the AIS dataset, GPDC and TPDC give the 

best performance.

Conclusion

A new distance measure based on density functions is intro-

duced and used in the context of probabilistic distance clus-

tering adjusted for cluster size (PDQ). PDQ assumes that, 

for a generic unit, the product between the probability of 

belonging to a cluster and its distance from the cluster is 

constant. The minimization of the sum of these constants 

over the units leads to clusters that maximize the classii-

ability of the data. We introduce two algorithms based on 

PDQ that use distance measures based on the multivariate 

Table 3  Number of units, variables, and clusters for the three real 

datasets

n J K

Seed 210 4 3 UCI machine learning repository

HSCT 9702 3 4 Terry Fox Lab

AIS 202 4 2 EMMIXuskew R package

Table 4  Adjusted Rand index for the real datasets

GPDC TPDC PDQ k-means GMM TMM

Seed 0.41 0.33 0.17 0.16 0.44 0.53

HSCT 0.99 0.98 0.98 0.72 0.88 0.99

AIS 0.88 0.90 0.16 0.06 0.72 0.81

NA. Compact lKer wKer Asy
NA.

Com
pact

lKer
wKer

Asy

0.02.55.07.50.02.55.07.50.02.55.07.5 0.8250.8500.8750.900 5.2 5.6 6.0 6.4 3.0 3.5 4.0 2 4 6 8
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Fig. 1  Seed dataset, each color and symbol representing a diferent 

variety of wheat
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Fig. 2  HSCT dataset, each color and symbol representing a partition 

deined by the experts

1 http://archi ve.ics.uci.edu/ml/.
2 GLMsData R package.
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Gaussian distribution and on the multivariate Student-t dis-

tribution. Using simulated and real datasets we show how 

the new algorithms over-perform PDQ and the well known 

k-means algorithm.

The algorithm could be extended using diferent distribu-

tions. Further to this point, we mentioned outliers as a pos-

sible motivation for the PDQ approach with the multivariate 

Student-t distribution (Sect. 3). However, if the objective is 

dealing with outliers, it will be better to consider the PDQ 

approach with the multivariate contaminated normal dis-

tribution [25] and this will be a topic of future work. Other 

approaches for handling cluster concentration will also be 

considered (e.g., [9]) as will methods that accommodate 

asymmetric, or skewed, clusters (e.g., [18, 19, 21, 22, 32, 

34]).
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Dissimilarity Measure

A general measure d(x, �) is a dissimilarity measure if the fol-

lowing conditions are veriied [33, p.404]: 

1. d(x, �) ≥ 0

2. d(x, �) = 0 ⇔ x = �

3. d(x, �) = d(x, �).

l Ht Hc Ferr Bfat

l
Ht

Hc
Ferr

Bfat
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Fig. 3  AIS dataset, each color and symbol representing male and 

female athletes
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Let f (xi;�k,�k) be the generic symmetric unimodal multivari-

ate density function of the random variable � with parameter 

�
k
 and location parameter �

k
 then

satisies all the three properties and it is a dissimilarity meas-

ure for k = 1,… , K.

1. d(x
i
,�k) > 0, ∀x

i
.

Proof

2. d(x
i
,�k) = 0 ⇔ x

i
= �k.

2a. x
i
= �k ⇒ d(x

i
,�k) = 0 ∀x

i
 . Proof

2b. d(x
i
,�k) = 0 ⇒ x

i
= �k, ∀x

i
.

Proof

3. d(x
i
,�k) = d(�k, x

i
), ∀x

i
 Proof Given �

k

  ◻

Addition Details for Data Analyses

Variable Selection

On each dataset we selected one variable per group using 

hierarchical clustering (Fig. 4).

(23)d(x
i
,�k) = log

(

Mk

f (xi;�k,�k)

)

,

0 <

f (xi;�k,�k)

Mk

≤ 1 ⇒
Mk

f (xi;�k,�k)
≥ 1 ⇒

⇒ log

(

Mk

f (xi;�k,�k)

)

≥ 0.

x
i
= �k ⇒ f (x

i
;�k,�k) =f (�k;�k,�k) = Mk ⇒

⇒
Mk

Mk

= 1 ⇒ log (1) = 0,

log

(

Mk

f (xi;�k,�k)

)

= 0 ⇒
Mk

f (xi;�k,�k)
= 1 ⇒

⇒ f (xi;�k,�k) = Mk

= f (�k;�k,�k) ⇒ xi = �k.

f (xi;�k ,�k) = f (�k;xi,�k),⇒ log

(

Mk

f (xi;�k ,�k)

)

= log

(

Mk

f (�k;xi,�k)

)

Fig. 4  Variable selection
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Simulated Datasets

