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Abstract: Many natural-derived compounds, including the essential oils from plants, are investigated
to find new potential protective agents in several neurodegenerative disorders such as Alzheimer’s
disease (AD). In the present study, we tested the neuroprotective effect of limonene, one of the main
components of the genus Citrus, against the neurotoxicity elicited by Aβ1-42 oligomers, currently
considered a triggering factor in AD. To this aim, we assessed the acetylcholinesterase activity
by Ellman’s colorimetric method, the mitochondrial dehydrogenase activity by MTT assay, the
nuclear morphology by Hoechst 33258, the generation of reactive oxygen species (ROS) by DCFH-
DA fluorescent dye, and the electrophysiological activity of KV3.4 potassium channel subunits by
patch-clamp electrophysiology. Interestingly, the monoterpene limonene showed a specific activity
against acetylcholinesterase with an IC50 almost comparable to that of galantamine, used as positive
control. Moreover, at the concentration of 10 µg/mL, limonene counteracted the increase of ROS
production triggered by Aβ1-42 oligomers, thus preventing the upregulation of KV3.4 activity. This,
in turn, prevented cell death in primary cortical neurons, showing an interesting neuroprotective
profile against Aβ1-42-induced toxicity. Collectively, the present results showed that the antioxidant
properties of the main component of the genus Citrus, limonene, may be useful to prevent neuronal
suffering induced by Aβ1-42 oligomers preventing the hyperactivity of KV3.4.

Keywords: Alzheimer’s disease; Amyloid-β oligomers; limonene; antioxidant activity; potassium
channels; ROS; acetylcholinesterase; neuroprotection

1. Introduction

Alzheimer’s disease (AD) is a complex, multifarious syndrome characterized by the
progressive loss of episodic memory and cognitive abilities [1]. Intracellular and extracel-
lular deposits of the amyloid-β (Aβ) peptide play a key role in AD pathology [2]. Accu-
mulating evidence supporting the amyloid cascade hypothesis shows that Aβ oligomers
intervene in different pathways leading to AD neurodegeneration including synaptic dys-
function and neuronal network disruption [3]. Besides the well-known neurotoxic role of
Aβ per se, the amyloidogenic protein transthyretin intervenes in the aggregation of amyloid
fibrils, thus modulating its function overall [4]. At the molecular level, Aβ oligomers
affect neuronal and glial cell functions by inducing unregulated production of reactive
oxygen species (ROS) and subsequent oxidative stress, aberrant Ca2+ signaling, abnormal
neuronal electrical activity, mitochondrial damage, endoplasmic reticulum (ER) stress, and
apoptosis [5–9].
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Despite impressive efforts to find new drugs, there is currently no cure for AD. Only
two classes of drugs, namely cholinesterase inhibitors and the N-methyl-D-aspartate
(NMDA) receptor antagonist memantine, are currently included in AD therapy [10,11].
However, their effects, which only target cognitive symptomatology, are moderate and
unable to slow down AD progression.

Medicinal plants, already used in traditional medicine as alternative or complemen-
tary therapy for different pathological conditions, represent an important resource for
the research of new therapeutic strategies in the treatment of AD as well as of other neu-
rodegenerative disorders [12]. Of note, resveratrol, curcumin, ginsenoside, and many
other natural compounds displayed significant neuroprotective effects. Among these
compounds, monoterpenes, which are present as major components in many essential
oils (EOs) from aromatic plants, display a wide range of biological features, including
antioxidant, anti-inflammatory, and protective activities [13,14]. However, the therapeutic
effects of monoterpenes in AD models need to be further investigated.

Limonene, a common monoterpene found as major component of the active complex
of the genus Citrus [15], has been shown to exert anxiolytic, antinociceptive, antioxidant,
and anti-inflammatory activity [16–20], as well as to display a protective effect against
metabolic syndromes and gastrointestinal and respiratory tract diseases [21,22]. Interest-
ingly, limonene has been suggested to act on the central nervous system, affecting the
expression of adenylate cyclase 1 [15], which has been demonstrated to regulate cAMP
levels. Many reports also showed that limonene promotes neural differentiation trig-
gering neurite growth via p38/MAPK pathway [23,24]. Importantly, antioxidant and
anti-inflammatory activities of limonene have been shown to be crucial for its protective
action against Aβ1-42 toxicity [25,26]. In particular, recent studies reported that limonene is
able to exert a neuroprotective effect in a Drosophila model of AD [26]. However, the exact
mechanism underlying the effect of limonene in inhibiting Aβ1-42 -induced neurotoxicity
remain to be clarified.

