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Abstract: Novel antiviral nanotherapeutics, which may inactivate the virus and block it from entering
host cells, represent an important challenge to face viral global health emergencies around the world.
Using a combination of bioorthogonal copper-catalyzed 1,3-dipolar alkyne/azide cycloaddition
(CuAAC) and photoinitiated thiol–ene coupling, monofunctional and bifunctional peptidodendrimer
conjugates were obtained. The conjugates are biocompatible and demonstrate no toxicity to cells
at biologically relevant concentrations. Furthermore, the orthogonal addition of multiple copies of
two different antiviral peptides on the surface of a single dendrimer allowed the resulting biocon-
jugates to inhibit Herpes simplex virus type 1 at both the early and the late stages of the infection
process. The presented work builds on further improving this attractive design to obtain a new class
of therapeutics.

Keywords: antiviral compounds; dendrimers; peptides

1. Introduction

Outbreaks and pandemic transmission of viruses, such as coronaviruses and influenza
viruses, set off a global health emergency across the world. The recent COVID-19 pandemic
has demonstrated its catastrophic impact worldwide on human health and on socioeco-
nomic growth [1]. A major challenge against infections triggered by many viruses is the
lack of effective methods for prevention and treatment. Nanotechnology provides the
foundation for the advancements in antiviral strategies [2]. In fact, several unique features
of nanomaterials (such as small-size, high surface-to-volume ratio modifiable surfaces)
may contribute to favor multiple antiviral effects, which may include virus inactivation
and blocking a virus from entering host cells.

Synthetic polymer scaffolds have played a primary function in the progress of modern
biomedicine. Not only have macromolecules exhibited antimicrobial, antifouling, and
stimuli-responsive properties [3–5], there are prominent examples of biocompatible, yet
fully synthetic, systems that function in drug delivery, tissue engineering [6,7], and the
fabrication of bone growth scaffolds [8,9]. The development of controlled polymerization
routes such as ring-opening polymerization [6,10–12], ring-opening metathesis polymer-
ization [13], and controlled radical polymerization methods [14–17] has allowed for the
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synthesis of well-defined and multifunctional scaffolds. Multiple polymer systems such
as poly(lactide) [18–21], poly(norbornene) [22,23], and poly(benzyl-L-glutamate) [24–26]
have been exploited to engineer functional architectures such as polymer–protein con-
jugates [27–33], polymer vesicles [34–38], drug delivery scaffolds [26,34,39], and organic
nanoparticles [40].

Dendrimers are a discrete and sequence-specific platform capable of securing multiple
orthogonally bound functionalities (e.g., dyes, peptides, drugs) within a well-defined and
tailored arrangement. Dendrimers, products of an iterative synthesis with discrete monomer
building blocks, are functional nano/macromolecules owing to a well-defined size, tailored
structure, and precise number of active termini that dictate their properties and applica-
tions [41]. While groundbreaking work on dendrimers was accomplished over 30 years ago,
dendrimers [42–45] appear to be one of the most attractive synthetic architectures for many
disciplines with the most effective applications ranging from transdermal drug delivery [46],
gene delivery [47], and as magnetic resonance imaging contrast agents [48], to dendritic
sensors and safe and effective microbicides [49,50]. Dendrimers represent one of the most
promising drug delivery scaffolds (DDS) [51] for targeted drug delivery.

Dendrimers are monodisperse with a perfectly branched architecture [52,53]. As
they grow in generation, the number of termini exponentially increases, while only lin-
early increasing in radius. Thus, the termini become more densely packed, giving the
entire structure a globular shape wherein the termini radiate outwards from a central
core. Monodispersity and globularity along with multivalency, self-assembling capacity,
electrostatic interactions, chemical stability, low cytotoxicity, and aqueous solubility are
all features that continually reveal dendrimers to be a prominent choice in the biomedical
field [54]. Dendrimers appear to be also an appropriate carrier for the delivery of antiviral
therapeutics thanks to their controllable release potency and improved translocation across
epithelial and endothelial barriers; moreover, the presence of multiple peripheral functional
groups facilitates a higher binding affinity towards surface viral proteins.

