
����������
�������

Citation: D’Arco, M.; Napoli, E.;

Zacharelos, E.; Angrisani, L.; Strollo,

A.G.M. Enabling Fine Sample Rate

Settings in DSOs with Time-

Interleaved ADCs. Sensors 2022, 22,

234. https://doi.org/10.3390/

s22010234

Academic Editors: Marco Carratù

and Filippo Attivissimo

Received: 19 October 2021

Accepted: 27 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Enabling Fine Sample Rate Settings in DSOs with
Time-Interleaved ADCs

Mauro D’Arco * , Ettore Napoli , Efstratios Zacharelos , Leopoldo Angrisani
and Antonio Giuseppe Maria Strollo

Department of Electric and Information Technology Engineering (DIETI), University of Napoli Federico II,
Via Claudio 21, 80125 Napoli, Italy; etnapoli@unina.it (E.N.); efstratios.zacharelos@unina.it (E.Z.);
angrisan@unina.it (L.A.); astrollo@unina.it (A.G.M.S.)
* Correspondence: darco@unina.it; Tel.: +39-0817683237

Abstract: The time-base used by digital storage oscilloscopes allows limited selections of the sample
rate, namely constrained to a few integer submultiples of the maximum sample rate. This limitation
offers the advantage of simplifying the data transfer from the analog-to-digital converter to the
acquisition memory, and of assuring stability performances, expressed in terms of absolute jitter,
that are independent of the chosen sample rate. On the counterpart, it prevents an optimal usage
of the memory resources of the oscilloscope and compels to post processing operations in several
applications. A time-base that allows selecting the sample rate with very fine frequency resolution, in
particular as a rational submultiple of the maximum rate, is proposed. The proposal addresses the
oscilloscopes with time-interleaved converters, that require a dedicated and multifaceted approach
with respect to architectures where a single monolithic converter is in charge of signal digitization.
The proposed time-base allows selecting with fine frequency resolution sample rate values up to
200 GHz and beyond, still assuring jitter performances independent of the sample rate selection.

Keywords: digital storage oscilloscope; time-interleaving; time-base

1. Introduction

The possibility of different sample rate choices in digital storage oscilloscopes (DSOs)
is typically implemented by means of a digital circuit, positioned between the analog to
digital converter (ADC) and the acquisition memory, that can seamlessly decimate the
digitized signal by an integer factor [1–3]. Here, decimation has to be intended in a wide
sense as selecting one out of M consecutive samples that are returned by the ADC, where
M is the decimation factor [4,5]. This ingenious approach lets the ADC steady operate at a
fixed-frequency, which is chosen equal to the maximum frequency for which it has been
designed, and assures stability performances, expressed in terms of absolute jitter, that
are independent of the chosen sample rate [6–8]. Moreover, it simplifies the data transfer
from the ADC to the acquisition memory, because the memory access rate is always equal
to a submultiple of a fixed frequency, namely the maximum sample rate [9,10]. On the
counterpart, this approach substantially limits the possible choices of the sample rate, that,
due to additional design constraints, fall upon three values per decade: typically either
{2, 5, 10} or {2, 4, 10} [11–13]. Consequently, one has poor control of the time interval
capture in waveform analysis, and less possibilities for an optimal usage of the memory
resources [14,15]. For instance, one can not set coherent sampling conditions in the analysis
of steady alternate waveforms, as well as optimal frequency span and resolution in FFT
analyses [16–19].

A time base system that allows selecting the sample rate with very fine frequency
resolution has recently been proposed in [20,21]. This solution improves the digital cir-
cuit deployed between the ADC and the acquisition memory such that it can digitally
downsample the signal by a factor within the interval ( 1

2 , 1). This is sufficient to grant

Sensors 2022, 22, 234. https://doi.org/10.3390/s22010234 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22010234
https://doi.org/10.3390/s22010234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1641-8359
https://orcid.org/0000-0002-6200-3990
https://orcid.org/0000-0002-7334-2250
https://orcid.org/0000-0001-6932-6891
https://doi.org/10.3390/s22010234
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010234?type=check_update&version=2


Sensors 2022, 22, 234 2 of 15

fine sample rate choices in a wide range, since fine frequency resolution becomes also
available to lower values using one decimation factor within the interval ( 1

2 , 1) followed
by an additional integer decimation step [22–24]. Clearly, the need of real-time execution
and fine sample rate selections, make the downsampling task much more challenging with
respect to post-processing applications, where downsampling can be considered little more
than an elementary task [25–29]. A physical synthesis of the digital circuit shows that such
a time base is capable of operating on signals at a maximum sample rate slightly above
5 GHz [21].

In the presence of sample rates that reach 200 GHz and above, as those available
from DSOs that exploit several time-interleaved ADCs, the time base system developed
for a single channel architecture cannot be straightforwardly adapted to cope with parallel
architectures [30–32]. In time-interleaved structures, L parallel channels, each one hosting
an individual ADC, acquire the input signal at the same rate, but with a time-offset equal
to 1

L of the sample period. As a result, the aggregate throughput is L times the sample
rate of the individual ADCs. Time interleaved structures are complemented with a digital
circuit that combines the sample streams and carries out further real-time operations
to produce a calibrated response and/or enable different acquisition modes. The most
common approaches exploit polyphase filters, which are suitable to manage parallel data
streams [33–35]. Unfortunately, they lack however of adequate reconfigurability features to
enable fine sample rate selection capabilities.

A dedicated solution to enable fine sample rate selections for DSOs with time-interleaved
ADCs, which inherits some concepts of the one for single channels architectures and extends
them to cope with parallel architectures is studied and proposed. More specifically, as for the
pre-existing solution, the digital signal is filtered with a filter characterized by dynamically
generated coefficients to obtain a version that contains both useful samples and dummy
samples. At the acquisition stage the useful samples are retrieved while the dummy ones are
discarded for achieving the reduced sample rate chosen by the user. However, the proposed
solution parallel distributes the processing operations to cope with a stream of bunched
samples, each bunch formed with the samples released by the parallel ADCs within the
same clock period. This is enabled by means of some important novelties consisting in:
(i) a parallel processing scheme for filtering the bunched signal with a filter characterized
by dynamically varying coefficients; (ii) an original strategy for defragmenting each bunch
and separating useful from dummy samples; (iii) a memory management approach for
assembling constant size arrays that are either full of useful samples or of dummy samples,
such that storing the first and discarding the latter allows acquiring the signal at the selected
sample rate. It is worth underlining that the main challenge faced by the proposed solution
is satisfying real-time execution requirements, which are due for all the aforementioned
tasks, such that the user can rely on fine sample rate choices up to 200 GHz and beyond.

