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SUMMARY

Therapy development for adult diffuse glioma is hin-
dered by incomplete knowledge of somatic glioma
driving alterations and suboptimal disease classifi-
cation. We defined the complete set of genes associ-
ated with 1,122 diffuse grade II-III-IV gliomas from
The Cancer Genome Atlas and used molecular
profiles to improve disease classification, identify
molecular correlations, and provide insights into

the progression from low- to high-grade disease.
Whole-genome sequencing data analysis deter-
mined that ATRX but not TERT promoter mutations
are associated with increased telomere length.
Recent advances in glioma classification based on
IDH mutation and 1p/19q co-deletion status were
recapitulated through analysis of DNA methylation
profiles, which identified clinically relevant molecular
subsets. A subtype of IDH mutant glioma was asso-
ciated with DNA demethylation and poor outcome;

550 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.

mailto:houtan@usp.br
mailto:ai2102@columbia.edu
mailto:rverhaak@mdanderson.org
http://dx.doi.org/10.1016/j.cell.2015.12.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.12.028&domain=pdf


a group of IDH-wild-type diffuse glioma showed mo-
lecular similarity to pilocytic astrocytoma and rela-
tively favorable survival. Understanding of cohesive
disease groups may aid improved clinical outcomes.

INTRODUCTION

Diffuse gliomas represent 80% of malignant brain tumors
(Schwartzbaum et al., 2006). Adult diffuse gliomas are classi-
fied and graded according to histological criteria (oligoden-
droglioma, oligoastrocytoma, astrocytoma, and glioblastoma;
grade II to IV). Although histopathologic classification is well
established and is the basis of the World Health Organization
(WHO) classification of CNS tumors (Louis et al., 2007), it suf-
fers from high intra- and inter-observer variability, particularly
among grade II-III tumors (van den Bent, 2010). Recent molec-
ular characterization studies have benefited from the availabil-
ity of the datasets generated by The Cancer Genome Atlas
(TCGA) (Brennan et al., 2013; Eckel-Passow et al., 2015; Frat-
tini et al., 2013; Kim et al., 2015; Suzuki et al., 2015; Cancer
Genome Atlas Research Network et al., 2015) and have related
genetic, gene expression, and DNA methylation signatures
with prognosis (Noushmehr et al., 2010; Sturm et al., 2012;
Verhaak et al., 2010). For example, mutations in the isocitrate
dehydrogenase genes 1 and 2 (IDH1/IDH2) define a distinct
subset of glioblastoma (GBM) with a hypermethylation pheno-
type (G-CIMP) with favorable outcome (Noushmehr et al.,
2010; Yan et al., 2009). Conversely, the absence of IDH muta-
tions in LGG marks a distinct IDH-wild-type subgroup charac-
terized by poor, GBM-like prognosis (Eckel-Passow et al.,
2015; Cancer Genome Atlas Research Network et al., 2015).
Recent work by us and others has proposed classification of
glioma into IDH wild-type cases, IDH mutant group addi-
tionally carrying codeletion of chromosome arm 1p and 19q
(IDH mutant-codel) and samples with euploid 1p/19q (IDH
mutant-non-codel), regardless of grade and histology (Eckel-
Passow et al., 2015; Cancer Genome Atlas Research Network
et al., 2015). Mutation of the TERT promoter, which has been
reported with high frequency across glioma, may be an addi-
tional defining feature. Current analyses have not yet clarified
the relationships between LGGs and GBMs that share com-
mon genetic hallmarks like IDH mutation or TERT promoter
mutation status. An improved understanding of these relation-
ships will be necessary as we evolve toward an objective
genome-based clinical classification.
To address the above issues, we assembled a dataset

comprising all TCGA newly diagnosed diffuse glioma consisting
of 1,122 patients and comprehensively analyzed using seq-
uencing and array-based molecular profiling approaches. We
have addressed crucial technical challenges in analyzing this
comprehensive dataset, including the integration of multiple
platforms and data sources (e.g., multiple methylation and
gene expression platforms). We identified new diffuse glioma
subgroups with distinct molecular and clinical features and
shed light on the mechanisms driving progression of lower grade
glioma (LGG) (WHO grades II and III) into full-blown GBM (WHO
grade IV).