Herein, we report the synthesis of two functional Newkome-type dendrimer scaffolds,
comprised of monotelechelic and heterotelechelic termini that are engineered for post-
synthetic bioconjugation of selected peptides. We exploit the valency of the resulting
monofunctional and Janus-type architectures to anchor antiviral peptide sequences derived
from the envelope fusion-glycoproteins (gH and gB) of Herpes simplex virus type 1 (HSV-1).
HSV represents one of the major global health problems; over the past 40 years, numerous
strategies have been developed to fight the herpetic infection and three classes of drugs are
licensed for HSV treatment, all based on the inhibition of viral DNA replication such as
acyclovir (ACV), cidofovir, and foscarnet [55]. Although these agents are efficacious against
the HSV infection, side effects and limitations are associated with their use. Importantly,
the resistance, especially among immunocompromised patients undergoing long-term
therapy, represents an important clinical problem [56]. Therefore, it is of utmost importance
to identify alternative antiviral systems with different mechanisms of action and different
targets [57].

The emergence of virus-derived peptides as new antiviral agents has strongly im-
pacted anti-HSV research. Peptides have several advantages; indeed, they can be both
highly specific and effective, while their inherent biodegradability limits their overall accu-
mulation in tissues, resulting in lower toxicity. Although several drawbacks are associated
to their use such as short half-life, potential immunogenicity [58], and high production
costs, the design of peptidomimetics can overcome these issues. This work proposes the
combination of dendrimer and peptide chemistry into the formation of a new biomedical
scaffold able to combat HSV with different mechanisms during the infection process.

HSV-1 enters cells through fusion of the viral envelope with the plasmatic membrane
of the host cell in a flow of molecular interactions involving multiple viral glycoproteins
and cellular receptors [59]. The envelope glycoproteins gH/gL, gB, and gD are all essential
for the entry process, and the four glycoproteins are able to induce the fusion of cellular
membranes in the absence of virus infection [60]. The present paradigm of entry foresees
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gD-receptor binding/signalling gH/gL to trigger gB to mediate fusion. The trimeric fusion
protein gB inserts into the host cell membrane and refolds to fuse the viral and cellular
membranes, allowing the viral capsid and genome to enter the host cell [61]. Prior to
receptor binding, the C-terminus of the gD ectodomain occludes the receptor-binding site.
gD receptor binding displaces the gD C-terminus and transmits a signal to activate gH/gL,
which then transmit this signal to trigger the fusion protein gB. Eventually, gB inserts its
fusion loops into the host cell membrane and collapses back on itself, thereby fusing the
viral and cell membranes [61,62]. Likely, more than one gB trimer must be triggered to
create a fusion pore, which allows the viral capsid to enter the cell.

Peptides interfering with any of these steps influence viral penetration and may
present a considerable inhibitory activity with low toxicity. As a matter of fact, we previ-
ously reported the antiviral activity of several peptides derived from glycoproteins gH and
gB, which may interfere with the many conformational changes of these glycoproteins,
ending in viral penetration [63–67]. We analysed the antiviral activities of the peptide
gH493-511 and its longer version gH493–537 [65]. Results showed a higher activity of the
shorter sequence (IC50 = 160 mM) and an ability to inhibit infectivity when present during
virus attachment-entry into cells; in fact, no activity was observed when cells were infected
with HSV-1 for 45 min and only afterwards the peptide was added to the inoculum and
in cell-preexposure experiments. A scrambled version did not inhibit HSV-1 infectivity
under analogous experimental conditions and the peptide was shown to be specific as no
activity was revealed with unrelated enveloped viruses such as parainfluenza-2 virus [65].
Furthermore, with the purpose of interfering with conformational changes, we previously
developed a set of peptides designed on the amino acid sequence of the long helical region
present in the post-fusogen structure of gB and we developed some peptide sequences
that were highly effective in inhibiting the virus thanks to their ability to trap gB in its
pre-fusogenic state and impede the refolding process from pre- to post-fusion state [62,67].
These data make gB peptide analogues attractive candidates for further drug development
against HSV-1 and, analogously to other viruses, we also demonstrated that membrane
targeting through cholesterol conjugation significantly enhanced the antiviral potency of
our prototype inhibitors [68].

Nonetheless, antiviral peptide activity relies on a reversible binding event, which
may reduce their usefulness in vivo. In fact, in vivo dilution causes a loss of binding
and the release of an unaltered virus particle, which is again infective. Recently, it was
reported that strong multivalent binding [69] may head to local distortion and consequent
virus deformation, which cause irreversible loss of infectivity. We explored the likelihood
to produce an irreversible deformation of viral particles through the multivalency of
dendrimers and the use of two different peptide sequences (one derived from gH and the
other from gB) with different targeting and inhibition mechanisms.