The article overviews the pre-existing solution, which is tailored for a DSO with a
monolithic ADC, i.e., a single channel architecture, in Section 2, and presents the new solu-
tion, designed for a multi-channel architecture, in Section 3, where also some results related
to a synthesis of the circuit to implement the proposed approach are given. Throughout the
article the attention is mainly paid to illustrate methods and operation principles in the
clearest possible way, preferring to this end some degree of abstraction in place of a faithful
description of the layout of the digital circuit that implements the proposed solution.

2. Sample Rate Selection in a Single Channel Architecture

The fundamental idea underneath the resampling strategy for a single channel archi-
tecture can be explained considering a couple of clocks at different frequencies. The first
clock is a physical clock with frequency fck, coinciding with the maximum sample rate
offered by the system; this clock ticks the sampling instants providing the timing to the
internal ADC. The second clock is a fictitious clock characterized by frequency C fck, where
C < 1, that ticks the resampling instants.



Sensors 2022, 22, 234 3 of 15

As shown in Figure 1 the resampling instants generally fall between a couple of
consecutive time instants ticked by the first clock. The resampling instants exhibit a delay
with respect to a previous sampling instant and a lead with respect to the subsequent
sampling instant. The amounts of both delay and lead are used to calculate the resampled
value falling between the instants n and (n + 1), named y(n), as weighted average of the
samples x(n) and x(n + 1). This strategy identifies a linear interpolation method that can
be implemented provided that the lead and delay, namely the coefficients in the weighted
average, are identifiable, as they are on the base of the value C implied by the sample rate
chosen by the user.

 

n n+1 

A
m

pl
itu

de
  

Discrete time  

x(n)  
x(n+1)   

n-1 

x(n-1)  

- Physical clock 

- Digitized samples 

- Fictitious clock 

- Resampled values 
  

Figure 1. Samples produced by the ADC at the time instants ticked by the physical clock, and resam-
pled values at time instants ticked by the fictitious clock.

More specifically, the value y(n) is determined by combining the samples x(n) and
x(n + 1) according to:

y(n) = a(n)x(n) + ā(n)x(n + 1) (1)

where a(n) quantifies in Tck units (Tck is the reciprocal of fck), the time lead with respect to
instant (n + 1) and ā(n) = 1− a(n) the delay with respect to instant n. The coefficients
are time varying and can be determined using a recursive formula: the coefficient a(n) is
obtained by subtracting to its previous value the lead reduction caused by the longer period
of the resampling clock, equal to Tck

C − Tck, which in Tck units equals 1−C
C ; the coefficient ā(n)

is in parallel obtained by adding to its previous value the same quantity, which represents
the increment of the time delay of the resampling instant with respect to the previous
sampling instant.

It is worth noticing that a negative lead and a delay greater than one contextually
occur anytime two consecutive ticks by the fictitious clock include two consecutive ticks
by the physical clock. In these cases the resampled value obtained with the weighted
average is considered a dummy one. Dummy values are not stored in the acquisition
memory, thus extracting a subsequence from the signal y(n); this subsequence represents
the resampled version of the signal x(n) and it is characterized by a lower sample rate,
namely C fck, (longer period: Tck

C ). Also, the occurrence of dummy values can be detected by
checking the values of a(n) or ā(n), which by nature must be positive values within (0, 1).
The values of the coefficients that underflow or overflow (0, 1) are wrapped at the next
clock tick around 0 and 1 by adding and subtracting the unit value, respectively, to a(n)
and ā(n). The algorithm for computing the values of the coefficients at the n-th step can be
described in terms of coded instruction as in Algorithm 1, where the condition a(n) < 0
is used instead of the equivalent one, ā(n) > 1 to recognize dummies occurrences; the
coefficients are initialized as a(0) = 1 and ā(0) = 0.



Sensors 2022, 22, 234 4 of 15

Algorithm 1: Algorithm for computing the weighting coefficients.
if a(n) < 0 then {

a(n) = a(n− 1) + 1;

ā(n) = ā(n− 1)− 1;

} else

a(n) = a(n− 1)− 1−C
C ;

ā(n) = ā(n− 1) + 1−C
C ;

} end

Managing the storage process for skipping dummy samples and creating the lower
rate stream is attained using a pointer to the acquisition memory (or the interface buffer);
the pointer undergoes (unitary) self-increment by default, except when a negative a(n) is
detected. The dummy samples are thus temporarily stored in the memory but immediately
overwritten by the next sample. For example, with reference to Figure 1, at the discrete
time instant n the weighted average of x(n − 1) and x(n) is a dummy value, which is
temporarily stored in memory, and overwritten at the next clock cycle by the resampled
value that falls between the time instants n and n + 1.

The described method uses a couple of dynamically generated coefficients to perform
filtering and subsequently determine the resampled value. Filtering can be simply recog-
nized to be a linear interpolation between adjacent samples, which corresponds to a filter
with poor roll-off. Specifically, the frequency response of the filter, H( f ), is analytically
described by:

H( f ) = Tcksinc2( f Tck) (2)

The aliasing contributions produced by downsampling the digital signal is however
sufficiently contrasted by the filter in Equation (2) anytime the output sample rate is much
greater than the Nyquist rate of the input signal. In the practice, experts DSO users are
aware of the convenience of oversampling the signal for collocating the alias contributions
in the deep attenuation band of the anti-alias filter.

Also, the filter exhibits a lack of flatness in the pass-band that can be compensated,
if needed, either by means of preemptive digital filtering before the re-sampling action, or by
means of an equalizing filter after the downsampling action. In the latter case, the filtering
operations must be occasionally suspended at any occurrences of dummy samples.

Typically aliasing effects can be considered negligible for sample rates beneath 10%
the maximum sample rate and 8 bit resolution. However, at very high sample rates the
overall performance diminishes, suggesting the use of a higher order interpolation filter.
Further aspects related to the adoption of alternative filters, are studied in [21] that also
presents an implementation of a digital synthesis, based on a 14 nm FinFET GF technology,
that shows the feasibility and effectiveness of the approach in terms of hardware resources
(less than 400 flip flops) and power consumption (dynamic power less than 1.8 µW/MHz,
leakage power less than 1.1 µW). The implementation however evidences a limit for the
maximum sample rate that is only slightly above 5 GHz.