RESULTS

Patient Cohort Characteristics
The TCGA LGG and GBM cohorts consist of 516 and 606 pa-
tients, respectively. Independent analysis of the GBM dataset
was previously described, as was analysis of 290 LGG samples
(Brennan et al., 2013; Cancer Genome Atlas Research Network
et al., 2015). 226 LGG samples were added to our current cohort
(Table 1). Clinical data, including age, tumor grade, tumor histol-
ogy, and survival, were available for 93% (1,046/1,122) of cases
(Table S1). The majority of samples were grade IV tumors (n =
590, 56%), whereas 216 (21%) and 241 (23%) were grade II
and III tumors, respectively. Similarly, 590 (56%) samples were
classified as GBM, 174 (17%) as oligodendroglioma, 169
(16%) as astrocytoma, and 114 (11%) as oligoastrocytoma.
Among the data sources considered in our analysis were gene

expression (n = 1,045), DNA copy number (n = 1,084), DNA
methylation (n = 932), exome sequencing (n = 820), and protein
expression (n = 473). Multiple and overlapping characterization
assays were employed (Table S1). All data files that were used
in our analysis can be found at https://tcga-data.nci.nih.gov/
docs/publications/lgggbm_2015/.

Identification of Novel Glioma-Associated Genomic
Alterations
To establish the set of genomic alterations that drive gliomagen-
esis, we called point mutations and indels on the exomes of 513
LGG and 307 GBM using the Mutect, Indelocator, Varscan2,
and RADIA algorithms and considered all mutations identified
by at least two callers. Significantly mutated genes (SMGs)
were determined using MutSigCV. This led to the identification
of 75 SMGs, 10 of which had been previously reported in
GBM (Brennan et al., 2013), 12 of which had been reported in
LGG (Cancer Genome Atlas Research Network et al., 2015),
and 8 of which had been identified in both GBM and LGG
studies. 45 SMGs have not been previously associated with
glioma and ranged in mutation frequency from 0.5% to 2.6%
(Table S2A). We used GISTIC2 to analyze the DNA copy number
profiles of 1,084 samples, including 513 LGG and 571 GBM,
and identified 162 significantly altered DNA copy number seg-
ments (Table S2B). We employed PRADA and deFuse to detect
1,144 gene fusion events in the RNA-seq profiles available for
154 GBM and 513 LGG samples, of which 37 in-frame fusions
involved receptor tyrosine kinases (Table S2C). Collectively,
these analyses recovered all known glioma driving events,
including in IDH1 (n = 457), TP53 (n = 328), ATRX (n = 220),
EGFR (n = 314), PTEN (n = 168), CIC (n = 80), and FUBP1
(n = 45). Notable newly predicted glioma drivers relative to the
earlier TCGA analyses were genes associated with chromatin
organization such as SETD2 (n = 24), ARID2 (n = 20), DNMT3A
(n = 11), and the KRAS/NRAS oncogenes (n = 25 and n = 5,
respectively).
We overlapped copy number, mutation (n = 793), and fusion

transcript (n = 649) profiles and confirmed the convergence of
genetic drivers of glioma into pathways, including the Ras-Raf-
MEK-ERK, p53/apoptosis, PI3K/AKT/mTOR, chromatin modifi-
cation, and cell cycle pathways. The Ras-Raf-MEK-ERK sig-
naling cascade showed alterations in 106 of 119 members
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detected across 578 cases (73%), mostly occurring in IDH-wild-
type samples (n = 327 of 357, 92%). Conversely, we found that a
set of 36 genes involved in chromatin modification was targeted
by genetic alterations in 423 tumors (54%, n = 36 genes), most of
which belonged to the IDH mutant-non-codel group (n = 230,
87%).