2. Results and Discussion
2.1. Synthesis of DendrimerA and DendrimerB

Our dendrimer design is based on the Newkome-style dendrimers that are polyamide-
based, thus mimicking proteins, assuring biocompatibility, and promoting biodegradability.
We have previously reported the syntheses of both the monofunctional dendrimer scaffold
(DendrimerA) and the Janus-type dendrimer (DendrimerB) (Figure 1) [70,71] (see also SI
with synthetic and purification details of the Janus dendrimer).
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Figure 1. DendrimerA (panel A) and Janus-type DendrimerB (panel B) used in the study.

2.2. Peptide Functionalization of Monofunctional (DendrimerA) and Janus
(DendrimerB) Dendrimers

The two peptides (see Table 1 for sequences) were bound to the dendrimer differently.
The gB peptide was coupled from the C-terminus. A preliminary antiviral analysis per-
formed on the gB peptide linked to the dendrimer from the N-terminus and the C-terminus
confirmed previous results showing that the peptide loses activity when bound from the
N-terminus (data not shown). A similar result was also reported by Lombardi et al. [68],
indicating that cholesterol tagging was more effective when the C-terminus of the peptide
was modified. As for the gH peptide, we evidenced an opposite result with slightly better
results when functionalizing the N-terminus (data not shown). For this reason, we decided
to bind the gB peptide from the C-terminus and the gH peptide from the N-terminus.

Table 1. Peptide Sequences and dendrimer used.

Compounds Peptide Sequence MW Charge

gH PrA-gH493-511 NH2-PrA-AAHLIDALYAEFLGGRVLT-CONH2 2124 −1
Cys-gH Cys-gH493-511 Ac-C-AAHLIDALYAEFLGGRVLT-CONH2 2174 −1

gB gB503-523-PrA NH2- FARLQFTYNHIQRHVRDMEGR-PrA-CONH2 2769 +2
DendrimerA Monofunctional dendrimer 3430
DendrimerB Bifunctional dendrimer 3043

The peptides were synthesized with a propargyl glycine residue (PrA) at the cor-
rect terminus to provide a handle for the copper-catalyzed azide/alkyne cycloaddition
reaction (CuAAC) with the terminal azides of DendrimerA. The click functionalization
was performed in a water/methanol solution (1:1 v/v) with 2:4 equivalents of CuSO4·5
H2O:sodium ascorbate. The conjugates were extensively purified through dialysis, HPLC,
and ultrafiltration on 30 KDa filters.

Successful peptide conjugation was confirmed using HPLC through the appearance
of new peaks at retention times (RT) different from the controls that were run at the same
conditions (Figure 2, panels A and B). The peptide coupling was also confirmed by IR
spectroscopic analysis demonstrating the disappearance of the azide stretch at 2098 cm−1

suggesting that, within the instrumental error range, azides were consumed and converted
in triazoles (Figure 2, panels C and D).
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Figure 2. HPLC traces of crude (solid line) and purified (dashed line) peptidodendrimer conjugates,
DendrimerA-gH (panel A), DendrimerA-gB (panel B). IR spectroscopic analysis of DendrimerA-gH
(panel C) and DendrimerA-gB (panel D).

DendrimerB was functionalized with Cys-gH via photoinduced thiol–ene reaction
and with gB-Pra via copper-catalyzed azide/alkyne cycloaddition. The thiol–ene reaction
was performed with the Cys-gH peptide in DMF-H2O in presence of DMPA at 4 ◦C for
1 h with UV light irradiation. Subsequently, DendrimerB/gH was functionalized with
gB as reported above. The conjugates were purified through dialysis and analysed by IR
spectroscopy and ζ-potential measurements. IR analysis demonstrated the disappearance
of the azide stretch, suggesting that gB was conjugated to DendrimerB and the reduction
of the stretching C=C at 1633 cm−1 indicating the formation of the bond between Cys-gH
and DendrimerB. Furthermore, analysis of the zeta-potential results show that a negative
charge was obtained for DendrimerB (−11 mV), while a positive charge was obtained for
DendrimerB + gB/gH (+5.17 mV) (Table 2). The net ζ-potential value, observed at pH 7,
further supports peptide conjugation on the dendrimer surface.