Table 5  Simulated datasets 

using multivariate Gaussian 

distributions Scenarios 1-4

True GPDC TPDC

�
1

0.00 0.00 0.00 − 0.02 0.03 − 0.01 0.01 −0.00 −0.01

�
2

− 7.00 7.00 0.00 − 7.00 7.00 0.01 −7.01 7.01 0.01

�3
−7.00 0.00 7.00 −6.98 0.05 6.97 −6.99 0.02 7.02

�
1

1.00 0.00 0.00 1.29 −0.29 −0.02 0.97 −0.06 0.01

0.00 1.00 0.00 −0.29 1.23 0.00 −0.06 0.95 0.00

0.00 0.00 1.00 −0.02 0.00 0.93 0.01 0.00 0.84

�
2

1.00 0.00 0.00 1.04 −0.11 0.00 0.90 −0.02 −0.00

0.00 1.00 0.00 −0.11 1.09 −0.04 −0.02 0.93 −0.01

0.00 0.00 1.00 0.00 −0.04 0.90 −0.00 −0.01 0.84

�3 1.00 0.00 0.00 1.04 −0.02 −0.11 0.87 −0.01 −0.01

0.00 1.00 0.00 −0.02 1.18 −0.28 −0.01 0.89 −0.06

0.00 0.00 1.00 −0.11 −0.28 1.35 −0.01 −0.06 0.95

�
1

0.00 0.00 0.00 −0.02 −0.00 0.03 0.02 −0.00 −0.01

�
2

−7.00 7.00 0.00 −6.99 6.94 0.07 −7.00 6.99 0.04

�3
−7.00 0.00 7.00 −6.99 0.01 7.00 −7.00 0.01 7.01

�
1

1.00 0.00 0.00 1.28 −0.03 −0.27 0.97 −0.00 −0.04

0.00 1.00 0.00 −0.03 0.91 0.00 −0.00 0.82 0.00

0.00 0.00 1.00 −0.27 0.00 1.25 −0.04 0.00 0.97

�
2

1.00 0.00 0.00 1.03 −0.12 −0.03 0.85 −0.02 −0.02

0.00 1.00 0.00 −0.12 1.36 −0.30 −0.02 0.95 −0.07

0.00 0.00 1.00 −0.03 −0.30 1.23 −0.02 −0.07 0.92

�3 1.00 0.00 0.00 1.03 0.00 −0.12 0.90 0.00 −0.02

0.00 1.00 0.00 0.00 0.91 −0.03 0.00 0.84 −0.01

0.00 0.00 1.00 −0.12 −0.03 1.07 −0.02 −0.01 0.90

�
1

0.00 0.00 0.00 −0.08 0.12 −0.02 0.01 0.03 −0.03

�
2

−4.00 4.00 0.00 −3.99 4.04 −0.01 −4.02 4.05 −0.01

�3
−4.00 0.00 4.00 −3.92 0.22 3.79 −3.95 0.10 3.97

�
1

1.00 0.00 0.00 1.51 −0.52 −0.05 1.00 −0.20 −0.01

0.00 1.00 0.00 −0.52 1.38 −0.00 −0.20 0.94 0.00

0.00 0.00 1.00 −0.05 −0.00 0.87 −0.01 0.00 0.68

�
2

1.00 0.00 0.00 1.01 −0.19 −0.00 0.80 −0.07 −0.00

0.00 1.00 0.00 −0.19 1.13 −0.05 −0.07 0.87 −0.02

0.00 0.00 1.00 −0.00 −0.05 0.81 −0.00 −0.02 0.69

�3 1.00 0.00 0.00 1.16 −0.05 −0.26 0.71 −0.02 −0.09

0.00 1.00 0.00 −0.05 1.50 −0.70 −0.02 0.85 −0.27

0.00 0.00 1.00 −0.26 −0.70 1.90 −0.09 −0.27 0.99

�
1

0.00 0.00 0.00 −0.08 −0.01 0.11 0.01 −0.01 0.02

�
2

−4.00 4.00 0.00 −3.93 3.77 0.24 −3.97 3.94 0.13

�3
−4.00 0.00 4.00 −3.98 −0.01 4.03 −4.01 −0.01 4.05

�
1

1.00 0.00 0.00 1.51 −0.06 −0.51 0.99 −0.02 −0.19

0.00 1.00 0.00 −0.06 0.86 −0.01 −0.02 0.67 −0.01

0.00 0.00 1.00 −0.51 −0.01 1.40 −0.19 −0.01 0.94

�
2

1.00 0.00 0.00 1.14 −0.28 −0.05 0.70 −0.11 −0.02

0.00 1.00 0.00 −0.28 1.91 −0.72 −0.11 1.01 −0.29

0.00 0.00 1.00 −0.05 −0.72 1.54 −0.02 −0.29 0.88

�3 1.00 0.00 0.00 1.02 −0.00 −0.20 0.78 −0.00 −0.07

0.00 1.00 0.00 −0.00 0.82 −0.05 −0.00 0.67 −0.02

0.00 0.00 1.00 −0.20 −0.05 1.12 −0.07 −0.02 0.82
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Table 6  Simulated datasets 