In order to identify new somatically altered glioma genes, we
usedMutComFocal to nominate candidates altered bymutation,
as well as copy number alteration. Prominent among these
genes was NIPBL, a crucial adherin subunit that is essential for
loading cohesins on chromatin (Table S2D) (Peters and Nish-

iyama, 2012). The cohesin complex is responsible for the adhe-
sion of sister chromatids following DNA replication and is essen-
tial to prevent premature chromatid separation and faithful
chromosome segregation during mitosis (Peters and Nishiyama,
2012). Alterations in the cohesin pathway have been reported in
12% of acute myeloid leukemias (Kon et al., 2013). Mutations of
the cohesin complex gene STAG2 had been previously reported
in GBM (Brennan et al., 2013). Taken together, 16% of the LGG/
GBM showed mutations and/or CNAs in multiple genes involved
in the cohesin complex, thus nominating this process as a prom-
inent pathway involved in gliomagenesis.

Table 1. Clinical Characteristics of the Sample Set Arranged by IDH and 1p/19q Co-deletion Status

Feature IDH Wt (n = 520) IDH mut - non-codel (n = 283) IDH mut - codel (n = 171) Unknown (n = 148)

Clinical

Histology (n)

Astrocytoma 52 (10.0%) 112 (39.6%) 4 (2.3%) 1 (0.7%)

Glioblastoma 419 (80.6%) 32 (11.3%) 2 (1.2%) 137 (92.6%)

Oligoastrocytoma 15 (2.9%) 69 (24.4%) 30 (17.5%) 0 (0%)

Oligodendroglioma 19 (3.7%) 37 (13.1%) 117 (68.4%) 1 (0.7%)

Unknown 15 (2.9%) 33 (11.7%) 18 (10.5%) 9 (6.1%)

Grade (n)

G2 19 (3.7%) 114 (40.3%) 81 (47.4%) 2 (1.4%)

G3 67 (12.9%) 104 (36.7%) 70 (40.9%) 0 (0%)

G4 419 (80.6%) 32 (11.3%) 2 (1.2%) 137 (92.6%)

Unknown 15 (2.9%) 33 (11.7%) 18 (10.5%) 9 (6.1%)

Age

Median (LQ-UQ) 59 (51–68) 38 (30–44) 46 (35–54) 55 (48-68)

Unknown (n) 16 33 18 9

Survival

Median (CI) 14.0 (12.6–15.3) 75.1 (62.1–94.5) 115.8 (90.5–Inf) 12.6 (11.3-14.9)

Unknown (n) 14 32 18 12

KPS

<70 85 (16.3%) 8 (2.8%) 5 (2.9%) 21 (14.2%)

70–80 196 (37.7%) 41 (14.5%) 18 (10.5%) 60 (40.5%)

90 29 (5.6%) 60 (21.2%) 32 (18.7%) 2 (1.4%)

100 51 (9.8%) 44 (15.9%) 30 (17.5%) 14 (9.5%)

Unknown 159 (30.6%) 129 (45.6%) 86 (50.3%) 51 (34.5%)

Molecular

MGMT promoter

Methylated 170 (32.7%) 242 (85.5%) 169 (98.8%) 32 (21.6%)

Unmethylated 248 (47.7%) 36 (12.7%) 1 (0.6%) 34 (23.0%)

Unknown 102 (19.6%) 5 (1.8%) 1 (0.6%) 82 (55.4%)

TERT promoter

Mutant 67 (12.9%) 8 (2.8%) 86 (50.3%) 1 (0.7%)

Wild-type 19 (9.8%) 146 (51.6%) 2 (1.2%) 0 (0%)

Unknown 434 (83.5%) 129 (45.6%) 83 (48.5%) 135 (99.3%)

TERT expression

Expressed 178 (34.2%) 14 (4.9%) 153 (89.5%) 6 (4.1%)

Not expressed 51 (9.8%) 242 (85.5%) 16 (9.4%) 7 (4.7%)