3. Sample Rate Selection in Multi-Channel Time-Interleaved Architectures

The proposed solution distributes the processing operations to cope with a stream
of bunched samples, each bunch formed with the samples released by the parallel ADCs
within the same clock period. In particular, as briefly sketched in Figure 2, it develops
through three fundamental stages:

• a filtering stage, where the bunched signal is filtered with a filter characterized by
dynamically varying coefficients;

• a defragmentation stage, where the useful samples are separated from the dummy samples;



Sensors 2022, 22, 234 5 of 15

• a packing stage where a suitable memory management approach assures the acquisi-
tion of the useful samples at the selected sample rate.

The processing stages illustrated in the following allow the user to downsample the
data stream to C times the highest sample rate, where C can be within the interval ( 1

2 , 1).
Fine sample rates can be obtained all over the range by combining the proposed approach
with standard decimation with integer values.

 
 
 

 ADCL   

 ADC2  

channel  #1 

channel  #L 

channel  #2 

 ADC1 

FI
LT

ER
IN

G 

DE
FR

AG
M

EN
TA

TI
ON

 

PA
CK

IN
G 

AC
Q

UI
SI

TI
ON

 M
EM

OR
Y 

DIGITAL CIRCUIT 

Figure 2. Schematics of the system that enables fine sample rate selection in DSOs.

3.1. Filtering Stage

A DSO with L time-interleaved channels, enumerated with l = 1, . . ., L, produces
a bunch of L samples at each clock tick. If the maximum bunch rate allowed by the
system is fck, then the maximum sample rate for the digitized signal, which is obtained
by unpacking the bunches, is L fck. The generic bunch is returned at the discrete time
instants m, and contains the L samples of the digitized signal at the discrete time instants
n = mL + l − 1, with l = 1, . . ., L.

The sample rate selected by the user is obtained by digitally downsampling the sig-
nal at the highest rate, through the linear interpolation method exploited by the single
channel architecture. In other terms, the resampled values are determined weighting
and summing consecutive samples, which in multi-channel architectures come from ad-
jacent channels. To this end, a couple of L-size arrays a(m) and ā(m) with components
a = {a1(m), . . ., aL(m)} and ā = {ā1(m), . . ., āL(m)} = {1− a1(m), . . ., 1− aL(m)}, where
al(m) is the coefficient corresponding to a given a(n) in a single channel system, namely
al(m) = a(mL + l), are required. The arrays are time-varying and must be updated at any
new bunch occurrence.

Therefore, in the case of a multi-channel system, one has to use in place of Equation (1):

y(m) = al(m)x(mL + l − 1) + āl(m)x(mL + l) (3)

Unfortunately, updating cannot be performed through mere linear operations, since,
in the presence of dummy values, wrapping is required. In fact, the values of the coefficients
could underflow or overflow (0, 1); if this happens they must be wrapped around 0 and 1
by respectively adding, in case of underflow, or subtracting, in case of overflow, the unit
value. Differently from the single channel implementation, where wrapping is performed
at the next clock cycle, for the parallel architecture, it must be performed in the same clock
cycle, since the coefficient spoiled by underflow or overflow could be al(m), requiring thus
wrapping al+1(m), which has to be released by the adjacent channel at the same time.



Sensors 2022, 22, 234 6 of 15

Like the single channel solution, the multichannel one cannot however avoid returning
some dummy values, i.e., samples that are estimated using coefficients that undergo
wrap operations to fold them into the admissible interval (0, 1); these samples have not
significant values and are discarded at the subsequent defragmentation stage. Specifically,
the proposed solution works on the individual components of the arrays, and defines
the parameter pl(m) to quantify the number of dummy samples expected in the interval
[mL + l, (m + 1)L + l]. The parameter pl(m) can assume either the value P− 1 or P, which
are, respectively, the floor- and ceil-rounded values of the average number of dummy
samples, which depends on the value of C implied by the sample rate selected by the user,
and is given by L(1− C). The generic component of array a(m) at time instant (m + 1),
namely al(m + 1), must be obtained by subtracting L− pl(m) times the lead amount 1−C

C
and adding the integer pl(m) for the wrapping operations to the previous value al(m):

al(m + 1) = al(m)− (L− pl(m))
1− C

C
+ pl(m) (4)

where the parameter pl(m) by default can be set to P− 1 and increased to P when al(m) is
below the threshold:

T = [L− 1− (P− 1)]
1− C

C
− (P− 1) (5)

which quantifies the decrement that would be applied to al(m) in the case that P− 1 dummy
samples occur in the future L − 1 samples. The threshold is defined considering L − 1
decrements in order to forecast if an additional decrement produces a negative al(m + 1)
or not. For a coefficient al(m) that is below the threshold, the negative value at the next
step is not produced if one uses pl(m) = P in Equation (4), which allows implementing a
wrap-around-zero operation.

It is worth noticing that the proposed solution shows that it is not strictly necessary
to have the value on the adjacent channel, al−1(m + 1), for deciding whether a linear
decrement or a wrap-around-zero operation is necessary to determine al(m + 1). In fact,
if al(m) is a negative or small positive value, it is likely that there is enough room for P
dummy values in the next L values, whereas, in the presence of a higher al(m) value the
next dummy sample is far enough, so that there is only room for P− 1 of them.

It is easy to verify that the generic component of array ā can be updated at time (m+ 1)
in parallel using:

āl(m + 1) = 1− al(m) + (L− pl(m))
1− C

C
− pl(m) (6)

The recursive algorithm for updating arrays a and ā needs a base to start, that consists
in the first L values of their components, which can be gained through a short run of the
serial operations described in Algorithm 1.

At any clock event a bunch of L filtered values is finally determined and collected in
the array y = {y1(m), . . ., yL(m)}; to gain y, L couples of consecutive samples are needed
together with the coefficients in arrays a and ā. The samples come from adjacent channels,
namely xl−1(m) = x(n = mL + l − 1) and xl(m) = x(n = mL + l), except for channel 1
that requires an input from the previous bunch, as sketched in Figure 3.

The filtering task returns a couple of L-size arrays: the first one is the data array
array y, the second one is a boolean array with true and false values distinguishing useful
resampled values from dummy values.