using multivariate Gaussian 

distributions Scenarios 5-8

True GPDC TPDC

�
1

0.00 0.00 0.00 −0.20 0.23 −0.03 −0.02 0.04 −0.02

�
2

−7.00 7.00 0.00 −7.33 8.08 −0.46 −7.28 7.85 −0.40

�3
−7.00 0.00 7.00 −7.09 0.86 6.33 −7.03 0.40 6.78

�
1

1.00 0.00 0.00 2.68 −0.93 0.09 0.90 −0.09 0.02

0.00 1.00 0.00 −0.93 2.60 −0.06 −0.09 0.89 −0.00

0.00 0.00 1.00 0.09 −0.06 1.69 0.02 −0.00 0.74

�
2

16.00 0.00 0.00 12.84 0.95 0.09 11.36 0.46 −0.00

0.00 16.00 0.00 0.95 13.43 1.24 0.46 12.01 0.80

0.00 0.00 16.00 0.09 1.24 11.82 −0.00 0.80 10.36

�3 2.25 0.00 0.00 4.40 −0.23 0.39 2.14 −0.09 0.13

0.00 2.25 0.00 −0.23 6.37 −2.79 −0.09 2.79 −0.85

0.00 0.00 2.25 0.39 −2.79 7.28 0.13 −0.85 2.94

�
1

0.00 0.00 0.00 −0.12 0.06 0.01 −0.00 0.01 −0.02

�
2

−7.00 7.00 0.00 −7.10 7.23 0.80 −7.07 7.11 0.87

�3
−7.00 0.00 7.00 −7.02 0.06 7.00 −7.01 0.01 7.06

�
1

1.00 0.00 0.00 2.09 −0.29 −0.27 0.91 −0.04 −0.02

0.00 1.00 0.00 −0.29 1.31 −0.11 −0.04 0.73 −0.02

0.00 0.00 1.00 −0.27 −0.11 1.76 −0.02 −0.02 0.87

�
2

16.00 0.00 0.00 11.06 −0.17 −0.08 9.14 −0.44 −0.06

0.00 16.00 0.00 −0.17 17.36 −4.90 −0.44 14.91 −4.73

0.00 0.00 16.00 −0.08 −4.90 14.27 −0.06 −4.73 11.95

�3 2.25 0.00 0.00 2.42 −0.03 −0.02 1.86 −0.01 −0.02

0.00 2.25 0.00 −0.03 2.29 −0.44 −0.01 1.70 −0.09

0.00 0.00 2.25 −0.02 −0.44 3.02 −0.02 −0.09 2.01

�
1

0.00 0.00 0.00 −0.07 0.17 −0.03 0.02 0.04 −0.03

�
2

−4.00 4.00 0.00 −4.65 5.39 −0.79 −4.55 5.17 −0.65

�3
−4.00 0.00 4.00 −4.12 0.66 3.84 −4.07 0.39 4.00

�
1

1.00 0.00 0.00 2.67 −0.07 0.01 1.04 0.01 0.00

0.00 1.00 0.00 −0.07 2.53 −0.04 0.01 1.02 −0.01

0.00 0.00 1.00 0.01 −0.04 2.18 0.00 −0.01 0.93

�
1

16.00 0.00 0.00 12.16 1.15 −0.07 9.85 0.67 −0.06

0.00 16.00 0.00 1.15 13.16 1.16 0.67 11.00 0.70

0.00 0.00 16.00 −0.07 1.16 11.51 −0.06 0.70 9.30

�3 2.25 0.00 0.00 5.01 0.07 0.18 2.59 −0.01 0.04

0.00 2.25 0.00 0.07 5.12 −0.24 −0.01 2.60 −0.05

0.00 0.00 2.25 0.18 −0.24 6.08 0.04 −0.05 2.92

�
1

0.00 0.00 0.00 −0.31 0.16 −0.01 −0.18 0.10 0.03

�
2

−4.00 4.00 0.00 −3.84 2.77 2.35 −1.30 0.33 1.09

�3
−4.00 0.00 4.00 −4.18 −0.23 3.82 −4.21 −0.25 3.86

�
1

1.00 0.00 0.00 3.00 −0.40 −0.15 1.75 −0.20 −0.20

0.00 1.00 0.00 −0.40 2.29 −0.32 −0.20 1.40 −0.11

0.00 0.00 1.00 −0.15 −0.32 2.80 −0.20 −0.11 1.61

�
2

16.00 0.00 0.00 5.58 −0.02 0.27 1.99 −0.17 −0.12

0.00 16.00 0.00 −0.02 9.10 −3.30 −0.17 1.88 −0.38

0.00 0.00 16.00 0.27 −3.30 6.61 −0.12 −0.38 2.05

�3 2.25 0.00 0.00 2.72 −0.01 0.18 2.01 −0.05 0.13

0.00 2.25 0.00 −0.01 2.83 −0.61 −0.05 2.04 −0.47

0.00 0.00 2.25 0.18 −0.61 3.37 0.13 −0.47 2.34
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Table 7  Simulated datasets 

