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The inherent uncertainty 
of temporal networks is a true 
challenge for control
Pietro De Lellis, Anna Di Meglio, Franco Garofalo & Francesco Lo Iudice* 

Recently, it has been suggested that network temporality can be exploited to substantially reduce the 
energy required to control complex networks. This somewhat counterintuitive finding was explained 
through an evocative example of the advantage of temporal networks: when navigating a sailboat, we 
raise the sails when the wind helps us while lowering them when it works against us. Unfortunately, 
controlling complex networks inherits a further analogy with navigating a sailboat: having to face the 
inherent uncertainty of future winds. We rarely, if ever, have deterministic knowledge of the evolution 
of the network we want to control. Here, our challenge is to exploit the potential advantages of 
temporality when only a probabilistic description of the future is available. We prove that, in this more 
realistic setting, exploiting temporality is no more a panacea for network control, but rather an asset 
of a wider toolbox made available by the scientific community. One that can indeed turn out useful, 
provided that the temporality of the network structure matches the intrinsic time scales of the nodes 
we want to control.

Social  networks1,2, animal  groups3, power  grids4, and metabolic  networks5 are examples of large scale systems 
composed of several interacting entities. Whether we are interested in predicting the emergence of collective 
behavior, or whether we want to control these systems, the complex dynamical networks paradigm has proved 
to be the modeling tool of choice. Within this framework, the current state of the single entities, the n network 
nodes, is collected in a vector x(t) = [x1(t), x2(t), . . . , xn(t)]

T , and the current value of the p external signals 
used to control the network behavior in a vector u(t) = [u1(t), u2(t), . . . , up(t)]

T . As the control signals only 
affect a limited number of the network nodes, the drivers, controlling complex networks entails exploiting the 
structure of the interconnections to indirectly affect the remainder of the nodes. Early work on network con-
trollability, the ability to steer the vector x(t) towards any arbitrary state in finite time, hinted to the possibility 
of controlling real world complex systems by only leveraging a limited number of  drivers6–9. However, this 
enthusiasm has been promptly tempered by the finding that reducing the number of drivers comes at the price 
of an exponential increase in the energy required to control a  network10,11. When only few nodes are directly 
controlled, even numerically computing the control signal required to steer the network towards an arbitrary 
state becomes  unfeasible12. Is there any workaround to this problem except increasing the number of drivers? 
The authors of Ref.13 suggested that many complex systems may possess natural mechanisms to avoid traveling 
along directions of the state space that would require an excessive amount of energy. More recently, Li and 
 collaborators14 suggested that exploiting temporality, that is, network variability over time, could substantially 
reduce energy requirements without increasing the number of drivers. This finding, being counterintuitive, is 
intriguing, as we might expect that temporality might hinder our ability to control a network. However, this 
apparent contradiction is due to the fact that we humans often associate uncertainty to future variability. In the 
scenario considered  in14, instead, there is variability, but without uncertainty, that is, the future evolution of the 
network is a priori known. In this ideal framework we would certainly feed energy to the network only when it 
is in a favorable configuration. In other words, we would act as an investor who sells her stocks only when they 
reach their peak values, while holding them otherwise. Unfortunately, real world investors cannot rely on knowl-
edge of the future, but must forecast market peaks based on stochastic models, thus accepting the possibility of 
incurring into unpredicted losses. In the same spirit of the investors trusting technical analysis, we revisit the 
problem of controlling a temporal network in a stochastic setting, where only a probabilistic description of the 
network evolution is available. The control tools we develop allow us to uncover when the opportunities offered 
by temporality prevail over uncertainty on the future network evolution.
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Minimizing the expected control energy
A temporal network can be viewed as an ordered sequence of m static networks, from now on denoted as snap-
shots, sharing the same set of n nodes. The k-th snapshot, characterized by a weighted adjacency matrix Ak , 
describes the node interconnections in the interval [tk , tk+1) . The length of each interval δk := tk+1 − tk can be 
interpreted as a measure of the current network temporality. When δk is small, the network is experiencing a 
period of fast temporality, while when it is large, the temporality is slow. As in previous  works6,7,10,14,15, we focus 
on temporal networks of linear systems

In Eq. (1), the matrix B identifies the set, equal for all snapshots, of p driver nodes that we directly influence 
through the control input u with the final goal of controlling the network as a whole. To highlight the fundamen-
tal distinction between our setting and previous  work14, we give the definition of stochastic temporal network 
we refer to.