Several studies demonstrated that an imbalance of K+ concentrations associated
with an inappropriate functioning of K+ channels in neuronal and glial cells is involved
in AD pathophysiology [27–29]. In particular, increased K+ efflux and the subsequent
reduction of cytoplasmic K+ concentrations trigger the activation of caspases and nucleases,
thus inducing apoptosis [30], a process highly involved in AD neuronal loss. Moreover,
K+ channels have also been involved in astroglial responses and neuroinflammation in
AD [31–34]. Intriguingly, the fast inactivating K+ (IA) currents mediated through the
voltage-gated K+ channel KV3.4 that contribute to the regulation of neuronal and astrocytic
excitability have been implicated in AD pathology [29,32,35–40]. Previous studies by
our group demonstrated that Aβ1-42 -induced up-regulation of KV3.4 is implicated in
caspase-3 activation and in astrocytic responses to Aβ1-42 insult [32,35,36,38–40]. Of note,
our previous investigations showed that the ROS signaling pathway induced by Aβ1-42
oligomers is an early biochemical event leading to the selective enhancement of KV3.4
currents through the activation of NF-kB transcriptional factor [36]. In addition, in other
studies KV3.4 is reported to be an oxidation-sensitive channel since it is directly modulated
by ROS increasing KV3.4 current amplitude [41]. Importantly, we observed that KV3.4
silencing or pharmacological inhibition with the sea anemone toxin blood depression
substance-I (BDS-I) prevented Aβ1-42-induced insults in neurons as well as abnormal Ca2+

signaling and ER stress in astrocytes [36,40]. Strikingly, in vivo silencing of KV3.4 was able
to reduce glial fibrillary acidic protein (GFAP) over-expression and Aβ1-42 trimer burden
in the Tg2576 mice brain, a transgenic model of AD [32]. The up-regulation of KV3.4
in Aβ1-42-insults in both neurons and astrocytes has therefore emerged as an important
mechanism to be investigated and a new possible pharmacological target in AD treatment.

In view of these considerations, the purpose of the present study has been to in-
vestigate the effect of limonene, one of the main constituents of several plants from the
genus Citrus on acetylcholinesterase (AChE) activity and its putative neuroprotective ef-
fect against Aβ1-42 neurotoxicity in an in vitro model of AD, namely rat primary cortical
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neurons exposed to oligomeric species of the neurotoxic Aβ1-42 peptide. In particular, we
assessed the ability of limonene to counteract the effect of Aβ1-42 oligomers on neuronal
viability, ROS production, and KV3.4-mediated IA currents.

2. Materials and Methods
2.1. Chemicals and Reagents

EO of Citrus medica cv rugosa, limonene (sum of enantiomers, purity > 98%), 2′,7′-
dichlorodihydrofluorescein diacetate (DCFH-DA), poly-L-lysine, and fluorescent DNA-
binding dye bis-Benzimide H 33258 (Hoechst-33258), nimodipine, and 3[4,5-dimethylthiazol-
2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Biochemical cck-8 kit for WST-8 assay was purchased from Dojindo
(Kumamoto, Japan). RPMI 1640 medium, fetal bovine serum (FBS), horse serum (HS),
non-essential amino acids, penicillin, streptomycin, and PBS were from Gibco-BRL (Grand
Island, NY, USA). Nerve growth factor (NGF) and tetrodotoxin (TTX) were from Alomone
Lab (Jerusalem, Israel). The Aβ1-42 peptide (> 95% pure) was synthesized by INBIOS
(Pozzuoli, Naples, Italy) using the Aβ1-42 sequence of human APP [UniProtKB-P05067
(A4_HUMAN)].

2.2. In Vitro Anti-Acetylcholinesterase Activity

AChE inhibitory activity assay was performed according to a previously described
spectrophotometric method [42]. Absorbance was measured at 405 nm in a spectropho-
tometer (Thermo Scientific Multiskan GO, Monza, Italy). Galantamine was used as positive
control and bidistillated water as a negative control. The percentage inhibition of AChE
activity was calculated by comparison with the negative control using the following equa-
tion: AChE inhibition % = [(A0 − A1)/A0]*100, where A0 is the absorbance of the control
without sample and A1 is the absorbance of the sample.