Table 2. ζ-Potential measurement of DendrimerB and DendrimerB + gB/gH.

ζ-Potential (mV) Std. Dev (mV)

DendrimerB −11.0 ±1.6
DendrimerB + gB/gH 5.17 ±0.27

2.3. Circular Dichroism

The molecular conformation of DendrimerB + gB/gH was investigated by far-UV CD
spectroscopy, which is an excellent technique for rapid determination of the secondary
structure (Figure 3A). As expected, the CD spectrum in water indicated a random coil
conformation for DendrimerB + gB/gH (Figure 3A). Both peptides gH and gB are random
coil in aqueous solution but form an α helix in membrane-mimetic environments [62,65,72].
CD spectra were obtained in several percentages of trifluoroethanol (TFE), which is widely
used to simulate the membrane environment. The spectrum of DendrimerB + gB/gH
show that the peptides adopt an α helix with minima at approximately 208 and 222 nm.
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(Figure 3A). The obtained spectra suggest that the secondary structure of the peptides was
not disturbed by attachment to a dendrimer.
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(panel A) and IR spectroscopic analysis of DendrimerB and DendrimerB + gB/gH (panel B).

2.4. Cytotoxicity Studies

To confirm that synthetized peptide dendrimers do not cause toxic effects on cells,
monolayers of Vero cells were exposed to different concentrations (5.5 nM, 55 nM, 0.28 µM,
0.55 µM, 1.1 µM, 2.8 µM) of each compound for 3, 24 and 48 h, and cell viability was
determined by the MTT assay. No statistical difference was detected between the viability
of control (untreated) cells and that of cells exposed to the peptide dendrimers (Figure 4) up
to the concentration used in antiviral testing at 3 and 24 h. A small decrease in viability was
observed at 48 h. Marginal toxicity was obtained for the dendrimer without the peptides
linked to its termini, at concentrations that were considerably higher than those required
for antiviral activity.
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(panel C). Experiments were performed in triplicate, and the percentages of viability were calculated
with respect to no-compound control experiments. Error bars represent standard deviations.



Int. J. Mol. Sci. 2021, 22, 6488 8 of 16

2.5. Antiviral Assays

To test whether the peptide dendrimers are able to inhibit HSV-1 in vitro, several ex-
periments were performed. A virus yield reduction assay in which the peptide dendrimers
of interest were present in the cell culture during and after viral adsorption was initially per-
formed. The degree of HSV-1 replication was determined by titration of harvested viruses,
and showed a consistent decrease in replication efficiency with more than 60% inhibition
at a peptide-dendrimer concentration of 5.5 nM for both DendrimerA-gB and DendrimerB
+ gB/gH, while we observed the same percentage of inhibition for DendrimerA-gH only at
550 nM. Inhibition of HSV-1 replication with the Janus bifunctionalized dendrimer was
able to reach 90% already at 55 nM. DendrimerA, without any peptide conjugation, was
able to produce an inhibition close to 30% at the highest concentration used (550 nM),
suggesting that the dendrimer structure itself grants a certain level of antiviral activity,
which is strongly enhanced by the specific peptide sequence coupled to its termini (Figure 5,
panel A).
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In order to identify the step in the entry process that was being inhibited by our
compounds, and thus to understand the mechanism of inhibition, the compounds were
tested under different conditions. Our hypothesis was that the Janus dendrimer was able
to interfere during the early penetration phase. To exclude the hypothesis of an action
inside the cell at a post-entry event, a post-treatment assay was executed by adding the
compounds at different concentrations (Figure 5, panel B). No concentrations used in
this experiment were able to significantly reduce HSV-1 replication, indicating that both
the dendrimer and the peptide dendrimers were ineffective once the viruses had already
entered inside the cell. The results described soundly suggest that our compounds target
an early step of the HSV infection cycle. Some low activity was observed for the Janus
dendrimer (DendrimerB + gB/gH), indicating that the bifunctionalized dendrimer may
have access in the cell interior, and thus, also exert its function inside the cell.