Definition 1 Network (1) is a stochastic temporal network when, at any snapshot k = 0, . . . ,m− 1 , Ak is drawn 
from a family F = {Fi}i∈I of admissible adjacency matrices according to the realization of a scalar stochastic 
process σ(k) ∈ I .

Namely, if at time tk we have σ(k) = σ̄ , then Ak = Fσ̄ . Consistently, we will consider any observed sequence 
Ak , k = 0, . . . ,m− 1 as a realization of the stochastic process Aσ(k) . Therefore, the main difference with respect 
to the existing literature is in the a priori information available at any time t ∈ [tk , tk+1) for the control design. 
Indeed, while we still assume to have deterministic knowledge of the current realization Ak of Aσ(k) , we can only 
rely on a probabilistic description of the future snapshots that will depend upon the distribution of the process 
σ(i) . In this stochastic scenario, does temporality still represent an advantage for network control?

To answer this question, we must first give a condition for controllability that suits this scenario. As the 
sequence of future snapshots is unknown a priori, guaranteeing that a temporal network is controllable implies 
selecting a B such that any possible realization of the pair (Ak ,B) , k = 0, . . . ,m− 1 is controllable. Under this 
assumption, to investigate whether temporality can mitigate the control effort, we developed a machinery inspired 
to stochastic optimal  control16. This theoretical framework prescribes to find the signal u(t) that minimizes the 
expected energy required to drive the network from an initial state x(t0) to a final state x(tm) , that is, 

 where, in (2a), ςk denotes the vector [σ(k), . . . , σ(m− 1)] , and

with fς1 being the joint probability distribution of the variables σ(1), . . . , σ(m− 1).
To solve the optimal control problem in Eq. (2), we must preliminarily note that in moving from x(t0) to 

x(tm) the network state will cross m− 1 waypoints x(tk) . It turns out that minimizing (2a) implies transitioning 
between any two consecutive waypoints with minimum energy. This can be achieved, in each snapshot, by means 
of the classic minimum energy control. Indeed, we can write

where uk(t) is the restriction of u(t) to [tk , tk+1) , for k = 0, . . . ,m− 1 . For given values of x(tk) , x(tk+1) , and 
given the realization Ak of Aσ(k) , the input u∗k minimizing Jk is the well-known solution of the standard minimum 
energy control problem

Namely, the optimal solution is

where

(1)ẋ(t) = Akx(t)+ Bu(t), t ∈ [tk , tk+1), k = 0, . . . ,m− 1.

(2a)min
u(t)

E
ς1

[

J(u(t)) :=

∫ tm

0
u(t)Tu(t)dt

]

,

(2b)ẋ(t) = Aσ(k)x(t)+ Bu(t) t ∈ [tk , tk+1), k = 0, . . . ,m− 1,

(2c)Aσ(0) = A0, x(t0) = x0, x(tm) = xm,

E
ς1
[J(u)] =

∫ +∞

−∞

· · ·

∫ +∞

−∞

J(u)fς1(ς1)dσ(1) · · · dσ(m− 1),

(3)E
ς1
[J(u)] = E

ς1

[

m−1
∑

k=0

Jk(uk) :=

m−1
∑

k=0

∫ tk+1

tk

uk(t)
Tuk(t)dt

]

,

(4)

min
uk

Jk(uk)

s.t.