2.3. Cell Cultures

Rat pheochromocytoma (PC12) cells were cultured as previously described [35]. Neu-
ronal differentiation was obtained by exposing these cells to nerve growth factor (NGF;
50 ng/mL) for 7 days [35,36]. Then, NGF-differentiated cells were seeded on 96-well plates
and used after 7 days. Human neuroblastoma (SH-SY5Y) cells were cultured as previously
described [43].

2.4. Primary Cortical Neurons

Cortical neurons were obtained from brains of 14/16-day-old Wistar rat embryos and
dissected as reported previously [44]. Neurons were cultured in a humidified 5% CO2
atmosphere, and the culture medium was changed every 2 days. For microfluorimetric
and electrophysiological studies, cells were seeded on glass coverslips (Fisher, Springfield,
NJ, USA) coated with poly-D-lysine and used at least 12 h after seeding. Italian Ministry of
Health and the local Animal Care Committee of “Federico II” University of Naples (Italy)
approved all animal procedures adopted (D. Lgs. 4th March 2014 from Italian Ministry of
Health; DIR 210/63 UE; 12/2018-UT7).

2.5. Aβ Treatment

Aβ1-42 oligomers were re-suspended as previously described [38]. Aβ1-42 was added
to culture medium at the final concentration of 5 µM for 24 h. The pre-aggregated prepara-
tion of Aβ oligomers was analyzed in SDS-PAGE using a rabbit monoclonal Aβ antibody
(D54D2) (Cell signaling, MA, USA) on precast gels 4–20% [32].

2.6. MTT Assay

Mitochondrial dehydrogenase activity was assessed by the MTT assay as previously
described [45]. Data are expressed as a percentage of cell viability compared to control
cultures.
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2.7. Assessment of Intracellular ROS Production

Cortical neurons plated on glass coverslips were exposed to limonene in the presence
or in absence of Aβ1-42 oligomers for 24 h. At the end of the treatment, cells were incubated
with a physiological solution containing DCFH-DA (17.5 µM) [35,46]. Cells were washed
with a stopping solution containing EGTA. Each coverslip was rapidly placed into a
perfusion chamber (Medical System, Co. Greenvale, NY, USA) and acquired with the
Zeiss Axiovert 200 microscope (Carl Zeiss, Germany) equipped with MicroMax 512BFT
cooled CCD camera (Princeton Instruments, Trenton, NJ, USA). Using a 40X objective,
each coverslip was exposed at 485-nm excitation for 10 s and the emitted light was passed
through a 530-nm barrier filter.

2.8. Electrophysiology

K+ currents were recorded from primary rat cortical neurons using a commercially
available amplifier (Axopatch 200B, Axon Instruments, Union City, CA, USA), as previously
described [35,36]. Currents were filtered at 5 kHz and digitized using a Digidata 1322A
interface (Molecular Devices, CA, USA). Data were acquired and analyzed using pClamp
software (version 9.0, Molecular Devices, CA, USA). The pipette solution contained the
following (in mM): 100 K-gluconate, 20 NaCl, 1 Mg-ATP, 0.1 CaCl2, 2 MgCl2, 0.75 EGTA,
and 10 HEPES, adjusted at pH 7.4 with KOH. The extracellular solution contained the
following (in mM): 126 NaCl, 1.2 NaHPO4, 2.4 KCl, 2.4 CaCl2, 1.2 MgCl2, 10 glucose, and
18 NaHCO3, pH 7.4. TTX (50 nM) and nimodipine (10 µM) were added to extracellular
solution to inhibit Na+ and Ca2+ currents. The K+ current components (inactivating
component IA and delayed-rectifier non-inactivating component IDR) were discriminated
using the appropriated electrophysiological protocols as previously described [35,36].
Possible changes in cell size occurring upon specific pharmacological treatments were
calculated by monitoring the capacitance of each cell membrane, which is directly related
to membrane surface area, and the current amplitude was expressed as current densities
(pA/pF) as previously described [35,36].

2.9. Assessment of Nuclear Morphology

Nuclear morphology was studied by Hoechst-33258 as previously described [35] Cells
were fixed in 4% paraformaldehyde and then incubated with Hoechst 33258 (1 µg/mL/5
min/37 ◦C). Images were acquired with a CoolSnap camera (Media Cybernetics Inc, Silver
Spring, MD, USA) using the Nikon Eclipse E400 microscope (Nikon, Torrance, CA, USA).
Image analysis was performed with the Image-Pro Plus 4.5 software (Media Cybernetics
Inc, Silver Spring, MD, USA). A set of 330 nm/450 nm filters was used to detect Hoechst-
33258. Pathological nuclei are characterized by chromatin condensation, fragmentation,
and decrease in size. Values acquired in all conditions were expressed as percentage of
total nuclei.