Unknown 291 (56.0%) 27 (9.5%) 2 (1.2%) 135 (91.2%)
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Telomere Length Is Positively Correlatedwith ATRX, but
Not TERT Promoter Mutations
Mutations in the TERT promoter (TERTp) have been reported in
80% of GBM (Killela et al., 2013). We used TERTp mutation
calls from targeted sequencing (n = 287) and complemented
them with TERTp mutations inferred from whole-genome
sequencing (WGS) data (n = 42). TERTp mutations are nearly
mutually exclusive with mutations in ATRX (Eckel-Passow
et al., 2015), which was confirmed in our cohort. Overall,
85% of diffuse gliomas harbored mutations of TERTp (n =
157, 48%) or ATRX (n = 120, 37%). TERTp mutations activate
TERT mRNA expression through the creation of a de novo
E26 transformation-specific (ETS) transcription factor-binding
site (Horn et al., 2013), and we observed significant TERT
upregulation in TERTp mutant cases (p value < 0.0001, Fig-
ure S1A). TERT expression measured by RNA-seq was a highly
sensitive (91%) and specific (95%) surrogate for the presence
of TERTp mutation (Figure S1B). We correlated TERTp status
with glioma driving alterations and observed that nearly all
IDH-wild-type cases with chromosome 7 gain and chromo-
some 10 loss harbored TERTp mutations or upregulated
TERT expression (n = 52/53 and n = 134/147, respectively; Fig-
ure 1A). Conversely, only 45% of IDH-wild-type samples lack-
ing chromosome 7/chromosome 10 events showed TERTp
mutations or elevated TERT expression (n = 15/33 and n =
43/82, respectively). Thus, TERTp mutations may precede the
chr 7/chr 10 alterations that have been implicated in glioma
initiation (Ozawa et al., 2014).

A

B

C

Figure 1. Telomere Length Associations in
Glioma
(A) Heatmap of relative tumor/normal telomere

lengths of 119 gliomas, grouped by TERTp and

ATRX mutation status.

(B) Telomere length decreases with increasing age

(measured in years at diagnosis) in blood normal

control samples (n = 137).

(C) Quantitative telomere length estimates of tu-

mors and blood normal, grouped by TERTpmutant

(n = 67, 56%), ATRX mutant (n = 40, 33%), and

double negative (n = 13, 11%) status. *** = p <

0.0001; ** = p < 0.001.

To correlate TERTp mutations to telo-
mere length, we used whole-genome
sequencing and low pass whole-genome
sequencing data to estimate telomere
length in 141 pairs of matched tumor
and normal samples. As expected, we
observed an inverse correlation of telo-
mere length with age at diagnosis in
matching blood normal samples (Fig-
ure 1B) and tumor samples (Figure S1C).
Glioma samples harboring ATRX muta-
tions showed significantly longer telo-
meres compared to TERTp mutant sam-
ples (t test p value < 0.0001; Figure 1C).
Among TERTp mutation gliomas, there

was no difference in telomere length between samples with and
without additional IDH1/IDH2 mutations, despite a difference in
age. ATRX forms a complex with DAXX and H3.3, and the genes
encoding these proteins are frequently mutated in pediatric gli-
omas (Sturm et al., 2012). Mutations in DAXX and H3F3A were
identified in only two samples in our WGS dataset. The ATRX-
DAXX-H3.3 complex is associated with the alternative length-
ening of telomeres (ALT) and our observations confirmpreviously
hypothesized fundamental differences between the telomere
control exerted by telomerase and ALT (Sturm et al., 2014).
As demonstrated by the identification of TERTpmutations, so-