ẋ(t) = Akx(t)+ Bu(t), t ∈ [tk , tk+1),

x(tk) = xk , x(tk+1) = xk+1.

(5)u∗k(xk , xk+1, t) = BTeA
T
k (tk+1−t)W−1

k

(

xk+1 − eAk(tk+1−tk)xk

)

, t ∈ [tk tk+1),
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is the reachability gramian. For this well-known problem, the optimal value of the cost function is

Coming back to our problem in Eq. (2), noting that Jk(uk) ≥ Jk(u
∗
k) for all possible x(tk) , x(tk+1) , and for any 

realization Ak of Aσk we can conclude that the structure of the solution of (2) is obtained by substituting Aσ(k) 
to Ak in Eq. (5). This implies that problem (2) can be viewed as a concatenation of different instances of prob-
lem (4) in each of which xk is given and xk+1 is the actual decision variable. Accordingly, solving (2) becomes 
equivalent to selecting the optimal waypoints x∗1 , . . . , x

∗
m−1 . Therefore, the a priori control energy required in 

each snapshot is the stochastic variable

and we can rewrite the minimum energy control problem as 

where, at each k, Aσ(k) is known. The following theorem provides a recursive solution for computing the optimal 
waypoints.

Theorem 1 The solution of the optimal control problem (7) is given by

where

with

Furthermore, the associated optimal cost is given by

Proof See Supplementary Information, section S1.2.   �

The expression in (11), that is, the expected energy required to drive the temporal network from any x(t0) 
to any other x(tm) turns out to be a quadratic form. We leverage the developed machinery to compare the tasks 
of controlling a temporal network in the deterministic setting considered in Ref.14 and in our stochastic setting. 
An explicatory illustration of the effect of uncertainty is reported in Fig. 1, which depicts the energy required to 
control the same 83 node temporal network considered in Ref.14 and obtained by condensing the time-varying 
protein-protein binding  interactions17 of the yeast Saccharmoyces Cerevisiae over 50 snapshots of equal length 
δ . We have ensured each snapshot is asymptotically stable by adding self loops on the diagonal of each of the 
network adjacency matrices. Morover, we have selected 14 driver nodes so that each possible realization of 
the pair (Aσ(k),B) is controllable. To allow a fair comparison between the stochastic and the deterministic set-
ting, in both cases we take the sequence of snapshots directly from the data. Whereas in the stochastic case we 
assume this sequence is unknown and thus the waypoints must be computed online, in the deterministic case 

Wk =

∫ tk+1

tk

eAk(tk+1−τ)BBTeA
T
k (tk+1−τ)dτ

(

xk+1 − eδkAk xk
)T

W−1
k

(

xk+1 − eδkAk xk
)

.

(6)Jk(xk , xk+1, σ(k)) =
(

xk+1 − eδkAσ(k)xk
)T

W−1
k

(

xk+1 − eδkAσ(k)xk
)

.

(7a)
min
x1
. . .

xm−1

E
ς1

[

m−1
∑

k=0

Jk(xk , xk+1, σ(k))

]

,

(7b)Aσ(0) = A0, x(t0) = x0, x(tm) = xm,

(8)x∗k = Pkxm + Qkxk−1, k = 1, . . . ,m− 1,

(9)

Pk =

(

W−1
k−1 +

m−1
∑

i=k

E
ςk

[

Ri
k
T
W−1

i Ri
k

]

)−1 m−1
∑

i=k

E
ςk

[

Ri
k
T
W−1

i Fik

]

,

Qk =

(

W−1
k−1 +

m−1
∑

i=k

E
ςk

[

Ri
k
T
W−1

i Ri
k

]

)−1

W−1
k−1e

δk−1Aσ(k−1) ,

(10)

Ri
k =

{

eδkAσ(k) − Qk+1, i = k,

Ri
k+1Qk+1, i > k,

k = 0, . . . ,m− 2,

Fik =

{

Pk+1, i = k,

Fik+1 − Ri
k+1Pk+1, i > k,

k = 0, . . . ,m− 2,

Rm−1
m−1 = eδm−1Aσ(m−1) , Fm−1

m−1 = I .