Sensors 2022, 22, 234 7 of 15

 
 
 

+ x 

xL(m) 

x2(m) 

x1(m) 
a1(m) + x 

a1(m) 

+ x 

aL(m) + x 

aL(m) 
+ x 

a2(m) + x 

a2(m) 

+ + 

+ + 

+ + 

a a 

yL(m)   

y2(m)   

y1(m) 

channel  #1 

channel  #L 

channel  #2 

xL(m-1) 
Previous value 

from channel #L 

Figure 3. Parallel processing scheme for filtering the bunches produced by the multichannel architec-
ture. The coefficients depend on the time variable m and are recalculated at any clock cycle. Useful
resampled values are intermingled with dummy values in the output array, y.

3.2. Defragmentation Stage

The data array is defragmented by deleting all the dummy values and repositioning
the useful values in the lowest cells of the array. The operation is performed by means of an
architecture with L

2 , if L is even, or L+1
2 if L is odd, pipelined blocks: the number of blocks is

equal to the maximum number of dummy values that can occur in the acquisition process.
Each block includes a data array and a boolean array; the first block accepts as input the
arrays produced by the filtering stage. At each step, the data array and the complementary
boolean array are transferred to the next block through a bus with switchable lines. The bus
configuration is determined by the boolean array, according to the rule that the content
of the l-th cell is transferred to the new block in cell l − 1 when the logic AND on the
subarray including the first l cells turns false. The described step implies the deletion of
the first dummy value encountered scanning bottom-up the data array, and a downshift
by one position of all the remaining values. Similarly, the first false value found along the
bottom-up direction in the boolean array is deleted. Going through the pipeline, all the
dummy values in the input array are deleted and the topmost location, which is freed at
each bus switching, is filled with a zero value. Correspondingly, all the false values in the
boolean array are deleted and the freed topmost location is filled with a true value.

For the sake of clarity an explaining example is given in Figure 4, where an architecture
with L = 8 channels is considered. In this case the number of dummy values in the data
array can never exceed four, such that a pipeline with four blocks is sufficient. The data
array contains three dummy values, shown as white bullets, and five useful values, shown
as black bullets. The true or false values of the complementary boolean array are reported
aside the same bullets, and permit configuring the lines of the bus for transferring the data
in the next block. At the first stage the dummy value deriving from channel 3 is overwritten
and the freed topmost location filled with a zero value, represented with a gray bullet.



Sensors 2022, 22, 234 8 of 15

At the second stage the process addresses the value originally derived from channel 5,
that has been transferred to the location with index 4 at the previous stage, and is further
moved down to the third location in the next block; the third step concerns the third block
where the value at index 5, marked with a false boolean, acts on the configuration of the
bus for data transfer to the fourth block. Notice that at the last step not one of the bus
lines are switched, thus an identical copy of the data array is transferred to the last block.
The presence of this further block, which is superfluous in this example, is instead generally
necessary to cope with the occurrence of a fourth dummy value, that arises when the value
of the factor C is near to the lower bound.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input bunch Output bunch 

Channel #8 

Channel #1  

Channel #2  

Channel #7  

Channel #3  

Channel #4  

Channel #5  

Channel #6  

0 0 0 

T 
 
F 
 
T 
 
F 
 
T 
 
F 
 
T 
 
T 

T 
 
T 
 
F 
 
T 
 
F 
 
T 
 
T 
 
T 

T 
 
T 
 
T 
 
F 
 
T 
 
T 
 
T 
 
T 

T 
 
T 
 
T 
 
T 
 
T 
 
T 
 
T 
 
T 

Figure 4. Bunches are defragmented by deleting the dummy samples (white bullets) and retrieving
the useful resampled values (black bullets); the topmost positions freed by the data routing operations
are filled with zeros (gray bullets).

The defragmentation stage releases an L-size array that contains useful resampled
values positioned in the first L − p1(m) locations, where p1(m) is the value evaluated
on channel l = 1 during the filtering stage, and zero values in the remaining locations.
The boolean array that has helped at the defragmentation stage is no necessary for the
next operations.

3.3. Packing Stage

The size of the useful portion of the data array available after defragmentation is
not constant during the acquisition process. Since memory management is simpler and
more effective in the presence of arrays with constant size, it is convenient grouping the
useful values contained in 2 or more consecutive arrays and form constant size arrays to
be written in the acquisition memory. To this end, the proposed solution uses the last 3
arrays returned by the defragmentation stage to fill an array with either L useful values
or L zero values, the latter to be regarded as a dummy array. A boolean variable b is also
allocated to distinguish the array including useful values from the dummy one; only the
first has to be saved in the acquisition memory. Actually, both arrays are written in the
acquisition memory, but the dummy one is overwritten by the next array. The proposed
solution obeys the condition that if a dummy array is written in the last available segment



Sensors 2022, 22, 234 9 of 15

of the acquisition memory, the storage process has to wait for the subsequent array; it is
easy to show that a dummy array is always followed by one with useful samples.

To detail the operation principle of the packing stage, one can imagine of copying
the input array in the upper half of a new 2L-size array, that is completed with a lower
half with zero values, as shown in Figure 5. The 2L-size array is enqueued in a pipeline
architecture, hosting at the generic step 3 arrays, namely the arrays including the bunches
at time instants m, m− 1, and m− 2: the first array is at the input of the pipeline in the
first position while the third one stands in the third position, i.e., two positions ahead.
Each array entering the pipeline contains a number of useful values, which reduces as the
array progresses through the pipeline. The number of useful values in the top half part is
u0 for the first array, u1 for the array at the intermediate position, and u2 for that at the
last position.

 
 

co
nd

. s
hi

ft 
by

 s0
  

sh
ift

 b
y 

s1
 

sh
ift

 b
y 

s2
 

+ + 
Output 
array 

Figure 5. Diagram for the packing operation: the defragmented bunch is copied in the upper half
array; as the array goes through a pipelined structure, shifting and zero-filling operations modify
the array. Black bullets highlight the useful information, whereas gray bullets represent the zero
values that are inserted at the defragmentation or after any shift that frees the topmost locations at
the packing stage.

At each step parallel shift operations are performed on the 3 arrays: the values in the
first array are shifted down by s0 positions, those in the intermediate array by s1 positions,
and those in the third array by s2 positions. The downward shifts make room for additional
values in the topmost positions, which are all filled with zeros. Adding the half lower
portions of the 3 arrays produced by the shifting operations returns the L-size array that is
written in the acquisition memory. This array is either full of useful values, which represent
consecutive samples at the fine sample rate selected by the user, or full of zero values.
A zero L-size array is forewarned by the occurrence of a false value of the boolean variable
b at the previous step. In fact, the boolean variable is set false when all the useful values in
the intermediate array are necessary to assemble an L-size array with useful values; the
intermediate array emptied of useful values is found at the next step in the third position.