using multivariate Gaussian 

distributions Scenarios 9-12

True GPDC TPDC

�
1

0.00 0.00 0.00 −0.04 0.04 0.02 0.01 0.00 0.02

�
2

−7.00 7.00 0.00 −7.01 7.00 0.03 −7.02 7.01 0.02

�3
−7.00 0.00 7.00 −6.98 0.03 7.02 −6.97 0.03 7.03

�
1

1.00 0.00 0.00 1.36 −0.34 −0.01 1.00 −0.07 0.00

0.00 1.00 0.00 −0.34 1.30 −0.01 −0.07 0.98 −0.00

0.00 0.00 1.00 −0.01 −0.01 0.96 0.00 −0.00 0.86

�
2

1.00 −0.50 −0.50 1.07 −0.60 −0.47 0.92 −0.47 −0.43

−0.50 1.00 0.50 −0.60 1.11 0.46 −0.47 0.94 0.43

−0.50 0.50 1.00 −0.47 0.46 0.91 −0.43 0.43 0.85

�3 1.00 0.70 0.70 0.93 0.63 0.64 0.86 0.59 0.61

0.70 1.00 0.70 0.63 0.93 0.62 0.59 0.85 0.60

0.70 0.70 1.00 0.64 0.62 0.98 0.61 0.60 0.89

�
1

0.00 0.00 0.00 −0.04 −0.00 0.05 0.00 −0.00 0.01

�
2

−7.00 7.00 0.00 −7.00 6.97 0.05 −7.02 7.00 0.04

�3
−7.00 0.00 7.00 −6.99 0.02 7.01 −6.99 0.02 7.01

�
1

1.00 0.00 0.00 1.40 −0.01 −0.35 1.01 −0.00 −0.06

0.00 1.00 0.00 −0.01 0.97 0.01 −0.00 0.88 0.00

0.00 0.00 1.00 −0.35 0.01 1.36 −0.06 0.00 1.01

�
2

1.00 −0.50 −0.50 1.06 −0.59 −0.50 0.90 −0.46 −0.46

−0.50 1.00 0.50 −0.59 1.19 0.39 −0.46 0.93 0.43

−0.50 0.50 1.00 −0.50 0.39 1.06 −0.46 0.43 0.91

�3 1.00 0.70 0.70 0.94 0.63 0.64 0.88 0.60 0.61

0.70 1.00 0.70 0.63 0.88 0.63 0.60 0.84 0.60

0.70 0.70 1.00 0.64 0.63 0.94 0.61 0.60 0.88

�
1

0.00 0.00 0.00 −0.19 0.22 0.04 −0.09 0.11 0.05

�
2

−4.00 4.00 0.00 −4.05 4.04 0.08 −4.06 4.06 0.07

�3
−4.00 0.00 4.00 −3.95 0.05 4.04 −3.94 0.05 4.08

�
1

1.00 0.00 0.00 1.78 −0.76 −0.00 1.32 −0.41 −0.01

0.00 1.00 0.00 −0.76 1.62 −0.08 −0.41 1.20 −0.05

0.00 0.00 1.00 −0.00 −0.08 0.97 −0.01 −0.05 0.83

�
2

1.00 −0.50 −0.50 1.05 −0.64 −0.44 0.84 −0.47 −0.38

−0.50 1.00 0.50 −0.64 1.17 0.43 −0.47 0.91 0.37

−0.50 0.50 1.00 −0.44 0.43 0.83 −0.38 0.37 0.72

�3 1.00 0.70 0.70 0.86 0.57 0.57 0.57 0.40 0.42

0.70 1.00 0.70 0.57 0.90 0.55 0.40 0.59 0.42

0.70 0.70 1.00 0.57 0.55 0.99 0.42 0.42 0.65

�
1

0.00 0.00 0.00 −0.17 −0.00 0.24 −0.08 0.01 0.12

�
2

−4.00 4.00 0.00 −3.94 3.85 0.12 −4.03 4.02 0.08

�3
−4.00 0.00 4.00 −3.99 0.03 4.05 −3.99 0.03 4.04

�
1

1.00 0.00 0.00 1.89 0.04 −0.79 1.34 −0.02 −0.40

0.00 1.00 0.00 0.04 0.97 0.02 −0.02 0.85 0.00

0.00 0.00 1.00 −0.79 0.02 1.70 −0.40 0.00 1.25

�
2

1.00 −0.50 −0.50 1.19 −0.79 −0.46 0.68 −0.40 −0.32

−0.50 1.00 0.50 −0.79 1.66 0.22 −0.40 0.81 0.28

−0.50 0.50 1.00 −0.46 0.22 1.23 −0.32 0.28 0.70

�3 1.00 0.70 0.70 0.88 0.59 0.62 0.78 0.53 0.56

0.70 1.00 0.70 0.59 0.77 0.59 0.53 0.70 0.53

0.70 0.70 1.00 0.62 0.59 0.91 0.56 0.53 0.81
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Table 8  Simulated datasets 