(11)E
ς1

[

m−1
∑

i=0

(

Fi0xm − Ri
0x0

)T
W−1

i

(

Fi0xm − Ri
0x0

)

]

.
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the sequence is known a priori allowing to compute the waypoints in advance. We find that the stochastic setting 
demands orders of magnitude more energy when the network temporality is fast. This difference reduces and 
asymptotically vanishes as the duration of each snapshot increases. Is this a general pattern? In the next section, 
we introduce the theoretical tools needed to answer this question.

Expected energy for stochastic temporal and static networks
The previous section showed the striking impact of uncertainty, which seems to challenge the claim that network 
variability enhances our ability to control complex  networks14. However, the observation was made with reference 
to one specific temporal network, i.e. a single realization of the process σ(k) , and for an arbitrarily selected set 
of target states xm . To paint an unbiased picture of whether temporality can still be exploited to our advantage 
in this stochastic setting, we turn to synthetic networks to ensure independence from the specific sequence of 
snapshots and from the target state xm . We consider networks of N = 100 nodes, build a finite pool F  of |I| = 3 
network topologies, and select 10 driver nodes defining a matrix B that guarantees network controllability for 
any matrix in the pool (see Supplementary Information Section S3 for further details). We assess whether the 
advantage of temporality persists when the inherent presence of uncertainty is considered by comparing two 
scenarios. In the first one, we considered a stochastic temporal network as described in Definition 1 where the 
stochastic process σ(k) is a sequence of independent uniformly distributed stochastic variables, and computed the 
a priori explected energy required to control it. This expected energy is then compared with the average energy 
required to control the network in a second scenario, in which we consider a static network whose topology has 
been extracted from F  according to the uniformly distributed random variable σ ∈ I  . For the first scenario, 
from Eq. (11), the a priori expected energy required to control a stochastic temporal network can be computed as

Without loss of generality, we assume x0 = 0 , and denote

the inverse of the a priori expected gramian over the entire time horizon (t0, tm) . Equation (12) can be then 
rewritten as

(12)J∗temporal = E
σ(0)

[

E
ς1

[

m−1
∑

i=0

(

Fi0xm − Ri
0x0

)T
W−1

i

(

Fi0xm − Ri
0x0

)

]]

.

W−1
exp := E

ς0

[

m−1
∑

i=0

Fi T0 W−1
i Fi0

]

J∗temporal = xTmW
−1
expxm.

Figure 1.  Control energy requirements in the deterministic (blue) and stochastic (red) scenario for the yeast 
Saccharmoyces cerevisiae. The solid lines are the minimum energies as a function of δ averaged over 103 final 
states x(tm) selected on the unit hypersphere centered in the origin. The shaded areas are enclosed by the 
observed minimum and maximum energies. The minimum energy feedback control strategy is implemented 
both in the stochastic and in the deterministic scenario. The picture shows that in the stochastic scenario the 
control can be orders of magnitude more energetically demanding with respect to the deterministic scenario. 
The energy gap tends to vanish when δ increases, that is, when the temporality becomes slower.
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The trace of W−1
exp represents the expected energy required to control a stochastic temporal network averaged over 

all possible target states on the unit hypersphere, and thus considering it ensures independence from a specific 
xm . In the second scenario, the expected energy required to control a static network is

where

Hence, the trace of Eσ
[

W−1
σ

]

 provides a benchmark for the expected energy required to control a stochastic 
temporal network that is independent of the target state xm . Notice that our choice is different from that made 
 in14, where the benchmark was selected as the energy required to control the average network described by the 
matrix Ā = Eσ [Aσ ] , a choice that would yield the paradox of temporality being beneficial even when so slow 
to be considered negligible.