The shift amounts s0 and s1 are determined taking into account the current num-
ber of useful values available in each array, quantified by the parameters u0, u1 and
u2. Actually, it steady holds that s2 = L, whereas s1 changes upon the current value
of the variable u2 as s1 = L − u2, and s0 is determined through a conditional step
as either s0 = L− u1− u2, or s0 = 0 whether the first comes out non negative or not.
The parameters u0, u1, and u2 are updated according to the self-explaining relations:
u0(m) = L− p1(m), u1(m) = u0(m− 1)− s0(m− 1), and u2(m) = u1(m− 1)− s1(m− 1),



Sensors 2022, 22, 234 10 of 15

where p1(m) is the number of dummy values in the array that has been just inserted in the
pipeline. The logical and algebraic operations that must be performed within each clock cy-
cle are summarized in Figure 6 by means of a block diagram, including adders, comparison
operators, conditional selectors, and unitary delay elements: the delay elements are labeled
with their discrete transfer function z−1, the constant values, L and 0 are distinguished by a
rectangular frame, variables are instead presented with their names between brackets.

 
 
 
 

+ 
_ [ p1 ] 

L 

z-1 

+ 
_ 

+ 
_ 

z-1 

[ u1 ] 

[ u2 ] 

+ 
_ 
_ 

+ 
_ 

[ u0 ] 

[ s2 ] 

[ s1 ] 

[ s0 ]  ³0? 
F 
? 
T 

0 

z-1 

z-1 

[ b ] 

Figure 6. Block diagram illustrating the computations needed to determine the couples of triples
{u0, u1, u2} and {s0, s1, s2}; the input to the circuit is p1.

Notice that the parallel operation scheme defined on a restricted set of 3 arrays is
sufficient to assemble at least one every other step an output array full of useful values.
In fact, in the most critical scenario, where a null array is in the third position of the pipeline
and only one residual value is in the intermediate position, the array in the first position
still contains CL useful values, and an array with at least CL useful values is incoming in
the pipeline. As a consequence, after releasing the null array the total number of values
available in the pipeline is 2CL + 1, which is greater that L for any C within ( 1

2 , 1).
The main steps performed by the algorithm to packing the data can briefly be summa-

rized in the following bullet point list:

• the 3 arrays are extended with L zeros in the bottom part;
• shifts are operated to align the useful values;
• the bottom halves of the arrays are summed and sent to memory;
• the topmost halves are moved to the next step of the pipeline, thus discarding the

older half;
• the triples {u0, u1, u2} and {s0, s1, s2} are updated.

3.4. Further Remarks

The low-pass effects produced by the interpolation algorithm, can be performed either
on the data at the maximum sample rate by means of pre-emptive filtering or on the
downsampled data via post filtering. In both cases the filters are conveniently designed
using poly-phase design approaches, that inherently take into account that the samples
are released in bunches of constant size, equal to the number of channels. In the first case,
the pre-emptive filter operates on a data stream characterized by an overall sample rate
equal to the maximum rate offered by the system, whereas in the second case the useful



Sensors 2022, 22, 234 11 of 15

data stream made up of the packed data has a sample rate equal to the selected sample rate,
and the filtering operations must be suspended at any occurrences of dummy arrays.

Furthermore, time-interleaved channels need calibration to remove offset, gain and
time mismatch errors between channels. Designing the digital filters for the streamline
calibration requires the knowledge of the frequency responses of the individual channels,
which are measured at the manufacturing stage. Standard calibration approaches are imple-
mented in streamline by means of so many digital filters as the number of channels. These
filters process the samples released in bunches of constant size; each filter takes in input the
sample of the bunch released by the associated channel. The proposed method assumes
that calibration is performed before re-sampling. Calibration after re-sampling seems much
more difficult, if not unfeasible, because the samples addressed to the acquisition memory,
although still released in bunches of constant size, are linear combinations of samples from
adjacent channels that have no steady correlation with their native channels.

4. Numerical Results and Synthesis of the Circuit

The proposed method is also commented with reference to some numerical data,
related to a sinusoidal signal that has been digitized at a sample rate equal to 1 GHz and
then re-sampled at 693 MHz, according to the user selection C = 0.693, by a multi-channel
system with 8 channels. Figure 7 shows both the samples produced at the maximum
sample rate with diamond markers, which are interpolated with a dashed line to show the
input waveform, and the re-sampled values with stemmed circle markers. The amplitude
values are normalized to the range of the converter. By inspecting Figure 7 one can notice
that each re-sampled value is amid a couple of consecutive diamond markers, but there are
couples of diamond markers that have not re-sampled value in between.

 
0 5 10 15 20 [ns] 30

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

[n.u.]

1

Figure 7. The sinusoidal signal sampled at the 1 GHz (diamond markers) is down-sampled to
693 MHz (circle markers); amplitude values are normalized to the range.

Actually, the 8-channel architecture operates with a slower clock, set to 125 MHz,
and releases at each clock an 8-size array x, that collects the samples produced by the
8 channels that operate in time-interleaved mode in the natural sequence, i.e., channel 1 the
first, channel 8 the last.

The data in Figure 7 are also given in Figure 8, where they are organized into 4 tables,
related respectively to the 8-size arrays collected by the multi-channel system at the time
instants m = 0, 1, 2, and 3. These numerical data allow highlighting both the interpolation



Sensors 2022, 22, 234 12 of 15

and defragmentation operations. In particular, the tables contain the input data x, the time-
varying coefficients utilized to linearly combine adjacent input values (arrays a and 1-a),
and the re-sampled values y. After the interpolation, the array containing the resampled
values is defragmented in order to remove the dummy values, as shown on the right
side of the table, where the useful values are compacted in the lower portion of the array,
and counted by p.