2.10. Western Blotting

SH-SY5Y cells were treated with EO of Citrus medica rugosa. After 24 h of treatment,
cells were collected and lysed as previously described [43]. Nitrocellulose blots were
incubated with primary anti-phosphoERK (pERK; Santa Cruz Biotechnology, Santa Cruz,
CA, USA; sc-377400), anti-ERK (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-271269),
anti-PKA (Elabscience, USA) or anti-calregulin (Santa Cruz Biotechnology, Santa Cruz,
CA, USA;sc-101436) for 3 h at room temperature and then with horseradish peroxidase-
conjugated secondary antibody (Amersham Biosciences, Pittsburgh, PA, USA).

2.11. Statistics

GraphPad Prism 6.02 was used for statistical analyses (GraphPad Software, La Jolla,
CA, USA). Data are expressed as the mean± SEM (Figures 1–4) or mean± SD (Figure S1) of
the values obtained from individual experiments. Statistical comparisons between groups
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were performed by one-way analysis of variance (ANOVA) followed by the Newman–
Keuls’ test; p < 0.05 was considered significant.

3. Results
3.1. Effect of Limonene on Acetylcholinesterase Activity

AChE, the enzyme involved in the hydrolysis of acetylcholine, plays an important
role in the neurodegeneration occurring in AD. The AChE inhibitors are currently in-
cluded in AD therapy since they display efficacy in relieving cognitive symptoms in
AD patients [10,11]. Interestingly, limonene showed a significant activity against acetyl-
cholinesterase with a calculated IC50 of 7.7 µg/mL that was measured in vitro by the
Ellman’s colorimetric method (Table 1). Of note, the reported IC50 for limonene activity
is almost comparable to that of galantamine, which has been used as positive control
(Table 1).

Table 1. Inhibitory effects of limonene on AChE activity. Concentration-dependent effect of limonene
and galantamine against AChE activity measured in vitro (n.a. = not active).

Compound Concentration
(mg/mL)

AChE
Inhibition (%) IC50 (mg/mL)

Limonene
100 87.8 ± 1.4
10 78.4 ± 1.8 7.7 ± 1.2
1 n.a

Galantamine

100 100.1 ± 1.9
10 96.2 ± 2.1
1 85.0 ± 0.8 0.6 ± 0.2

0.1 n.a

3.2. Effect of Limonene on Mitochondrial Dehydrogenase Activity Reduction Induced by Aβ1-42
Oligomers in Primary Cortical Neurons

Before investigating the possible neuroprotective effect of limonene against Aβ1-42-induced
neurotoxicity, we assessed mitochondrial dehydrogenase activity of NGF-differentiated PC12
cells exposed to different concentrations of limonene (5, 10, and 25 µg/mL/24 h) in order
to exclude any putative cytotoxicity of the compound as well as to identify the appropriate
concentration for subsequent experiments. Importantly, NGF-differentiated PC12 cells
treated for 24 h with limonene did not display any significant reduction but rather a mod-
erate increase in mitochondrial dehydrogenase activity. In fact, at the concentration of
10 µg/mL and 25 µg/mL respectively, it showed a significant ability to increase mitochon-
drial dehydrogenase activity (Figure 1A). Of note, the concentration of 10 µg/mL was very
similar to the IC50 calculated for the inhibition of AChE by galantamine used as positive
control (see Table 1). Therefore, the putative neuroprotective effect of 10 µg/ml limonene
was investigated in NGF-differentiated PC12 cells and in primary cortical neurons exposed
to Aβ1-42 oligomers (5 µM/24 h) (Figure 1B,C). In particular, NGF-differentiated PC12 cells
and neurons were pre-incubated with 10 µg/mL limonene 30 min before the exposure to
Aβ1-42 oligomers. After 24 h of incubation with Aβ1-42 oligomers, mitochondrial dehy-
drogenase activity was assessed. Both NGF-differentiated PC12 cells and primary cortical
neurons treated with 5 µM Aβ1-42 oligomers alone displayed a significant reduction in
mitochondrial dehydrogenase activity in comparison to untreated cells. By contrast, the
reduction of mitochondrial dehydrogenase activity was prevented in NGF-differentiated
PC12 cells and primary cortical neurons pre-treated with 10 µg/mL limonene (Figure 1B,C).
From a transductional point of view, the EO of Citrus medica cv. ‘rugosa’ containing 67%
of limonene [15] produced a significant downregulation of pERK and PKA expression in
SH-SY5Y cells (Figure S1).
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Figure 1. Effects of limonene on mitochondrial dehydrogenase activity in NGF-differentiated PC12 cells and primary 
cortical neurons exposed to Aβ1-42 oligomers. (A) Evaluation of the mitochondrial dehydrogenase activity by MTT assay 
in NGF-differentiated PC12 cells exposed to limonene at different concentrations (5, 10, and 25 µg/mL) for 24 h. (B,C) 
Quantification of mitochondrial dehydrogenase activity assessed by MTT assay in NGF-differentiated PC12 cells (B) and 
primary cortical neurons (C) exposed to Aβ1-42 oligomers (5 µM/24 h) in the presence and in absence of limonene (10 
µg/mL, 30 min pre-treatment). Data are shown as percentage of mitochondrial dehydrogenase activity (compared to 
control cells) and values are expressed as mean ± SEM of three independent experimental sessions (* p < 0.05 vs control; ** 
p < 0.05 vs Aβ1-42). 