The results of the comparison between scenarios one and two are shown in Fig. 2. We find that in the fast 
temporality regime (with very small δ ) the expected energy required to control a temporal network can exceed 
by orders of magnitude that required by a static network. On the other hand, in the slow temporality regime, we 
observe that this difference becomes negligible. These empirical observations are supported by the theoretical 
analysis performed in Supplementary Information section S2. Our derivations provide a formal proof of the intui-
tion that when the temporality is so fast that we do not have time to exploit it, the effect of uncertainty prevails. 
When instead the temporality is so slow that most of the energy fed to the network in order to reach a targeted 
waypoint is dissipated in the next snapshots, we rather wait for the last snapshot, thus treating a temporal network 
as if it were static. Our formal analysis clarifies that the paradoxical result reported in Ref.14 that temporality is 
advantageous even when so slow to be negligible was due to the use of an ad hoc static benchmark. Interestingly, 
we do find that there is a regime where temporality prevails on uncertainty (see the inset of Fig. 2). To delve into 
this regime, we should take into account that all real world systems that can be modeled as dynamical network 
are characterized by time scales. Those of digital communication  networks18, for instance, are determined by 
the dynamical flow of the data packets, whereas those of epidemic  processes19 depend on the specific infection 
taking place, and can range from few days to  months20. For a linear network, and thus for each of our snapshots, 
the time scale is related to the eigenvalues of Ak . Our numerical results reveal that shifting the spectrum of the 
snapshots shifts the regime where the advantage of temporality appears (see Fig. 3). In other words, temporality 
prevails on uncertainty, provided it matches the time scale of the network we are trying to control. Our results 

(13)J∗static := E
σ

[

(

xm − e(tm−t0)Aσ x0

)T
W−1

σ

(

xm − e(tm−t0)Aσ x0

)

]

,

(14)Wσ =

∫ tm

t0

eAσ (tm−τ)BBTeA
T
σ (tm−τ)dτ .

Figure 2.  The advantage of temporal networks in the stochastic scenario. The solid lines represent the 
minimum expected energy averaged over all possible final states on the unit hypersphere centered in the origin 
(trace of E

[

W−1
exp

]

 , in red) and the benchmark energy (trace of E
[

W−1
σ

]

 , in green) as a function of 
δ = (tm − t0)/m . The shaded areas are enclosed by the minimum and the maximum Jtemporal∗ (in red) and 
Jstatic∗ (in green) observed over 105 final states on the unit hypersphere. In the fast regime (i.e., for small δ ), 
uncertainty prevails over temporality with the expected energy required to control a temporal network being 
larger than the benchmark energy. As temporality vanishes (i.e., for large δ ), the energy difference becomes 
negligible. The advantage of temporality appears in the intermediate temporality regime and is shown in the 
inset.
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prove to be robust to the removal of the hypothesis of independence of the stochastic process σ(k) , to variations 
of the size of the pool F  , and to variations of the number of snapshots m (see SI Section 4).

Discussion
Coming back to our fundamental question, in real world systems, temporality comes hand in hand with uncer-
tainty. Who can determinstically predict the future chemical reactions in a metabolic network, or the time instant 
at which a mobile device will activate? In this realistic scenario, is exploiting temporality the workaround to 
achieve the chimera we are chasing since  20116, that is, controlling complex networks with a very limited number 
of driver nodes? Our results indicate this is not true, as we never experience that temporality yields orders of 
magnitude of energy reductions. However, is this a setback for the community working on network control? A 
careful analysis of our work shows that the answer is no. Rarely, if ever, we find a panacea for real-world prob-
lems, and network control proves to be no exception. More often, we develop assets that blended together yield 
substantial progress. Our findings show that the ability to exploit temporality is one of these assets, one that can 
allow halving energy requirements, provided it matches the time scale of the network we are trying to control. 
To put this advantage in perspective, in the aerospace industry, millions of dollars are spent to gain single digit 
advantages in fuel efficiency.
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