 Interpolation  Defragmentation  
     
 x(0) a(0) 1-a(0) y(0)  y(0)  

Channel #8 0.016 0.785 0.215 -0.077  -0.077 0 0 0 0 
Channel #7 0.449 -0.215 1.215 0.449  dmy -0.077 0 0 0 
Channel #6 0.787 0.228 0.772 0.526  0.526 dmy -0.077 -0.077 -0.077 
Channel #5 0.976 0.671 0.329 0.914  0.914 0.526 0.526 0.526 0.526 
Channel #4 0.976 -0.329 1.329 0.976  dmy 0.914 0.914 0.914 0.914 
Channel #3 0.78 0.114 0.886 0.954  0.954 0.954 0.954 0.954 0.954 
Channel #2 0.433 0.557 0.443 0.587  0.587 0.587 0.587 0.587 0.587 
Channel #1 0.000 1.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 

p[0] = 6 
 

 x(1) a(1) 1-a(1) y(1)  y(1)  
Channel #8 0.394 0.127 0.873 0.710  0.710 0 0 0 0 
Channel #7 -0.039 0.570 0.430 0.147  0.147 0.710 0 0 0 
Channel #6 -0.465 -0.430 1.430 -0.464  dmy 0.147 0.710 0.710 0.710 
Channel #5 -0.803 0.013 0.987 -0.469  -0.469 dmy 0.147 0.147 0.147 
Channel #4 -0.984 0.456 0.544 -0.886  -0.886 -0.469 -0.469 -0.469 -0.469 
Channel #3 -0.969 0.899 0.101 -0.970  -0.970 -0.886 -0.886 -0.886 -0.886 
Channel #2 -0.764 -0.101 1.101 -0.764  dmy -0.970 -0.970 -0.970 -0.970 
Channel #1 -0.417 0.342 0.658 -0.643  -0.643 -0.643 -0.643 -0.643 -0.643 

p[1] = 6 
 

 x(2) a(2) 1-a(2) y(2)  y(2)  
Channel #8 -0.740 0.912 0.088 -0.760  -0.760 0 0 0 0 
Channel #7 -0.378 -0.088 1.088 -0.378  dmy -0.760 0 0 0 
Channel #6 0.055 0.355 0.645 -0.229  -0.229 dmy -0.760 0 0 
Channel #5 0.480 0.798 0.202 0.394  0.394 -0.229 dmy -0.760 -0.760 
Channel #4 0.811 -0.202 1.202 0.811  dmy 0.394 -0.229 -0.229 -0.229 
Channel #3 0.984 0.241 0.759 0.853  0.853 dmy 0.394 0.394 0.394 
Channel #2 0.961 0.684 0.316 0.968  0.968 0.853 0.853 0.853 0.853 
Channel #1 0.756 -0.316 1.316 0.756  dmy 0.968 0.968 0.968 0.968 

p[2] = 5 
 

 x(3) a(3) 1-a(3) y(3)  y(3)  
Channel #8 0.267 0.254 0.746 0.982  0.982 0 0 0 0 
Channel #7 0.710 0.697 0.303 0.794  0.794 0.982 0 0 0 
Channel #6 0.153 -0.303 1.303 0.362  dmy 0.794 0.982 0.982 0.982 
Channel #5 0.596 0.140 0.860 0.301  0.301 dmy 0.794 0.794 0.794 
Channel #4 0.039 0.583 0.417 -0.322  -0.322 0.301 0.301 0.301 0.301 
Channel #3 0.482 -0.417 1.417 -0.827  dmy -0.322 -0.322 -0.322 -0.322 
Channel #2 0.925 0.026 0.974 -0.831  -0.831 -0.831 -0.831 -0.831 -0.831 
Channel #1 0.368 0.469 0.531 -0.973  -0.973 -0.973 -0.973 -0.973 -0.973 

p[3] = 6 

Figure 8. The multi-channel system acquires 8-size arrays, x, that are processed to gain the re-sampled
values, y. Sampled and resampled values are enlisted from bottom to top in their columns; two
additional columns show the coefficient arrays adopted to perform the interpolation. All the steps
needed to attain the defragmentation of the re-sampled data are detailed on the right side.



Sensors 2022, 22, 234 13 of 15

Figure 9 shows the numerical data related to the packing operations for the first two
processing steps. In particular, the re-sampled and defragmented values are shown in the
upper half of the table on the left side, and as moved down by the shifting operations
on the right side. The output produced by the packing operation is highlighted with the
half-column on the rightmost part of each table.

Packing 

m=3  m=2 m=1 m=0       

0  0 0 0       

0  0 0 0       
0.982  0 0.710 -0.077       
0.794  -0.760 0.147 0.526  -0.760     
0.301  -0.229 -0.469 0.914  -0.229 0.710    
-0.322  0.394 -0.886 0.954  0.394 0.147    
-0.831  0.853 -0.970 0.587  0.853 -0.469    
-0.973  0.968 -0.643 0.000  0.968 -0.886    

       -0.970   -0.970 
       -0.643   -0.643 
        -0.077  -0.077 
        0.526  0.526 
        0.914  0.914 
        0.954  0.954 
        0.587  0.587 
        0.000  0.000 
  s0 = 0 s1 = 2 s2 = 8     

 
 

m=4  m=3 m=2 m=1       

0  0 0 0       

0  0 0 0       
0  0.982 0 0  0.982     

-0.990  0.794 -0.760 0  0.794     
-0.835  0.301 -0.229 0.710  0.301     
-0.374  -0.322 0.394 0.147  -0.322     
0.251  -0.831 0.853 -0.469  -0.831     
0.775  -0.973 0.968 -0.886  -0.973 -0.760    

       -0.229   -0.229 
       0.394   0.394 
       0.853   0.853 
       0.968   0.968 
        0.710  0.710 
        0.147  0.147 
        -0.469  -0.469 
        -0.886  -0.886 
  s0 = 0 s1 = 4 s2 = 8     

 
Figure 9. Two subsequent steps of the packing operations are detailed using the re-sampled data
given in Figure 8; the 8-size arrays on the right side are the ones stored in the acquisition memory.

The proposed solution represents an add-on for the circuitry that interfaces the time-
interleaved channels to the acquisition memory. A physical synthesis in a 14 nm FinFET
technology, performed by means of Cadence Genus equipped with a commercial standard-
cell library provided by Global Foundry for estimating parasitic effects, has been carried out.

Clearly, translating the operation principles described in the aforementioned para-
graphs in the design of a digital circuit needs some additional work to step from abstract
approaches and face practical issues. However, a detailed description of the layout of the



Sensors 2022, 22, 234 14 of 15

synthesized circuit is beyond the scope of the authors, who just highlight in the following
some results featured by the physical synthesis.

The implementation of the add-on circuit for a 64-channels system is described in
detail in [21], and demonstrates that:

• the circuit can run at a clock equal to 3.42 GHz, that allows a maximum sample rate
equal to 218.88 GHz;

• the silicon area occupation is less than 16,650 µm2, that are divided as 58% for the
filtering stage, 27% for the defragmentation stage, and 15 % for the packing stage;

• the dissipated power at the maximum clock frequency is 853 mW, including leakage
power equal to 106 µW and dynamic power 249 µW/MHz.