In addition, other experiments were performed to better clarify the mechanism of
infection. As shown in Figure 6, panel A, a significant inhibitory effect was observed when
the virus was incubated with compounds and subsequently added to the cells. The highest
inhibition was again achieved for both DendrimerA-gB and DendrimerB + gB/gH, while
we observed a lower percentage of inhibition for DendrimerA-gH at 550 nM. In panel B, we
compared the activities in the same experiment of the two dendrimers: DendrimerA and
DendrimerB without peptides. We observed a similar activity for both of them. The insert
of panel B shows the activities of the isolated peptides at the concentration present on the
dendrimers. The data confirm that the peptides alone are not active at the concentration
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used in the experiments. Thus, the results of the virus pre-treatment experiment clearly
indicate that the functionalization of the dendrimers with peptides gB and gH is able to
induce a significant enhancement of activity.
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Figure 6. The virus was pre-incubated with compounds for 1 h at 37 ◦C prior to the addition to the cells (Virus Pre-
Treatment, panels A and B). Cells were exposed to compounds either prior to infection (Cell Pre-treatment, panel C) or
during attachment and entry (Co-treatment, panel D). The control is melittin in virus pre-treatment and co-treatment, and is
dextran sulphate in cell pretreatment. Experiments were performed in triplicate, and the percentages of inhibition were
calculated with respect to no-compound control experiments. Error bars represent standard deviations.

The possibility to interfere with an early penetration step was further explored. Vero
cells were pretreated with the target compounds for 30 min at 37 ◦C before infection. Much
lower reduction of infectivity was observed (Figure 6, panel C). In contrast, the dendrimer
is retaining its activity. Since the toxicity of the dendrimer is minimal, it is assumed
that it may exert an antiviral activity by blocking the cell surface. The lower activity of
the peptidodendrimers in this experiment is likely due to the fact that both peptides are
involved in the interaction with the virus, as demonstrated by the high inhibition activity
showed in the virus pre-treatment experiment.

Since inhibition of HSV penetration is likely the result of a combination obtained by
the concerted action of the dendrimer on the cell surface and of the peptides responsible
for an interaction with the viral glycoproteins, we performed a co-treatment experiment
(Figure 6, panel D). The results obtained from the co-treatment experiment support the key
role played by the peptides in regulating the activity of the peptide dendrimer.

The analysis of the obtained results supports the view that, in DendrimerB + gB/gH,
the surface of the dendrimer is covered by the two peptides, thus the activity of the den-
drimer may be shielded during the inhibition mechanism in favor of the peptide activities.
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3. Discussion

HSV is responsible for many severe diseases and represents a significant challenge
to public health due to the rising problem of drug resistance, which is related to overuse
of current drugs, as well as to the deficiency in new drug development strategies by the
pharmaceutical industry. Hence, the advance in antiviral drug design against HSV infec-
tions represents a step forward the global fight against these viruses. Current strategies
involving the use of peptides or dendrimers to block viral entry are characterized by the
fact that the inhibition concentration is in the micromolar range and likely the interac-
tion is reversible and sensitive to dilutions, which may reduce their usefulness in vivo.
In this contribution, we show that it is possible to enhance the mechanism of inhibition
by engineering novel antiviral nanotherapeutics which lead to multivalent binding and
interactions with the consequent production of irreversible local distortion and loss of
infectivity. In particular, we demonstrate that the use of different peptides (i.e., one derived
from gH and the other from gB) with different targeting and inhibition mechanisms on
multifunctional dendrimers likely determines a deformation of viral particles at much
lower concentrations. The existence of several targets on the viral and/or the cell sur-
faces supports the multivalent binding inhibition strategy. Moreover, dendrimers alone
inhibit viral penetration; however, the small size of the molecule, and thus the rigidity of
the functional groups, reasonably led to the binding of only a few of the target groups,
resulting once again in weak and reversible interactions. In our nanotherapeutics, the
peptides perform a key role and, being the surface of the dendrimer covered by them, the
activity of the dendrimer is likely shielded during the inhibition mechanism in favor of
the peptide activities. Furthermore, the concentration range of activities of the peptides
can be significantly reduced when combining them on a dendrimer structure. The idea of
selecting different peptides with dissimilar mechanisms of inhibition may also enhance the
activity of the nano-compound; the multiple binding to viral particles is useful in trapping
and inactivating the virus. We believe that the approach presented here represents a first
step towards the development of a novel strategy which has a chance to produce medically
relevant drugs to fight many worldwide threatening viral infections. Additionally, in-depth
in vitro and in vivo experimentations are necessary to establish whether outstanding in-
hibitory activity over HSV-1 is confirmed. In any case, it should be highlighted that the
approach proposed is fundamentally broad spectrum, supporting the potential prevention
and treatment of multiple viral infections simply changing the peptides coupled to the
dendrimer, which represents a great advantage when unexpected infections occur.