using multivariate Gaussian 

distributions Scenarios 13–16

True GPDC TPDC

�
1

0.00 0.00 0.00 −0.44 0.48 −0.24 −0.09 0.11 −0.06

�
2

−7.00 7.00 0.00 −7.94 8.25 0.64 −7.73 7.75 0.58

�3
−7.00 0.00 7.00 −6.98 0.63 6.52 −6.92 0.09 7.09

�
1

1.00 0.00 0.00 4.11 −2.42 0.32 1.24 −0.36 0.10

0.00 1.00 0.00 −2.42 3.92 −0.39 −0.36 1.20 −0.11

0.00 0.00 1.00 0.32 −0.39 2.86 0.10 −0.11 1.06

�
2

16.00 −8.00 −8.00 13.01 −6.32 −6.60 12.04 −5.73 −5.83

−8.00 16.00 8.00 −6.32 13.59 6.70 −5.73 12.79 5.60

−8.00 8.00 16.00 −6.60 6.70 11.52 −5.83 5.60 11.29

�3 2.25 1.57 1.57 3.11 0.73 0.83 1.29 0.88 0.93

1.57 2.25 1.57 0.73 5.46 −0.75 0.88 1.37 0.90

1.57 1.57 2.25 0.83 −0.75 6.25 0.93 0.90 1.46

�
1

0.00 0.00 0.00 −0.16 0.10 0.00 −0.01 0.02 −0.01

�
2

−7.00 7.00 0.00 −7.72 7.58 0.98 −7.61 7.51 0.92

�3
−7.00 0.00 7.00 −6.96 0.05 7.05 −6.96 0.05 7.06

�
1

1.00 0.00 0.00 2.40 −0.40 −0.55 0.94 −0.05 −0.04

0.00 1.00 0.00 −0.40 1.46 −0.08 −0.05 0.76 −0.03

0.00 0.00 1.00 −0.55 −0.08 2.40 −0.04 −0.03 0.96

�
2

16.00 −8.00 −8.00 12.21 −5.92 −5.73 10.56 −5.29 −4.72

−8.00 16.00 8.00 −5.92 15.67 3.66 −5.29 13.38 2.96

−8.00 8.00 16.00 −5.73 3.66 13.43 −4.72 2.96 11.09

�3 2.25 1.57 1.57 2.00 1.32 1.37 1.80 1.21 1.27

1.57 2.25 1.57 1.32 1.87 1.29 1.21 1.66 1.20

1.57 1.57 2.25 1.37 1.29 2.11 1.27 1.20 1.84

�
1

0.00 0.00 0.00 −0.25 0.41 −0.21 −0.21 0.17 0.02

�
2

−4.00 4.00 0.00 −4.99 5.11 0.35 −5.06 4.94 0.45

�3
−4.00 0.00 4.00 −4.12 1.09 3.35 −3.52 0.39 3.62

�
1

1.00 0.00 0.00 3.91 −1.63 −1.06 2.06 −0.51 −0.61

0.00 1.00 0.00 −1.63 3.78 0.90 −0.51 1.79 0.34

0.00 0.00 1.00 −1.06 0.90 3.57 −0.61 0.34 2.05

�
2

16.00 −8.00 −8.00 11.09 −5.47 −5.53 10.45 −5.07 −5.30

−8.00 16.00 8.00 −5.47 12.68 6.01 −5.07 11.75 5.11

−8.00 8.00 16.00 −5.53 6.01 10.45 −5.30 5.11 10.05

�3 2.25 1.57 1.57 5.54 −1.45 −0.85 1.76 0.22 0.27

1.57 2.25 1.57 −1.45 6.76 1.81 0.22 1.96 0.84

1.57 1.57 2.25 −0.85 1.81 6.94 0.27 0.84 2.03

�
1

0.00 0.00 0.00 −0.37 0.29 −0.14 −0.32 0.32 −0.02

�
2

−4.00 4.00 0.00 −2.03 1.59 1.47 −0.32 0.32 −0.02

�3
−4.00 0.00 4.00 −4.66 −0.55 3.40 −4.41 −0.34 3.66

�
1

1.00 0.00 0.00 3.80 −1.26 −1.06 2.70 −1.22 −0.64

0.00 1.00 0.00 −1.26 2.89 0.49 −1.22 2.39 0.36

0.00 0.00 1.00 −1.06 0.49 3.82 −0.64 0.36 2.35

�
2

16.00 −8.00 −8.00 4.97 −2.68 −0.61 2.70 −1.22 −0.64

−8.00 16.00 8.00 −2.68 6.30 −0.13 −1.22 2.39 0.36

−8.00 8.00 16.00 −0.61 −0.13 5.50 −0.64 0.36 2.35

�3 2.25 1.57 1.57 1.92 0.60 0.88 1.20 0.45 0.62

1.57 2.25 1.57 0.60 2.02 0.78 0.45 1.18 0.50

1.57 1.57 2.25 0.88 0.78 2.02 0.62 0.50 1.27
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Table 9  Simulated datasets 

using multivariate Student-t 

distributions Scenarios 1–4

True GPDC TPDC

�
1

0.00 0.00 0.00 −0.05 0.06 −0.01 0.01 −0.00 −0.01

�
2

−7.00 7.00 0.00 −6.98 7.02 −0.00 −7.00 7.02 0.00

�3
−7.00 0.00 7.00 −6.96 0.11 6.90 −6.99 0.01 7.02

�
1

1.00 0.00 0.00 2.02 −0.60 −0.08 0.96 −0.09 −0.03

0.00 1.00 0.00 −0.60 1.94 −0.01 −0.09 0.94 −0.01

0.00 0.00 1.00 −0.08 −0.01 1.27 −0.03 −0.01 0.76

�
2

1.00 0.00 0.00 1.47 −0.22 −0.01 1.01 −0.04 −0.01

0.00 1.00 0.00 −0.22 1.62 −0.04 −0.04 1.06 −0.00

0.00 0.00 1.00 −0.01 −0.04 1.24 −0.01 −0.00 0.90

�3 1.00 0.00 0.00 1.65 −0.06 −0.32 0.81 −0.03 −0.04

0.00 1.00 0.00 −0.06 2.13 −0.72 −0.03 0.88 −0.08

0.00 0.00 1.00 −0.32 −0.72 2.59 −0.04 −0.08 0.97

�
1

0.00 0.00 0.00 −0.06 −0.01 0.07 0.01 −0.01 −0.00

�
2

−7.00 7.00 0.00 −6.96 6.87 0.11 −7.02 7.00 0.01

�3
−7.00 0.00 7.00 −7.00 −0.02 7.02 −7.02 −0.01 7.03

�
1

1.00 0.00 0.00 2.05 −0.06 −0.63 0.97 −0.02 −0.11

0.00 1.00 0.00 −0.06 1.28 −0.01 −0.02 0.78 −0.00

0.00 0.00 1.00 −0.63 −0.01 1.92 −0.11 −0.00 0.95

�
2

1.00 0.00 0.00 1.67 −0.34 −0.01 0.80 −0.05 0.00

0.00 1.00 0.00 −0.34 2.51 −0.73 −0.05 0.95 −0.10

0.00 0.00 1.00 −0.01 −0.73 2.07 0.00 −0.10 0.90

�3 1.00 0.00 0.00 1.52 −0.04 −0.25 1.03 −0.03 −0.06

0.00 1.00 0.00 −0.04 1.24 −0.05 −0.03 0.92 −0.02

0.00 0.00 1.00 −0.25 −0.05 1.60 −0.06 −0.02 1.05

�
1

0.00 0.00 0.00 −0.09 0.13 −0.03 −0.01 0.05 −0.02

�
2

−4.00 4.00 0.00 −3.99 4.06 −0.03 −4.02 4.07 −0.02

�3
−4.00 0.00 4.00 −3.88 0.29 3.71 −3.94 0.14 3.89

�
1

1.00 0.00 0.00 1.98 −0.61 −0.08 0.95 −0.21 −0.03

0.00 1.00 0.00 −0.61 1.86 −0.01 −0.21 0.91 −0.01

0.00 0.00 1.00 −0.08 −0.01 1.19 −0.03 −0.01 0.64

�
2

1.00 0.00 0.00 1.33 −0.20 −0.01 0.75 −0.05 −0.01

0.00 1.00 0.00 −0.20 1.54 −0.03 −0.05 0.81 0.00

0.00 0.00 1.00 −0.01 −0.03 1.11 −0.01 0.00 0.64

�3 1.00 0.00 0.00 1.70 −0.09 −0.40 0.86 −0.05 −0.16

0.00 1.00 0.00 −0.09 2.22 −0.88 −0.05 1.09 −0.37

0.00 0.00 1.00 −0.40 −0.88 2.85 −0.16 −0.37 1.32

�
1

0.00 0.00 0.00 −0.10 −0.03 0.13 −0.01 −0.02 0.04

�
2

−4.00 4.00 0.00 −3.90 3.67 0.28 −3.97 3.87 0.14

�3
−4.00 0.00 4.00 −4.00 −0.05 4.06 −4.03 −0.03 4.08

�
1

1.00 0.00 0.00 2.01 −0.05 −0.64 0.96 −0.02 −0.23

0.00 1.00 0.00 −0.05 1.20 −0.02 −0.02 0.64 −0.01

0.00 0.00 1.00 −0.64 −0.02 1.82 −0.23 −0.01 0.91

�
2

1.00 0.00 0.00 1.72 −0.40 −0.06 0.83 −0.15 −0.02

0.00 1.00 0.00 −0.40 2.75 −0.90 −0.15 1.25 −0.39

0.00 0.00 1.00 −0.06 −0.90 2.18 −0.02 −0.39 1.07

�3 1.00 0.00 0.00 1.38 −0.03 −0.23 0.78 −0.02 −0.08

0.00 1.00 0.00 −0.03 1.12 −0.03 −0.02 0.66 −0.01

0.00 0.00 1.00 −0.23 −0.03 1.53 −0.08 −0.01 0.82
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Table 10  Simulated datasets 