matic variants affecting regulatory regionsmay play a role in glio-
magenesis. Using 67 matched whole-genome and RNA-seq
expression pairs, we similarly sought to identify mutations
located within 2 kb upstream of transcription start sites and
associated with a gene expression change. Using strict filtering
methods, we identified 12 promoter regions with mutations in
at least 6 samples. Three of 12 regions related to a significant
difference in the expression of the associated gene expression,
suggesting possible functional consequences. Other than TERT
(n = 37), promotermutations of the ubiquitin ligase TRIM28 (n = 8)
and the calcium channel gamma subunit CACNG6 (n = 7) corre-
lated with respectively upregulation and downregulation of these
genes, respectively (Table S2E). TRIM28 has been reported to
mediate the ubiquitin-dependent degradation of AMP-activated
protein kinase (AMPK) leading to activation of mTOR signaling
and hypersensitization to AMPK agonists, such as metformin
(Pineda et al., 2015).
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Unsupervised Clustering of Gliomas Identifies Six
Methylation Groups and Four RNA Expression Groups
Associated with IDH Status
To segregate the DNA methylation subtypes across the pan-gli-
oma dataset, we analyzed 932 glioma samples profiled on the
HumanMethylation450 platform (516 LGG and 129 GBM) and
the HumanMethylation27 platform (287 GBM). In order to incor-
porate the maximum number of samples, we merged datasets
from both methylation platforms yielding a core set of 25,978
CpG probes. To reduce computational requirements to cluster
this large dataset, we eliminated sites that were methylated
(mean b value R 0.3) in non-tumor brain tissues and selected
1,300 tumor-specific methylated probes (1,300/25,978, 5%) to
perform unsupervised k-means consensus clustering. This iden-
tified six distinct clusters, labeled LGm1–6 (Figure 2A and Tables
S1 and S3A). Next, we sought to determine pan-glioma expres-
sion subtypes through unsupervised clustering analysis of 667
RNA-seq profiles (513 LGG and 154 GBM), which resulted in
four main clusters labeled LGr1–4 (Figure 2B and Tables S1
and S3A). An additional 378 GBM samples with Affymetrix HT-
HG-U133A profiles (but lacking RNA-seq data) were classified
into the four clusters using a k-nearest neighbor classification
procedure. IDH mutation status was the primary driver of meth-
ylome and transcriptome clustering and separated the cohort
into two macro-groups. The LGm1/LGm2/LGm3 DNA methyl-
ation macro-group carried IDH1 or IDH2 mutations (449 of 450,
99%) and was enriched for LGG (421/454, 93%) while LGm4/

LGm5/LGm6 were IDH-wild-type (429/430, 99%) and enriched
for GBM (383/478, 80%). LGm1–3 showed genome-wide hyper-
methylation compared to LGm4–6 clusters (Figure S2A), docu-
menting the association between IDH mutation and increased
DNA methylation (Noushmehr et al., 2010; Turcan et al., 2012).
Principal component analysis using 19,520 probes yielded
similar results, thus emphasizing that our probe selection
method did not introduce unwanted bias (Figure S2B). The
gene expression clusters LGr1–3 harbored IDH1 or IDH2 muta-
tions (438 of 533, 82%) and were enriched for LGG (436/563,
77%), while the LGr4 was exclusively IDH-wild-type (376 of
387, 97%) and enriched for GBM (399/476, 84%).
We extended our analysis using Tumor Map (Supplemental

Experimental Procedures) to perform integrated co-clustering
analysis of the combined gene expression (n = 1,196) and DNA
methylation (n = 867) profiles. An interactive Tumor Map version
is publicly available at http://tumormap.ucsc.edu/?p=ynewton.
gliomas-paper. Tumor Map assigns samples to a hexagon in a
grid so that nearby samples are likely to have similar genomic
profiles and allows visualizing complex relationships between
heterogeneous genomic data samples and their clinical or
phenotypical associations. Thus, clusters in the map indicate
groups of samples with high similarity of integrated gene expres-
sion and DNAmethylation profiles (Figure 2C). Themap confirms
clustering by IDH status and additionally shows islands of sam-
ples that share previously reported GBM cluster memberships
(Noushmehr et al., 2010; Verhaak et al., 2010). To assess

Figure 2. Pan-glioma DNA Methylation and Transcriptome Subtypes
(A) Heatmap of DNA methylation data. Columns represent 932 TCGA glioma samples grouped according to unsupervised cluster analysis; rows represent DNA

methylation probes sorted by hierarchical clustering. Non-neoplastic samples are represented on the left of the heatmap (n = 77) (Guintivano et al., 2013).

(B) Heatmap of RNA sequencing data. Unsupervised clustering analysis for 667 TCGA glioma samples profiled using RNA sequencing are plotted in the heatmap

using 2,275most variant genes. Previously published subtypes were derived fromBrennan et al. (2013) and Cancer Genome Atlas Research Network et al., 2015.

(C) TumorMap based onmRNA expression andDNAmethylation data. Each data point is a TCGA sample colored coded according to their identified status. A live

interactive version of this map is available at http://tumormap.ucsc.edu/?p=ynewton.gliomas-paper.
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clustering sensitivity to pre-processing, we tried complementary
methods and obtained similar results (Figure S2C).