4. Materials and Methods
4.1. Materials

All chemicals were purchased from Sigma-Aldrich, Acros Organics, Alfa Aesar, or
TCI international, and used as received, unless otherwise noted. Dendrons 1 and 6 were
synthesized as previously reported from starting materials purchased from Frontier Scien-
tific. 3-Azidopropylamine was synthesized as previously reported. Dialysis membranes
(SpectraPor 6) were purchased from Spectrum Labs and used after rinsing the membrane
in water for 30 min. LCMS data were recorded on an Agilent LCMSD Trap XCT spectrom-
eter using electrospray ionization (ESI) and methanol as eluent for starting compounds
and acetonitrile (0.1% TFA) for species purified by HPLC. 1HNMR spectra were recorded
using a Bruker AV-400, -500, or -600 spectrometer (400.1 MHz, 500.2 MHz, or 600.2 MHz);
13CNMR spectra were recorded on a Bruker AV-600 spectrometer (150.9 MHz). Deuterated
solvents were purchased from Cambridge Isotope Laboratories. High-performance liquid
chromatography (HPLC) purifications were run on a LC-8A Shimadzu (Kyoto, Japan)
system equipped with a SPD-10Avp UV/Vis detector with reverse-phase Jupiter 10u C4
300A column (10 × 250 mm) in varying percentages of water and acetonitrile with 0.1%
TFA at a rate of 5 mL/min.
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4.2. Synthesis of Monofunctional Dendrimer

Synthesis of the monofunctional dendrimer scaffold has been reported previously [70].
Briefly, the starting dendron 1 was functionalized at the amino termini with succinic anhy-
dride to achieve the hemisuccinate dendron 2. The two dendrons are convergently coupled
using HATU and Hüngin’s base to afford the symmetrical dendrimer 3. After deprotec-
tion of the tert-butyl esters, the carboxylic acid groups of dendrimer 4 were subsequently
coupled with azidopropylamine to obtain the final monofunctional dendrimer 5, called
DendrimerA.

4.3. Synthesis of the Bifunctional Dendrimer (Janus)

The synthesis of the Janus-type dendrimer has been reported previously [71]. Briefly, the
amino ester dendron 6 was protected at the amine terminus with a 9-fluorenylmethylcarbamate
(Fmoc), after which the ester termini were deprotected. Coupling of 3-azidopropylamine
and subsequent deprotection of the Fmoc afforded the aminononaazide dendron 9. This
was coupled to the hemisuccinate dendron 2 using HATU in the presence of Hüngin’s
base and deprotected using formic acid to yield the Janus bifunctional dendrimer 11. Den-
drimer 11 was purified using preparative HPLC using a water/acetonitrile gradient. The
eluted product was monomodal, indicative of its monodispersity. 1H NMR spectroscopic
analysis revealed full functionalization, as evidenced by the relative integration of the
core protons to the azidopropyl methylene units. The final coupling of dendrimer 11 with
allylamine in the presence of HATU and Hüngin’s base afforded the target bifunctional
dendrimer 12 with functionalized dendrimer faces (DendrimerB). DendrimerB was puri-
fied using dialysis (1000 MWCO) against methanol, and characterized using 1H and 13C
NMR spectroscopy, as well as MALDI-TOF spectroscopy (see SI) [71].

4.4. Synthesis of Peptides

Peptide sequences (Table 1) were synthesized on Rink-amide MBHA resin (0.51 mmol/g
substitution). Syntheses were performed on a 20 µmol scale. Fmoc-protected amino acids
were coupled using the benzotriazol-1-yl-oxytris(pyrrolidino)phosphonium hexafluoro-
hosphate (PyBOP), hydroxybenzotriazole (HOBt), and diisopropylethylamine (DIPEA)
method: 4 eq. amino acid, 4 eq. PyBOP, 4 eq. HOBt, and 8 eq. DIPEA relative to resin load-
ing. The coupling steps were run twice for 20 min each. The Fmoc group was deprotected
with 30% piperidine in DMF (v/v). Propargyl glycine residue (PrA) was added at the
terminus to provide a handle for the copper-catalyzed azide/alkyne cycloaddition reaction
(CuAAC) with the terminal azides of the monofunctional dendrimer, and, when necessary,
cysteine residue was added at the peptide terminus to provide thiol–ene reaction with
alchene groups of Janus bifunctional dendrimer (DendrimerB). Fmoc-PrA-OH was coupled
once for 45 min using 2 equivalents each of PyBOP, HOBt, and 4 equivalents of DIPEA.