5. Conclusions

The issue of selecting the sample rate with fine frequency resolution in digitizers that
operate with a fix frequency clock has been addressed. A solution that allows selecting
the sample rate as a rational submultiple of the maximum sample rate has been proposed.
The proposed solution can improve the functionality range of the time base of digital
oscilloscopes that at present is still limited to a few settings that prevent optimal usage
of memory resources and coherent sampling operations. The value of the contribution
consists in extending the basic principle, already available for digitizers made up of a single
channel hosting a monolithic analog-to-digital converter, to the case of digitizers with
time-interleaved converters. To this end, the tough issues related to the need of effectively
performing complex operations such as (i) filtering of high-rate parallel data streams with
time-varying filters, (ii) defragmentation of data arrays to single out useful samples and
discard dummy ones, and (iii) data packing to transfer fixed-size data array to the storage
memory, have been faced and original solutions presented.

Author Contributions: Conceptualization, L.A., M.D., E.N., A.G.M.S., E.Z.; methodology, M.D. and
E.Z.; software, E.N. and E.Z.; validation, M.D., E.N., E.Z., L.A. and A.G.M.S.; writing—original draft
preparation, M.D.; writing—review and editing, M.D.; supervision, L.A. and A.G.M.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, S.A.; Agarwala, A.K.; Shahani, D.T.; Alam, M.M. Advance oscilloscope triggering. IEEE Trans. Instrum. Meas. 2007, 56,

944–953. [CrossRef]
2. Lapuh, R.; Pinter, B.; Voljc, B.; Svetik, Z.; Lindic, M. Digital oscilloscope calibration using asynchronously sampled signal estimation.

IEEE Trans. Instrum. Meas. 2011, 60, 2570–2577. [CrossRef]
3. D’Arco, M.; Genovese, M.; Napoli, E.; Vadursi, M. Design and implementation of a preprocessing circuit for bandpass signals

acquisition. IEEE Trans. Instrum. Meas. 2014, 63, 287–294. [CrossRef]
4. Wang, C.M.; Hale, P.D.; Coakley, K.J.; Clement, T.S. Uncertainty of oscilloscope timebase distortion estimate. IEEE Trans. Instrum.

Meas. 2002, 51, 53–58. [CrossRef]
5. Wang, C.M.; Hale, P.D.; Coakley, K.J. Least-squares estimation of time-base distortion of sampling oscilloscopes. IEEE Trans.

Instrum. Meas. 1999, 48, 1324–1332. [CrossRef]
6. Ivchenko, V.G.; Kalashnikov, A.N.; Challis, R.E.; Hayes-Gill, B.R. High-speed digitizing of repetitive waveforms using accurate

interleaved sampling. IEEE Trans. Instrum. Meas. 2007, 56, 1322–1328. [CrossRef]
7. Zhao, Y.; Hu, Y.H.; Wang, H. Enhanced random equivalent sampling based on compressed sensing. IEEE Trans. Instrum. Meas.

2012, 61, 579–586. [CrossRef]
8. Baccigalupi, A.; D’Arco, M.; Liccardo, A. Parameters and methods for adcs testing compliant with the guide to the expression of

uncertainty in measurements. IEEE Trans. Instrum. Meas. 2017, 66, 424–431. [CrossRef]

http://doi.org/10.1109/TIM.2007.894198
http://dx.doi.org/10.1109/TIM.2010.2096910
http://dx.doi.org/10.1109/TIM.2013.2278564
http://dx.doi.org/10.1109/19.989897
http://dx.doi.org/10.1109/19.816156
http://dx.doi.org/10.1109/TIM.2007.899843
http://dx.doi.org/10.1109/TIM.2011.2170729
http://dx.doi.org/10.1109/TIM.2016.2644878


Sensors 2022, 22, 234 15 of 15

9. Pupalaikis, P.J.; Yamrone, B.; Delbue, R.; Khanna, A.S.; Doshi, K.; Bhat, B.; Sureka, A. Technologies for very high bandwidth
real-time oscilloscopes. In Proceedings of the IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Coronado, CA,
USA, 28 September–1 October 2014; pp. 128–135.

10. Baccigalupi, A.; D’Arco, M.; Liccardo, A. Evaluating the uncertainty of digitizing waveform recorders coherently with the gum.
IEEE Trans. Instrum. Meas. 2018, 67, 2294–2302. [CrossRef]

11. Angrisani, L.; D’Arco, M.; Ianniello, G.; Vadursi, M.; An efficient pre-processing scheme to enhance resolution in band-pass signals
acquisition. IEEE Trans. Instrum. Meas. 2012, 61, 2932–2940. [CrossRef]

12. Gori, S.; Narduzzi, C. Application of a phase measurement algorithm to digitizing oscilloscope characterization. IEEE Trans.
Instrum. Meas. 2000, 49, 1211–1215. [CrossRef]

13. Baccigalupi, A.; D’Arco, M.; Liccardo, A.; Moriello, R.S.L. Compressive sampling-based strategy for enhancing adcs resolution.
Measurement 2014, 56, 95–103. [CrossRef]

14. Wang, D.; Zhu, X.; Guo, X.; Luan, J.; Zhou, L.; Wu, D.; Liu, H.; Wu, J.; Liu, X. A 2.6 GS/s 8-Bit Time-Interleaved SAR ADC in 55 nm
CMOS Technology. Electronics 2019, 8, 305. [CrossRef]

15. Jiang, X.; Wu, L.; Ma, Y. Synchronous Mixing Architecture for Digital Bandwidth Interleaving Sampling System. Electronics 2021,
10, 1998. [CrossRef]

16. Monsurro,́ P.; Trifiletti, A.; Angrisani, L.; D’Arco, M. Streamline calibration modelling for a comprehensive design of ati-based
digitizers. Measurement 2018, 125, 386–393. [CrossRef]

17. Attivissimo, F.; Nisio, A.D.; Giaquinto, N.; Savino, M.; Measuring time base distortion in analog-memory sampling digitizers.
IEEE Trans. Instrum. Meas. 2008, 57, 55–62. [CrossRef]

18. D’Apuzzo, M.; D’Arco, M. A wide-band DSO architecture based on three time interleaved channels. J. Instrum. 2016, 11, 08003.
[CrossRef]