To identify genes whose copy number changes are associated
with concordant changes in gene expression, we combined
expression and copy number profiles from 659 samples to define
a signature of 57 genes with strong functional copy number (fCN)
change (Table S3B). The fCN signature clustered gliomas into
three macro-clusters, LGfc1–3, strongly associated with IDH
and 1p/19q status (Figure S2D). The fCN analysis revealed the
functional activation of a cluster of HOXA genes in the IDH-
wild-type LGfc2 cluster, which were previously associated with
glioma stem cell maintenance (Kurscheid et al., 2015).

Finally, we clustered reverse phase protein array profiles, con-
sisting of 196 antibodies on 473 samples. Two macro clusters
were observed, and in contrast to the transcriptome/methyl-
ome/fCNV clustering, the primary discriminator was based on
glioma grade (LGG versus GBM) rather than IDH status (Fig-
ure S2E). Compared to the LGG-like cluster, the GBM-like
cluster had elevated expression of IGFBP2, fibronectin, PAI1,
HSP70, EGFR, phosphoEGFR, phosphoAKT, Cyclin B1, Caveo-
lin, Collagen VI, Annexin1, and ASNS, whereas the LGG class
showed increased activity of PKC (alpha, beta, and delta),
PTEN, BRAF, and phosphoP70S6K.

The above results confirm IDH status as themajor determinant
of the molecular footprints of diffuse glioma. To further elucidate
the subtypes of diffuse glioma, we performed unsupervised clus-
tering within each of the two IDH-driven macroclusters. We used
1,308 tumor-specific CpG probes defined among the IDH muta-
tion cohort (n = 450) and identified three IDH mutant-specific
DNAmethylation clusters (Figure S3A). Using 914 tumor-specific
CpG probes in the IDH-wild-type cohort (n = 430), we uncovered
three IDH-wild-type-specific clusters (Figure S4A). The sets of
CpG probes used to cluster each of the two IDH-driven datasets
overlapped significantly with the 1,300 probes that defined the
pan-glioma DNA methylation clustering (1162/1,300, 89% and
853/1,300, 66%, for IDH mutant and IDH-wild-type, respec-
tively). The clusters identified by separating IDH mutant and
IDH-wild-type gliomas showed strong overall concordance
with pan-glioma DNA methylation subtypes (Table S3A). Simi-
larly, unsupervised clustering of 426 IDH mutant RNA-seq pro-
files resulted in three subtypes (Figure S3A), and analysis of
the 234 IDH-wild-type samples led to four mixed LGG/GBM
clusters that showed enrichment for previously identified GBM
expression subtypes (Figure S4C) (Verhaak et al., 2010).

An Epigenetic Signature Associated with Activation of
Cell Cycle Genes Segregates a Subgroup of IDH Mutant
LGG and GBM with Unfavorable Clinical Outcome
The three epigenetic subtypes defined by clustering IDH mutant
glioma separated samples harboring the 1p/19q co-deletion into
a single cluster and non-codel glioma into two clusters (Fig-
ure S3A). Conversely, non-codel glioma grouped nearly exclu-
sively into a single expression cluster, and codels were split in
two separated expression clusters (Figure S3A). A distinct sub-
group of samples within the IDH mutant-non-codel DNA methyl-
ation clusters manifested relatively reduced DNA methylation
(Figure S3B). The unsupervised clustering of IDH mutant glioma
was unable to segregate the lower methylated non-codel sub-
group as the 1,308 probes selected for unsupervised clustering
included only 19 of the 131 differentially methylated probes char-
acteristic for this subgroup (FDR < 10!15, difference in mean
methylation beta value > 0.27). The low-methylation subgroup
consisted of both G-CIMP GBM (13/25) and LGGs (12/25) and
was confirmed using a non-TCGA dataset (Figure S3C). The tu-
mors with higher methylation in the split cluster were very similar
to those grouped in the second non-codel cluster, and a super-
vised comparison identified only 12 probes as differentially DNA
methylated (Figures 3A and 3B). We concluded that IDH mutant
glioma is composed of three coherent subgroups: (1) the Codel
group, consisting of IDH mutant-codel LGGs; (2) the G-CIMP-
low group, including IDH mutant-non-codel glioma (LGG and
GBM) manifesting relatively low genome-wide DNAmethylation;
and (3) the G-CIMP-high group, including IDHmutant-non-codel
glioma (LGG and GBM) with higher global levels of DNA methyl-
ation. The newly identified G-CIMP-low group of glioma was
associated with significantly worse survival as compared to the
G-CIMP-high and Codel groups (Figure S3D). The clinical
outcome of the tumors classified as G-CIMP-high was as favor-
able as that of Codel tumors, the subgroup generally thought to
have the best prognosis among glioma patients (Figures 3C and
S3D). We compared the frequencies of glioma driver gene alter-
ations between the three types of IDH mutant glioma and found
that 15 of 18 G-CIMP-low cases carried abnormalities in cell
cycle pathway genes such as CDK4 and CDKN2A, relative to
36/241 and 2/172 for G-CIMP-high and Codels, respectively
(Figure 3D). Supervised analysis between gene expression of
G-CIMP-low and G-CIMP-high resulted in 943 differentially ex-
pressed genes. We mapped the 943 deregulated genes to 767
nearest CpG probes (max distance 1 kb) and found the majority