Fully synthesized peptides were deprotected from the resin with trifluoroacetic
acid (TFA) containing 3.8% (v/v) water, 2.2% (v/v) anisole, 5.5% (v/v) thioanisole and
ethandithiol (EDT) 3.5% (v/v) at room temperature and precipitated into ice cold ether. The
precipitate was dissolved in water and lyophilized to obtain the crude peptides. Peptides
were purified by reverse-phase HPLC with water (0.1% TFA) and acetonitrile (0.1% TFA)
(from 20 to 80% over a 20 min flow of 20 mL/min), as well as checked to exhibit the
expected molecular ion on analysis by high-resolution mass spectrometry (HRMS). Pure
peptides (higher than 98%) were achieved in good yields (40% for gB peptide and 50%
for gH).

4.5. Functionalization of Monofunctional Dendrimer

The dendrimer (1 equivalent) functionalization with PrA-peptide (gH and gB) (36 equiv-
alents of each peptide) was performed in a water/methanol solution (1:1 v/v, about 1 mL)
by using 2:4 equivalents (to the azide moiety) of CuSO4·5 H2O: sodium ascorbate. The
reactions were left stirring for 1 h at 40 ◦C and for 2 days at room temperature. The resulting
functionalized dendrimers were dialyzed against water/EDTA with 1000 MWCO mem-



Int. J. Mol. Sci. 2021, 22, 6488 12 of 16

branes overnight, followed by purification by reverse-phase HPLC using a C4 column with
water (0.1% TFA) and acetonitrile (Acn) (0.1% TFA) with a flow rate of 5 mL/min. Solvent
gradients of 30 to 95% Acn over 20 min for Dendrimer-gH493-511 (DendrimerA-gH) and
from 5 to 90% Acn over 20 min for Dendrimer-gB503-523 (DendrimerA-gB) were used.

After HPLC purification, the peptidodendrimers were passed three times through a
30 KDa (MWCO) ultrafiltration membrane using water:MeOH:DMSO 50/45/5. The func-
tionalization yields were confirmed by UV analysis (εgH = 1189 m−1 cm−1 at λ = 280 nm);
(εgB = 1090 m−1 cm−1 at λ = 280 nm) and compared to the ratio of peptide initially used
for the reaction (36 mol peptide per mol dendrimer). From the UV analysis, the peptide
functionalization yields were 50% of the equivalents added.

4.6. Functionalization of DendrimerB

The Janus bifunctional dendrimer was functionalized with gB via copper-catalyzed
azide/alkyne cycloaddition and with Cys-gH via photoinduced thiol–ene reaction. In
particular, dendrimer (1 eq), Cys-gH (1.5 eq) and DMPA (0.2 eq) in a 4:1 mixture of DMF-
H2O were irradiated with UV light (Spectroline model ENF-240C/FE) while stirring for
one hour at 4 ◦C. After this reaction, gB was coupled to the dendrimer via copper-catalyzed
azide/alkyne cycloaddition reaction using the same condition as described above. The
Janus bifunctional dendrimer was purified using dialysis (1000 MWCO) against water and
characterized using IR spectroscopy.

4.7. IR Spectroscopy

The samples were analyzed by FT-IR spectroscopy. The FT-IR spectra were recorded
on a UV-Vis spectrophotometer (Jasco, Easton, MD, USA). The characteristic peaks of IR
transmission spectra were recorded at a resolution of 4 cm−1 over a wavenumber region of
400–4000 cm−1.

4.8. ζ-Potential Measurement

The ζ-potential of DendrimerB and DendrimerB-gB/gH solutions were measured
using Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK). All measurements
were performed at 25 ◦C in water, at pH 7 in triplicate.