using multivariate Student-t 

distributions Scenarios 5–8

True GPDC TPDC

�
1

0.00 0.00 0.00 − 0.16 0.17 − 0.02 − 0.01 0.02 − 0.01

�
2

− 7.00 7.00 0.00 − 7.04 7.27 − 0.07 − 7.04 7.18 − 0.05

�3
− 7.00 0.00 7.00 − 6.99 0.47 6.59 − 7.00 0.14 6.93

�
1

1.00 0.00 0.00 2.80 − 1.12 − 0.04 0.97 − 0.15 − 0.02

0.00 1.00 0.00 − 1.12 2.72 − 0.05 − 0.15 0.96 − 0.01

0.00 0.00 1.00 − 0.04 − 0.05 1.60 − 0.02 − 0.01 0.74

�
2

16.00 0.00 0.00 4.83 − 0.20 0.02 3.58 − 0.14 − 0.02

0.00 16.00 0.00 − 0.20 5.39 0.09 − 0.14 3.84 0.06

0.00 0.00 16.00 0.02 0.09 4.25 − 0.02 0.06 3.14

�3 2.25 0.00 0.00 2.90 − 0.14 − 0.21 1.32 − 0.07 − 0.05

0.00 2.25 0.00 − 0.14 4.69 − 2.42 − 0.07 1.77 − 0.56

0.00 0.00 2.25 − 0.21 − 2.42 5.80 − 0.05 − 0.56 1.97

�
1

0.00 0.00 0.00 − 0.10 0.00 0.08 0.00 − 0.01 − 0.00

�
2

− 7.00 7.00 0.00 − 6.96 6.76 0.36 − 7.01 6.93 0.18

�3
− 7.00 0.00 7.00 − 7.02 − 0.02 7.04 − 7.03 − 0.02 7.06

�
1

1.00 0.00 0.00 2.32 − 0.18 − 0.65 0.91 − 0.03 − 0.10

0.00 1.00 0.00 − 0.18 1.42 −0.03 − 0.03 0.71 − 0.01

0.00 0.00 1.00 − 0.65 − 0.03 2.06 − 0.10 − 0.01 0.87

�
2

16.00 0.00 0.00 5.13 − 0.65 − 0.00 2.94 − 0.34 −0.02

0.00 16.00 0.00 − 0.65 8.04 − 2.46 − 0.34 4.20 − 1.14

0.00 0.00 16.00 − 0.00 − 2.46 6.76 − 0.02 − 1.14 3.78

�3 2.25 0.00 0.00 2.13 − 0.05 − 0.22 1.48 − 0.04 − 0.08

0.00 2.25 0.00 − 0.05 1.83 − 0.20 − 0.04 1.32 − 0.04

0.00 0.00 2.25 − 0.22 − 0.20 2.40 − 0.08 − 0.04 1.56

�
1

0.00 0.00 0.00 − 0.16 0.21 − 0.05 − 0.05 0.09 − 0.03

�
2

− 4.00 4.00 0.00 − 4.12 4.46 − 0.19 − 4.12 4.38 − 0.15

�3
− 4.00 0.00 4.00 − 3.99 0.62 3.53 − 3.98 0.40 3.72

�
1

1.00 0.00 0.00 2.57 − 0.62 − 0.02 1.11 − 0.20 − 0.02

0.00 1.00 0.00 − 0.62 2.48 − 0.07 − 0.20 1.08 − 0.02

0.00 0.00 1.00 −0.02 − 0.07 1.80 − 0.02 −0.02 0.82

�
2

16.00 0.00 0.00 4.42 − 0.02 0.03 2.61 − 0.05 − 0.01

0.00 16.00 0.00 − 0.02 5.15 0.19 − 0.05 2.91 0.10

0.00 0.00 16.00 0.03 0.19 4.06 − 0.01 0.10 2.34

�3 2.25 0.00 0.00 3.18 − 0.14 − 0.17 1.56 − 0.10 − 0.10

0.00 2.25 0.00 − 0.14 3.89 − 1.26 − 0.10 1.96 − 0.63

0.00 0.00 2.25 − 0.17 − 1.26 4.89 − 0.10 − 0.63 2.30

�
1

0.00 0.00 0.00 − 0.16 0.01 0.10 − 0.05 − 0.00 0.03

�
2

− 4.00 4.00 0.00 − 3.95 3.53 0.75 − 3.95 3.45 0.75

�3
−4.00 0.00 4.00 − 4.06 − 0.05 4.11 −4.06 − 0.05 4.14

�
1

1.00 0.00 0.00 2.40 − 0.17 − 0.49 1.08 − 0.05 − 0.21

0.00 1.00 0.00 − 0.17 1.57 − 0.12 − 0.05 0.76 − 0.04

0.00 0.00 1.00 − 0.49 − 0.12 2.15 − 0.21 − 0.04 1.02

�
2

16.00 0.00 0.00 4.25 − 0.42 − 0.04 2.83 − 0.38 −0.09

0.00 16.00 0.00 − 0.42 6.72 −2.02 − 0.38 4.79 − 1.79

0.00 0.00 16.00 − 0.04 − 2.02 5.15 − 0.09 − 1.79 3.74

�3 2.25 0.00 0.00 2.04 − 0.05 − 0.13 1.10 − 0.03 − 0.07

0.00 2.25 0.00 − 0.05 1.81 − 0.16 − 0.03 0.97 − 0.02

0.00 0.00 2.25 − 0.13 −0.16 2.41 − 0.07 − 0.02 1.21
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Table 11  Simulated datasets 