Figure 3. Identification of a Distinct G-CIMP Subtype Defined by Epigenomics
(A) Heatmap of probes differentially methylated between the two IDHmutant-non-codel DNAmethylation clusters allowed the identification of a low-methylation

subgroup named G-CIMP-low. Non-tumor brain samples (n = 12) are represented on the left of the heatmap.

(B) Heatmap of genes differentially expressed between the two IDH mutant-non-codel DNA methylation clusters.

(C) Kaplan-Meier survival curves of IDH mutant methylation subtypes. Ticks represent censored values.

(D) Distribution of genomic alterations in genes frequently altered in IDH mutant glioma.

(E) Genomic distribution of 633 CpG probes differentially demethylated between co-clustered G-CIMP-low andG-CIMP-high. CpG probes are grouped by UCSC

genome browser-defined CpG Islands, shores flanking CpG island ± 2 kb and open seas (regions not in CpG islands or shores).

(F) DNA methylation heatmap of TCGA glioma samples ordered per Figure 2A and the epigenetically regulated (EReg) gene signatures defined for G-CIMP-low,

G-CIMP-high, and Codel subtypes. The mean RNA sequencing counts for each gene matched to the promoter of the identified cgID across each cluster are

plotted to the right.

(G) Heatmap of the validation set classified using the random forest method applying the 1,300 probes defined in Figure 2A.

(H) Heatmap of probes differentially methylated between G-CIMP-low and G-CIMP-high in longitudinally matched tumor samples.
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of the CpG probes (486/767, 63%) to show a significant methyl-
ation difference (FDR< 0.05, difference inmeanmethylation beta
value > 0.01) between G-CIMP-low and G-CIMP-high, suggest-
ing a mechanistic relation between loss of methylation and
increased transcript levels.
Recent analysis of epigenetic profiles derived from colon can-

cers showed that transcription factors may bind to regions
of demethylated DNA (Berman et al., 2012). Therefore, we
asked whether transcription factors may be recruited to the
DNA regions differentially methylated between G-CIMP-low
samples and G-CIMP-high samples from the same methylation
cluster, using 450K methylation profiles (n = 39). Globally, we
detected 643 differentially methylated probes between 27
G-CIMP-low and 12 G-CIMP-high samples (absolute diff-mean
difference R 0.25, FDR % 5%). Most of these probes (69%)
were located outside of any known CpG island but positioned
within intergenic regions known as open seas (Figure 3E). This
represents a 2.5-fold open sea enrichment compared to the
expected genome-wide distribution of 450K CpG probes (chi-
square p value < 2.2 3 10!16). We also observed a 3.4-fold
depletion within CpG islands (chi-square p value < 2.2 3 10!16).
Using this set of intergenic CpG probes, we asked whether a