4.9. Circular Dichroism

CD spectra were recorded from 195 nm to 260 in a Jasco J-810 spectropolarimeter
using a 0.1 cm quartz cell at room temperature under a constant flow of nitrogen gas.
Other experimental settings were: scan speed of 5 nm/min, sensitivity of 50 mdeg, time
constant of 16 s, bandwidth of 1 nm. Each spectrum was obtained through averaging three
scans; spectra were recorded and corrected for the blank. DendrimerB-gB/gH spectra were
recorded in water and in presence of 20% and 40%TFE at a concentration of 9 10−5 M.

4.10. Cells and Viruses

African green monkey kidney cells (Vero) (ATCC CCL-81) were grown in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM
L-glutamine and 100 IU/mL of penicillin–streptomycin in a humidified atmosphere with
5% CO2 at 37 ◦C. HSV-1 (strain SC16) carrying a lacZ gene driven by the CMV IE-1 promoter
to express β-galactosidase was propagated on Vero cell monolayers.

4.11. Antiviral Assays

Antiviral experiments were executed at different concentrations for all compounds
(0, 5.5, 55, 280, and 550 nM); the concentrations refer to the molecule, thus the peptide
concentration corresponds to the quantity present on each dendrimer molecule, i.e., 18 times
the concentrations of the monofunctional dendrimer and 9 times for each peptide for the
Janus dendrimer. All experiments were done in triplicate. The infectivity inhibition
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percentage was calculated by fixing as 0% inhibition, the number of plaques obtained in
negative controls (only virus).

To determine the effect of functionalized dendrimers on inhibition of HSV infectivity,
cell monolayers were treated in different ways:

1. Virus yield reduction assay. Confluent Vero cell monolayers (12-well plates) were
washed with phosphate-buffered saline (PBS) and infected with HSV-1 at multiplicity
of infection (MOI) of 1 for 1 h at 37 ◦C. Then, virus inocula were mixed with the an-
tiviral compounds at the concentrations indicated above. Infected cells were washed
with PBS, covered with fresh culture medium, and incubated for 48 h; then, they were
scraped into culture medium and disrupted by sonication.

2. Post-treatment assay. 5 × 105 Vero cells (12-well plates) were incubated firstly with
virus (MOI 0.01) for 45 min at 37 ◦C and then the compounds were added to the cells
followed by an additional incubation period of 30 min at 37 ◦C.

3. Co-treatment. In co-exposure experiment, 5 × 105 cells were incubated with peptides
and with the viral inoculum at MOI of 0.01 for 45 min at 37 ◦C.

4. Cell pretreatment. In cell pre-exposure experiment, 5 × 105 Vero cells were incubated
with compounds for 30 min at 37 ◦C and subsequently infected with HSV-1 at MOI of
0.01 for 45 min at 37 ◦C.

5. Virus pre-treatment. In virus pre-exposure assay, HSV-1 at MOI of 0.1 was incubated
with compounds for 45 min at 37 ◦C, and then the mixture was titrated on Vero
cell monolayers.

For all treatments, non-penetrated viruses were inactivated by citrate buffer at pH 3.0
after 45 min incubation with cells at 37 ◦C. The cells were then incubated for 24 h at 37 ◦C
in DMEM supplemented with carboxymethyl cellulose (CMC) 5%. The total virus yield in
each well was titrated by plaque assay. Plaques were stained with X-gal and microscopically
counted. The mean plaque counts for each concentration were reported as a percentage
of the mean plaque count compared to the control virus. The number of plaques was
plotted as a function of concentration; concentrations producing 50% reductions in plaque
formation were determined as the IC50.

4.12. Cytotoxicity

Vero cells were exposed to increasing concentrations of monofunctional and Janus-type
dendrimers functionalized with peptides, and the number of viable cells was determined
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [72].
Vero cells were subcultured in 96-well plates at a seeding density of 2 × 104 cells/well
and treated with compounds 5.5 nM, 55 nM, 0.28 µM, 0.55 µM, 1.1 µM, 2.8 µM for 3 and
24 h. The medium was then gently aspirated, MTT solution (5 mg/mL) was added to
each well, and cells were incubated for a further 3 h at 37 ◦C. The medium with MTT
solution was removed, and the formazan crystals were dissolved with dimethyl sulfoxide.
The absorption values were measured at λ570 using a Bio-Rad Microplate Reader (Bio-Rad
Laboratories, Hercules, CA, USA). The viability of Vero cells in each well was reported
respect to the control cells (untreated cells).
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