using multivariate Student-t 

distributions Scenarios 9–12

True GPDC TPDC

�
1

0.00 0.00 0.00 − 0.11 0.11 0.04 − 0.01 0.01 0.03

�
2

− 7.00 7.00 0.00 − 7.01 7.02 0.04 − 7.02 7.03 0.03

�3
− 7.00 0.00 7.00 − 6.97 0.03 7.03 − 6.98 0.02 7.03

�
1

1.00 0.00 0.00 2.37 − 0.83 − 0.08 1.16 − 0.14 − 0.04

0.00 1.00 0.00 − 0.83 2.26 − 0.06 − 0.14 1.12 − 0.02

0.00 0.00 1.00 − 0.08 − 0.06 1.43 − 0.04 − 0.02 0.91

�
2

1.00 − 0.50 − 0.50 1.55 − 0.92 −0.69 1.07 − 0.57 − 0.51

− 0.50 1.00 0.50 − 0.92 1.69 0.68 − 0.57 1.12 0.51

− 0.50 0.50 1.00 − 0.69 0.68 1.31 − 0.51 0.51 0.97

�3 1.00 0.70 0.70 1.32 0.89 0.89 0.77 0.53 0.56

0.70 1.00 0.70 0.89 1.44 0.89 0.53 0.80 0.57

0.70 0.70 1.00 0.89 0.89 1.54 0.56 0.57 0.87

�
1

0.00 0.00 0.00 − 0.10 − 0.01 0.14 − 0.01 − 0.01 0.02

�
2

− 7.00 7.00 0.00 − 6.98 6.92 0.06 − 7.03 7.01 0.02

�3
− 7.00 0.00 7.00 − 7.01 − 0.00 7.01 − 7.01 − 0.00 7.01

�
1

1.00 0.00 0.00 2.46 − 0.00 − 0.87 1.11 − 0.02 − 0.14

0.00 1.00 0.00 − 0.00 1.47 0.03 − 0.02 0.91 −0.00

0.00 0.00 1.00 − 0.87 0.03 2.26 − 0.14 − 0.00 1.07

�
2

1.00 − 0.50 − 0.50 1.71 − 1.04 − 0.66 0.83 − 0.45 − 0.40

− 0.50 1.00 0.50 − 1.04 2.24 0.43 − 0.45 0.92 0.39

− 0.50 0.50 1.00 − 0.66 0.43 1.72 − 0.40 0.39 0.86

�3 1.00 0.70 0.70 1.32 0.86 0.89 1.04 0.69 0.72

0.70 1.00 0.70 0.86 1.18 0.86 0.69 0.97 0.70

0.70 0.70 1.00 0.89 0.86 1.34 0.72 0.70 1.06

�
1

0.00 0.00 0.00 −0.26 0.29 0.02 − 0.13 0.14 0.03

�
2

− 4.00 4.00 0.00 − 4.08 4.09 0.09 − 4.07 4.08 0.07

�3
−4.00 0.00 4.00 − 3.93 0.07 4.01 −3.96 0.02 4.06

�
1

1.00 0.00 0.00 2.49 − 1.03 − 0.08 1.27 − 0.44 − 0.04

0.00 1.00 0.00 − 1.03 2.30 − 0.07 − 0.44 1.19 − 0.06

0.00 0.00 1.00 − 0.08 − 0.07 1.47 − 0.04 − 0.06 0.84

�
2

1.00 − 0.50 − 0.50 1.36 −0.80 − 0.62 0.89 − 0.49 − 0.41

− 0.50 1.00 0.50 − 0.80 1.55 0.61 − 0.49 0.98 0.42

− 0.50 0.50 1.00 − 0.62 0.61 1.14 − 0.41 0.42 0.77

�3 1.00 0.70 0.70 1.25 0.77 0.73 0.60 0.42 0.44

0.70 1.00 0.70 0.77 1.43 0.76 0.42 0.65 0.46

0.70 0.70 1.00 0.73 0.76 1.62 0.44 0.46 0.73

�
1

0.00 0.00 0.00 − 0.28 − 0.04 0.36 − 0.11 −0.01 0.18

�
2

− 4.00 4.00 0.00 − 3.89 3.71 0.18 − 4.01 3.97 0.04

�3
− 4.00 0.00 4.00 − 4.01 − 0.00 4.06 − 4.01 0.01 4.05

�
1

1.00 0.00 0.00 2.81 0.18 − 1.16 1.36 0.03 − 0.50

0.00 1.00 0.00 0.18 1.43 0.11 0.03 0.82 0.03

0.00 0.00 1.00 −1.16 0.11 2.44 − 0.50 0.03 1.25

�
2

1.00 − 0.50 − 0.50 1.84 − 1.10 −0.55 0.81 − 0.49 − 0.35

−0.50 1.00 0.50 − 1.10 2.72 0.13 − 0.49 1.02 0.30

− 0.50 0.50 1.00 − 0.55 0.13 2.07 − 0.35 0.30 0.84

�3 1.00 0.70 0.70 1.19 0.79 0.87 0.86 0.57 0.63

0.70 1.00 0.70 0.79 1.00 0.81 0.57 0.76 0.59

0.70 0.70 1.00 0.87 0.81 1.25 0.63 0.59 0.91

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 42979 Article No : 67 Pages : 22 MS Code : 67 Dispatch : 21-1-2020