19. Lou, P.; Shi, L.; Zhang, X.; Xiao, Z.; Yan, J. A Data-Driven Adaptive Sampling Method Based on Edge Computing. Sensors 2020,
20, 2174. [CrossRef]

20. D’Arco, M.; Napoli, E.; Angrisani, L. A time base option for arbitrary selection of sample rate in digital storage oscilloscopes. IEEE
Trans. Instrum. Meas. 2020, 69, 3936–3948. [CrossRef]

21. Napoli, E.; Zacharelos, E.; D’Arco, M.; Strollo, A.G.M. Real-time downsampling in digital storage oscilloscopes with multichannel
architectures. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1–14. [CrossRef]

22. Li, J.; Pan, J.; Zhang, Y. Automatic Calibration Method of Channel Mismatches for Wideband TI-ADC System. Electronics 2019,
8, 56. [CrossRef]

23. Liu, X.; Xu, H.; Wang, Y.; Dai, Y.; Li, N.; Liu, G. Calibration for Sample-And-Hold Mismatches in M-Channel TIADCs Based on
Statistics. Appl. Sci. 2019, 9, 198. [CrossRef]

24. Bai, S.; Wan, Z.; Wan, P.; Zhang, H.; Ma, Y.; Zhang, X.; Liu, X.; Chen, Z. A 9-Bit 1-GS/s Hybrid-Domain Pseudo-Pipelined SAR
ADC Based on Variable Gain VTC and Segmented TDC. Electronics 2021, 10, 2650. [CrossRef]

25. D’Arco, M.; Napoli, E.; Zacharelos, E. Digital circuit for seamless resampling adc output streams. Sensors 2020, 20, 1619. [CrossRef]
[PubMed]

26. D’Apuzzo, M.; D’Arco, M. Sampling and time–interleaving strategies to extend high speed digitizers bandwidth. Measurement
2017, 111, 389–396. [CrossRef]

27. Seong, K.; Jung, D.; Yoon, D.; Han, J.; Kim, J.; Kim, T.; Lee, W.; Baek, K. Time-Interleaved SAR ADC with Background Timing-Skew
Calibration for UWB Wireless Communication in IoT Systems. Sensors 2020, 20, 2430. [CrossRef]

28. Han, Y.; Ni, K.; Li, X.; Wu, G.; Yu, K.; Zhou, Q.; Wang, X. An FPGA Platform for Next-Generation Grating Encoders. Sensors 2020,
20, 2266. [CrossRef] [PubMed]

29. Monsurro,́ P.; Trifiletti, A.; Angrisani, L.; D’Arco, M. Two novel architectures for 4-channel mixing/filtering/processing digitizers.
Measurement 2019, 142, 138–147. [CrossRef]

30. Kim, G.; Kull, L.; Luu, D.; Braendli, M.; Menolfi, C.; Francese, P.; Yueksel, H.; Aprile, C.; Morf, T.; Kossel, M.; et al. A 161-mW
56-Gb/s ADC-based discrete multitone wireline receiver data-path in 14-nm finfet. IEEE J. Solid-State Circuits 2020, 55, 38–48.
[CrossRef]

31. Xu, B.; Zhou, Y.; Chiu, Y. A 23-mw 24-gs/s 6-bit voltage-time hybrid time-interleaved adc in 28-nm cmos. IEEE J. Solid-State
Circuits 2017, 52, 1091–1100. [CrossRef]

32. Sun, K.; Wang, G.; Zhang, Q.; Elahmadi, S.; Gui, P. A 56-Gs/s 8-bit time-interleaved ADC with ENOB and BW enhancement
techniques in 28-nm CMOS. IEEE J. Solid-State Circuits 2019, 54, 821–833. [CrossRef]

33. Zahrai, S.A.; Onabajo, M. Review of Analog-To-Digital Conversion Characteristics and Design Considerations for the Creation of
Power-Efficient Hybrid Data Converters. J. Low Power Electron. Appl. 2018, 8, 12. [CrossRef]

34. Zhao, Y.; Li, S.; Li, L.; Huang, Z. A Novel Time Delay Estimation and Calibration Method of TI-ADC Based on a Coherent Optical
Communication System. Photonics 2021, 8, 398. [CrossRef]

35. Ta, V.-T.; Hoang, V.-P.; Pham, V.-P.; Pham, C.-K. An Improved All-Digital Background Calibration Technique for Channel
Mismatches in High Speed Time-Interleaved Analog-to-Digital Converters. Electronics 2020, 9, 73. [CrossRef]

http://dx.doi.org/10.1109/TIM.2018.2815433
http://dx.doi.org/10.1109/TIM.2012.2202188
http://dx.doi.org/10.1109/19.893258
http://dx.doi.org/10.1016/j.measurement.2014.06.006
http://dx.doi.org/10.3390/electronics8030305
http://dx.doi.org/10.3390/electronics10161998
http://dx.doi.org/10.1016/j.measurement.2018.04.099
http://dx.doi.org/10.1109/TIM.2007.909600
http://dx.doi.org/10.1088/1748-0221/11/08/P08003
http://dx.doi.org/10.3390/s20082174
http://dx.doi.org/10.1109/TIM.2019.2939765
http://dx.doi.org/10.1109/TCSI.2021.3102386
http://dx.doi.org/10.3390/electronics8010056
http://dx.doi.org/10.3390/app9010198
http://dx.doi.org/10.3390/electronics10212650
http://dx.doi.org/10.3390/s20061619
http://www.ncbi.nlm.nih.gov/pubmed/32183269
http://dx.doi.org/10.1016/j.measurement.2017.08.001
http://dx.doi.org/10.3390/s20082430
http://dx.doi.org/10.3390/s20082266
http://www.ncbi.nlm.nih.gov/pubmed/32316231
http://dx.doi.org/10.1016/j.measurement.2019.04.075
http://dx.doi.org/10.1109/JSSC.2019.2938414
http://dx.doi.org/10.1109/JSSC.2016.2642204
http://dx.doi.org/10.1109/JSSC.2018.2884352
http://dx.doi.org/10.3390/jlpea8020012
http://dx.doi.org/10.3390/photonics8090398
http://dx.doi.org/10.3390/electronics9010073

	Introduction
	Sample Rate Selection in a Single Channel Architecture
	Sample Rate Selection in Multi-Channel Time-Interleaved Architectures
	Filtering Stage
	Defragmentation Stage
	Packing Stage
	Further Remarks

	Numerical Results and Synthesis of the Circuit
	Conclusions
	References