3.3. Effect of Limonene on Nuclear Morphology Alteration Induced by Aβ1-42 Oligomers in 
Primary Cortical Neurons 

To further study the neuroprotective effect of limonene against Aβ1-42 toxicity, we 
also performed labeling experiments with the fluorescent DNA binding dye Hoechst- 
33258 on primary cortical neurons treated with Aβ1-42 oligomers (5 µM/24 h) in the pres-
ence and in absence of limonene. In accordance with the reduction of mitochondrial de-
hydrogenase activity, nuclear morphological assessment revealed a marked pyknosis, 
fragmentation, and decrease in size in neurons exposed to Aβ1-42 oligomers compared to 
untreated neurons (Figures 2 and S2). On the other hand, 30 min of pre-treatment with 10 
µg/mL limonene was able to significantly counteract the alteration of nuclear morphol-
ogy induced by Aβ1-42 oligomers (Figures 2 and S2). 

Figure 1. Effects of limonene on mitochondrial dehydrogenase activity in NGF-differentiated PC12 cells and primary
cortical neurons exposed to Aβ1-42 oligomers. (A) Evaluation of the mitochondrial dehydrogenase activity by MTT assay
in NGF-differentiated PC12 cells exposed to limonene at different concentrations (5, 10, and 25 µg/mL) for 24 h. (B,C)
Quantification of mitochondrial dehydrogenase activity assessed by MTT assay in NGF-differentiated PC12 cells (B)
and primary cortical neurons (C) exposed to Aβ1-42 oligomers (5 µM/24 h) in the presence and in absence of limonene
(10 µg/mL, 30 min pre-treatment). Data are shown as percentage of mitochondrial dehydrogenase activity (compared to
control cells) and values are expressed as mean ± SEM of three independent experimental sessions (* p < 0.05 vs control;
** p < 0.05 vs. Aβ1-42).

3.3. Effect of Limonene on Nuclear Morphology Alteration Induced by Aβ1-42 Oligomers in
Primary Cortical Neurons

To further study the neuroprotective effect of limonene against Aβ1-42 toxicity, we also
performed labeling experiments with the fluorescent DNA binding dye Hoechst- 33258 on
primary cortical neurons treated with Aβ1-42 oligomers (5 µM/24 h) in the presence and in
absence of limonene. In accordance with the reduction of mitochondrial dehydrogenase
activity, nuclear morphological assessment revealed a marked pyknosis, fragmentation, and
decrease in size in neurons exposed to Aβ1-42 oligomers compared to untreated neurons
(Figure 2 and Figure S2). On the other hand, 30 min of pre-treatment with 10 µg/mL
limonene was able to significantly counteract the alteration of nuclear morphology induced
by Aβ1-42 oligomers (Figure 2 and Figure S2).
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played increased DCF-monitored fluorescent intensity indicating a significant increase of 
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pre-treatment with limonene at the concentration of 10 µg/mL prevented the significant 
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Figure 2. Effects of limonene on nuclear morphology in primary cortical neurons exposed to Aβ1-42 oligomers. (A)
Representative images of Hoechst-33258 nuclear morphological abnormalities in primary cortical neurons under control
conditions, in neurons treated with limonene (10 µg/mL/24 h), and treated with Aβ1-42 oligomers (5 µM/24 h; see white
arrows) in the absence and in presence of limonene (10 µg/mL, 30 min pre-treatment) Scale bar: 20 µm. (B) Quantification
of nuclear morphology with Hoechst-33258 in A. Data are shown as percentage of abnormal nuclei (relative to total nuclei)
and values are expressed as mean ± SEM of four independent experimental sessions in which at least 10 microscopic fields
were analyzed (* p < 0.05 vs. control; ** p < 0.05 vs. Aβ1-42).