SN Computer Science _#####################_ Page 17 of 22 _####_

SN Computer Science

Table 12  Simulated datasets 

using multivariate Student-t 

distributions Scenarios 13–16

True GPDC TPDC

�
1

0.00 0.00 0.00 − 0.35 0.35 −0.04 − 0.06 0.06 0.01

�
2

− 7.00 7.00 0.00 − 7.22 7.28 0.20 − 7.15 7.17 0.15

�3
−7.00 0.00 7.00 − 6.97 0.12 6.95 −6.97 0.02 7.05

�
1

1.00 0.00 0.00 3.87 − 2.17 − 0.03 1.22 − 0.33 − 0.00

0.00 1.00 0.00 − 2.17 3.67 −0.13 − 0.33 1.18 − 0.06

0.00 0.00 1.00 − 0.03 − 0.13 2.15 − 0.00 − 0.06 0.90

�
2

16.00 − 8.00 − 8.00 5.07 − 2.80 − 2.48 3.94 − 2.09 − 1.86

− 8.00 16.00 8.00 − 2.80 5.56 2.46 − 2.09 4.22 1.84

− 8.00 8.00 16.00 − 2.48 2.46 4.51 − 1.86 1.84 3.55

�3 2.25 1.57 1.57 2.05 1.22 1.19 1.01 0.70 0.74

1.57 2.25 1.57 1.22 2.70 0.89 0.70 1.09 0.76

1.57 1.57 2.25 1.19 0.89 2.98 0.74 0.76 1.18

�
1

0.00 0.00 0.00 − 0.15 0.02 0.15 − 0.01 0.00 0.02

�
2

− 7.00 7.00 0.00 − 7.09 6.93 0.29 − 7.12 7.09 0.13

�3
− 7.00 0.00 7.00 − 7.01 − 0.01 7.03 − 7.01 − 0.00 7.02

�
1

1.00 0.00 0.00 2.83 − 0.15 − 0.99 1.03 − 0.04 − 0.14

0.00 1.00 0.00 − 0.15 1.62 0.04 − 0.04 0.82 − 0.01

0.00 0.00 1.00 − 0.99 0.04 2.56 − 0.14 − 0.01 0.99

�
2

16.00 − 8.00 − 8.00 5.42 − 3.00 − 2.19 2.84 − 1.57 − 1.29

− 8.00 16.00 8.00 − 3.00 7.28 1.35 − 1.57 3.40 1.13

− 8.00 8.00 16.00 − 2.19 1.35 5.99 − 1.29 1.13 3.04

�3 2.25 1.57 1.57 1.89 1.24 1.31 1.43 0.94 1.01

1.57 2.25 1.57 1.24 1.69 1.24 0.94 1.31 0.96

1.57 1.57 2.25 1.31 1.24 1.96 1.01 0.96 1.48

�
1

0.00 0.00 0.00 − 0.42 0.51 − 0.16 − 0.30 0.31 − 0.08

�
2

− 4.00 4.00 0.00 − 4.50 4.61 0.31 −  4.37 4.41 0.34

�3
− 4.00 0.00 4.00 − 3.83 0.40 3.57 − 3.96 0.09 4.05

�
1

1.00 0.00 0.00 3.44 − 1.68 − 0.32 1.95 − 0.79 −0.07

0.00 1.00 0.00 − 1.68 3.25 0.21 − 0.79 1.84 − 0.06

0.00 0.00 1.00 − 0.32 0.21 2.63 − 0.07 − 0.06 1.50

�
2

16.00 − 8.00 − 8.00 4.40 − 2.35 − 2.20 2.98 − 1.53 − 1.41

− 8.00 16.00 8.00 − 2.35 5.01 2.21 − 1.53 3.31 1.41

− 8.00 8.00 16.00 − 2.20 2.21 3.83 − 1.41 1.41 2.68

�3 2.25 1.57 1.57 2.70 0.49 0.35 1.02 0.62 0.66

1.57 2.25 1.57 0.49 3.49 0.71 0.62 1.19 0.64

1.57 1.57 2.25 0.35 0.71 4.04 0.66 0.64 1.35

�
1

0.00 0.00 0.00 − 0.44 0.26 0.17 − 0.27 0.16 0.13

�
2

− 4.00 4.00 0.00 − 2.50 2.03 0.77 − 2.42 2.15 0.36

�3
− 4.00 0.00 4.00 − 3.11 0.13 3.09 − 3.10 0.09 3.20

�
1

1.00 0.00 0.00 3.12 − 0.84 − 0.85 1.78 − 0.48 − 0.50

0.00 1.00 0.00 − 0.84 2.19 0.23 − 0.48 1.29 0.08

0.00 0.00 1.00 −0.85 0.23 2.47 − 0.50 0.08 1.41

�
2

16.00 −8.00 − 8.00 3.66 − 2.07 −0.63 2.46 − 1.40 − 0.64

− 8.00 16.00 8.00 − 2.07 4.99 0.16 − 1.40 3.27 0.14

− 8.00 8.00 16.00 − 0.63 0.16 3.83 − 0.64 0.14 2.48

�3 2.25 1.57 1.57 1.49 0.66 0.82 0.90 0.52 0.63

1.57 2.25 1.57 0.66 1.53 0.57 0.52 0.83 0.50

1.57 1.57 2.25 0.82 0.57 1.82 0.63 0.50 1.03
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Fig. 5  Simulated datasets using multivariate Gaussian distributions 

Scenarios 1–4, each color and symbol representing a diferent cluster
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Fig. 6  Simulated datasets using multivariate Gaussian distributions 

Scenarios 5–8, each color and symbol representing a diferent cluster
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Fig. 7  Simulated datasets using multivariate Gaussian distributions Sce-

narios 9–12, each color and symbol representing a diferent cluster
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Fig. 8  Simulated datasets using multivariate Gaussian distributions Sce-

narios 13–16, each color and symbol representing a diferent cluster
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Fig. 9  Simulated datasets using multivariate Student-t distributions 

Scenarios 1–4, each color and symbol representing a diferent cluster
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Fig. 10  Simulated datasets using multivariate Student-t distributions 

Scenarios 5–8, each color and symbol representing a diferent cluster
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Fig. 11  Simulated datasets using multivariate Student-t distributions Sce-

narios 9–12, each color and symbol representing a diferent cluster
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Fig. 12  Simulated datasets using multivariate Student-t distributions Sce-

narios 13–16, each color and symbol representing a diferent cluster
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