3.4. Effect of Limonene on ROS Production Induced by Aβ1-42 Oligomers in Primary
Cortical Neurons

A great amount of studies suggested that oxidative stress associated with increased
ROS production may constitute an upstream event in AD pathogenesis. Previous studies
by our group showed that Aβ1-42 oligomers at the concentration of 5 µM induce an increase
of ROS production that peaks at 3 h and lasts for 24 h in both NGF-differentiated PC12 cells
and primary hippocampal neurons [35,36]. Therefore, the generation of ROS was detected
by DCFH-DA fluorescent dye in primary cortical neurons exposed to Aβ1-42 oligomers
(5 µM/24 h) in the presence and in absence of 10 µg/mL limonene. In line with our
previous observations, primary cortical neurons treated with Aβ1-42 oligomers displayed
increased DCF-monitored fluorescent intensity indicating a significant increase of ROS
production compared with untreated neurons (Figure 3 and Figure S3). Importantly, the
pre-treatment with limonene at the concentration of 10 µg/mL prevented the significant
over-production of ROS induced by Aβ1-42 oligomers, as indicated by a decrease in DCF-
monitored fluorescent intensity compared with Aβ1-42-treated neurons (Figure 3 and
Figure S3).
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tracellular ROS production in A. Data are depicted as DCF fluorescence values (arbitrary units) expressed as mean ± SEM 
of three independent experimental sessions. * p < 0.05 vs controls; ** p < 0.05 vs Aβ1-42. 
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Figure 3. Effects of limonene on ROS production in primary rat cortical neurons exposed to Aβ1-42 oligomers. (A)
Representative phase-contrast (top) and corresponding DCF fluorescence images (bottom) of primary cortical neurons
under control conditions, in neurons treated with limonene (10 µg/mL/24 h), or treated with Aβ1-42 oligomers (5 µM/24 h)
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occurring at the level of prolongations and fluorescence intensity, respectively. Scale bar: 20 µm. (B) Quantification of
intracellular ROS production in A. Data are depicted as DCF fluorescence values (arbitrary units) expressed as mean ± SEM
of three independent experimental sessions. * p < 0.05 vs controls; ** p < 0.05 vs Aβ1-42.

3.5. Effect of Limonene on the Upregulation of Fast-Inactivating IA Currents Triggered by Aβ1-42
Oligomers in Primary Cortical Neurons

Previously, we provided evidence that Aβ1-42 oligomers induced a selective up-
regulation of KV3.4 channels through the ROS-dependent activation of the transcription
factor NF-kB [36] and that the subsequent increase of K+ efflux was involved in neuronal
and astrocytic damage [32,36,40]. Since the blockade of KV3.4 appeared to be an effective
strategy to counteract Aβ1-42-mediated caspase-3 overactivation [38,39], we here tested
the hypothesis that limonene could prevent the ROS-dependent up-regulation of fast-
inactivating IA currents mediated by KV3.4 in primary cortical neurons exposed to Aβ1-42
oligomers. First, we performed patch-clamp experiments in primary cortical neurons
treated with Aβ1-42 oligomers (5 µM/24 h) to assess fast-inactivating IA current amplitude
carried by KV3.4 channels. In line with our previous reports, patch-clamp experiments
revealed that Aβ1-42 oligomers were able to markedly enhance IA density. On the other
hand, we found that pre-treatment with 10 µg/mL limonene largely prevented the increase
of fast-inactivating IA currents induced by Aβ1-42 oligomers (Figure 4).
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Figure 4. Effects of limonene on KV3.4 channels in primary rat cortical neurons exposed to Aβ1-42 oligomers. (A) Rep-
resentative outward K+ currents recorded in primary cortical neurons under control conditions, in neurons treated with
limonene (10 µg/mL/24 h), and treated with Aβ1-42 oligomers (5 µM/24 h) in the absence and in presence of limonene
(10 µg/mL, 30 min pre-treatment). On the left, total K+ currents (IK) elicited by depolarizing steps starting from −100 mV
of increasing voltages are shown. On the middle, the delayed K+ currents (IDR), obtained in the same neurons and elicited
by depolarizing steps starting from −40 mV of increasing voltages are shown. On the right, fast inactivating currents (IA)
carried by KV3.4, obtained in each cell upon subtraction IK-IDR, are shown. (B) Quantification of IA in (A). The peak values
of IA, measured at the beginning of the +40 mV depolarizing pulse, are expressed as percentage mean ± SEM of three
independent experimental preparations (n = 12 neurons for each group). * p < 0.05 vs controls; ** p < 0.05 vs Aβ1-42.

4. Discussion

In the present study, we evaluated the neuroprotective effects of the monoterpene
limonene, the main constituent of plants from Citrus genus, against AD in an in vitro model
of the disease represented by primary cortical neurons exposed to Aβ1-42 oligomers. The
results obtained suggested that limonene was able to protect primary cortical neurons
from cell damage induced by Aβ1-42 oligomers by preventing ROS production and KV3.4
channel hyperfunction (Scheme 1).

Molecularly, limonene showed a specific activity against acetylcholinesterase almost
comparable to galantamine, a well-known drug used in AD therapy. Moreover, limonene
was able to prevent Aβ1-42 oligomer-induced decrease in mitochondrial dehydrogenase
activity and increase in ROS production, thus exerting a neuroprotective effect in primary
cortical neurons exposed to Aβ1-42 oligomers. Our findings are in accordance with a
previous in vivo study showing that limonene may exert a neuroprotective effect against
the toxicity of Aβ1-42 in a Drosophila AD model through a strong antioxidant action [26].

In the present study we showed that limonene, acting on ROS production, prevented
the KV3.4 current enhancement induced by Aβ1-42 oligomers. Of note, the increase in ROS
level observed in AD is recognized to be an early biochemical event leading to the enhance-
ment of KV3.4 currents induced by Aβ1-42 oligomers [32,36,40]. Therefore, consistent with
our previous results, we hypothesized that a marked increase in ROS levels observed here
may produce the upregulation of KV3.4 activity also in primary cortical neurons. This
result bears striking homology with previous data showing that the antioxidant action of
Vitamin E is able to prevent the upregulation of KV3.4 channel activity induced by Aβ1-42
oligomers in neurons [35]. Moreover, it has been shown that the increased expression
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and function of KV3.4 following Aβ1-42 oligomers exposure are critically dependent on
Ca2+-induced increase in ROS production, which in turn prompts KV3.4 transcriptional
activation through a nuclear factor κB-dependent (NF-κB) pathway [35,36]. Remarkably,
NF-κB was the first transcription factor shown to be redox-regulated [47,48].
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Scheme 1. Scheme of the putative mechanism of limonene action in cortical neurons exposed to
Aβ1-42 oligomers.

Of note, limonene is able to decrease NF-κB nuclear activation via AMP-activated
protein kinase phosphorylation [49]. Therefore, the blockade of ROS-induced NF-κB
activation could be involved in the neuroprotective mechanism elicited by limonene.
However, a direct ROS scavenging action of the natural compound in the present AD
model cannot be ruled out.

On the other hand, the important involvement of KV3.4 channels in the Aβ1-42 neuro-
toxicity is further supported by the results showing that BDS-I, a KV3.4 blocker [50], may
exert a potent neuroprotective action both in AD neurons and astrocytes exposed to Aβ1-42
oligomers [36,40].

In respect to the effect of limonene on ROS production, these species seem to play
a relevant role in the neurotoxic cascade of Aβ1-42. In fact, the transient influx of Ca2+

ions induced by Aβ1-42 oligomers may trigger intracellular cascades that lead not only to
increased levels of ROS but also to simultaneous mitochondrial functional impairment
characterized by activation of the permeability transition pore in the inner mitochondrial
membrane, cytochrome c release, and depletion of ATP [35]. In this regard, it has been
demonstrated that the blockade of KV3.4 may inhibit MPP+-induced cytochrome c release
from the mitochondrial intermembrane space to the cytosol and mitochondrial membrane
potential depolarization [41].

Another important neuroprotective process modulated by limonene is autophagy.
Interestingly, limonene stimulates the autophagic flux through a rapid ERK activation [51].
Of note, the pharmacological inhibition of Kv3.4 by BDS-I counteracts intracellular pH
regulation and ERK activation in A549 cells [52], thus further supporting the transduction
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modulation of KV3.4 channel by limonene. Besides a plethora of functions mediated at
cellular and subcellular level, the ERK1/2 transduction element may negatively regulate the
expression of β-secretase, the proteolytical enzyme mainly involved in the production of the
neurotoxic Aβ1-42 peptide [53]. On the other hand, several studies provide direct evidence
on the possible involvement of MAP kinase pathway in the hyper-phosphorylation of
tau underlining the role played by ERK1/2 activation in the Aβ1-42 deposition during
AD [54]. In addition, targeting ERK1/2 activity may slow tau spreading in sporadic AD
thus offering a new putative neuroprotective strategy in the major form of AD [55]. In
accordance to the latter study, our preliminary data (Figure S1) suggested that the EO
Citrus medica cv rugosa, containing high levels of limonene, reduced ERK1/2 activation.

Another aspect that deserves attention is the putative clinical relevance of the present
data. In fact, the use of essential oil containing limonene, or limonene alone, would be
desirable in the therapy of AD symptoms, which is in line with our results showing the
antioxidant properties of the natural compound and considering its ability to counteract
Aβ1-42-induced KV3.4 hyperfunctionality in cortical neurons. Of course, our in vitro results
should be reproduced in vivo to prove not only the efficacy of the treatment in a more
complex model of the disease but also to define the pharmacokinetic profile of limonene.
However, in line with our in vitro data, a recent manuscript shows a significant cognitive-
enhancing effect of essential oil containing limonene in a scopolamine-induced amnesia
model [56]. Interestingly, the authors correlate this therapeutic effect to the essential oil
ability in inhibiting acetyl/butirrylcholinesterase activities [56]. Although our results are
in line with this recent manuscript, we additionally demonstrated that limonene alone may
exert the same AChE inhibitory activity than the essential oil containing other components.
However, it would be desirable to go even further by performing in vivo experiments in
AD transgenic mice to set up a therapeutic window of limonene and to study its protective
effect in a more complex model.

Considering that ROS-mediated KV3.4 overexpression may intervene in both neurode-
generation and neuroinflammation underlying AD development [29,32,35–40], limonene
may assume a novel neuroprotective meaning. Therefore, limonene, controlling the modula-
tion of KV3.4 channels in AD brain via ROS production, might represent a novel therapeutic
approach for slowing down the progression of the disease. Therefore, after an accurate
examination of the molecular pathway involved in its mechanism, the modification of
limonene to serve as prominent scaffold in designing novel bioactive compounds should
be taken into consideration as a new potential avenue in AD intervention.

5. Conclusions

In this manuscript we showed that limonene exerts a novel neuroprotective effect in
AD. In particular, limonene, controlling the modulation of KV3.4 channels via ROS level
reduction, might represent a novel therapeutic approach for slowing down the progression
of the disease. Moreover, limonene displays a specific activity against AChE almost
comparable to galantamine, a well-known drug used in AD therapy. In this respect, the
involvement of AChE metabolic activity in Aβ fibril formation is considered one of the
most interesting future perspectives in AD therapy. For instance, AChE activity has been
mainly associated with the amyloid core of senile plaques in the brain of AD patients [57,58].
Moreover, AChE activity increases and accelerates the aggregation of Aβ [59], as detected
by thioflavin-T fluorescence assay [60]. Consequently, AChE inhibitors, such as donepezil
and tacrine, reduce Aβ aggregation thus showing a certain therapeutic potential in AD [61].
Another important consideration is that limonene may exert a neuroprotective effect against
Aβ toxicity through several molecular mechanisms including the inhibition of AChE, the
antioxidant activity, the inhibition of KV3.4 hyperfunction and the downregulation of pERK.
These mechanisms are not all simultaneously shared by the other AChE inhibitors. In
fact, among the most studied drugs, tacrine and donepezil are the only two therapeutic
compounds displaying some of the mechanisms displayed by limonene [61]. Therefore,
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limonene could represent an interesting multi-target molecule useful to design novel
bioactive compounds slowing down AD progression.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antiox10060937/s1, Figure S1: Expression of pERK and PKA proteins in SH-SY5Y cells treated
with Citrus medica cv rugosa; Figure S2: Nuclear morphology (images) of primary cortical neurons
under control conditions, in the presence of limonene, Aβ1-42 or limonene + Aβ1-42; Figure S3:
ROS production (images) in primary cortical neurons under control conditions, in the presence of
limonene, Aβ1-42 or limonene + Aβ1-42.
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