DNA motif signature associated with distal regulatory elements.
Such a pattern would point to candidate transcription factors
involved in tumorigenesis of the G-CIMP-low group. A de novo
motif scan and knownmotif scan identified a distinct motif signa-
ture TGTT (geometric test p value = 10!11, fold enrichment = 1.8),
known to be associated with the OLIG2 and SOX transcription
factor families (Figure 3E) (Lodato et al., 2013). This observation
was corroborated by the higher expression levels of SOX2, as
well as 17 out of 20 other known SOX family members in G-
CIMP-low compared to G-CIMP-high (fold difference > 2). The
primary function of SOX2 in the nervous system is to promote
self-renewal of neural stem cells and, within brain tumors, the gli-
oma stem cell state (Graham et al., 2003). Interestingly, SOX2
and OLIG2 have been described as neurodevelopmental tran-
scription factors being essential for GBM propagation (Suvà
et al., 2014). Supervised gene expression pathway analysis of
the genes activated in the G-CIMP-low group as opposed to
G-CIMP-high group revealed activation of genes involved in
cell cycle and cell division consistent with the role of SOX in pro-
moting cell proliferation (Figure S3E). The enrichment in cell cy-
cle gene expression provides additional support to the notion
that development of the G-CIMP-low subtype is associated
with activation of cell cycle progression and may be mediated
by a loss of CpG methylation and binding of SOX factors to
candidate genomic enhancer elements.
To validate the G-CIMP-low, G-CIMP-high, and Codel IDH

mutant subtypes, we compiled a validation cohort from pub-
lished studies, including 324 adult and pediatric gliomas
(Lambert et al., 2013; Mur et al., 2013; Sturm et al., 2012; Turcan
et al., 2012). The CpG probemethylation signatures used to clas-
sify the validation set are provided on the publication portal
accompanying this publication (https://tcga-data.nci.nih.gov/
docs/publications/lgggbm_2015/). Among them, 103 were iden-
tified as IDH mutant on the basis of their genome-wide DNA
methylation profile. We classified samples in the validation set
using the probes that defined the IDH mutant-specific DNA

methylation cluster analysis integrated in a supervised random
forest method. The analysis recapitulated the clusters generated
from the TCGA collection (Figure S3C). In order to determine
epigenetically regulated (EReg) genes that may be characteristic
of the biology of the IDH mutant diffuse glioma subtypes, we
compared 450k methylation DNA methylation profiles and
gene expression levels between 636 IDH mutant and IDH-wild-
type gliomas and 110 non-tumor samples from 11 different
tissue types. From the list of epigenetically regulated genes,
we extracted 263 genes that were grouped into EReg gene sig-
natures, which showed differential signals among the three
IDH mutant subtypes (Figure 3F). These trends were confirmed
in the validation set (Figure 3G).
We investigated the possibility that the G-CIMP-high group is

a predecessor to the G-CIMP-low group by comparing the DNA
methylation profiles from ten IDH mutant-non-codel LGG
and GBM primary-recurrent cases with the TCGA cohort. We
evaluated the DNA methylation status of probes identified as
differentially methylated (n = 90) between G-CIMP-low and G-
CIMP-high (FDR < 10!13, difference in mean methylation beta-
value > 0.3 and <!0.4). Four out of ten IDHmut-non-codel cases
showed a demethylation pattern after disease recurrence, while
partial demethylation was demonstrated in the remaining six re-
currences, supporting the notion of a progression from G-CIMP-
high to G-CIMP-low phenotype (Figure 3H).

An IDH-Wild-Type Subgroup of Histologically Defined
Diffuse Glioma Is Associated with Favorable Survival
and Shares Epigenomic and Genomic Features with
Pilocytic Astrocytoma
IDH-wild-type gliomas segregated into three DNA methylation
clusters (Figure S4A). The first is enriched with tumors belonging
to the classical gene expression signature and was labeled
Classic-like, whereas the second group, enriched with mesen-
chymal subtype tumors, was labeled Mesenchymal-like (Table
S1) (Verhaak et al., 2010). The third cluster contained a larger
fraction of LGG in comparison to the other IDH-wild-type clus-
ters. We observed that the IDH-wild-type LGGs but not the
IDH-wild-type GBM in this cluster displayed markedly longer
survival (log-rank p value = 3.6 3 10!5; Figure 4A) and occurred
in younger patients (mean 37.6 years versus 50.8 years, t test p
value = 0.002). Supervised analysis of differential methylation
between LGG and GBM in the third DNA methylation cluster
did not reveal any significant probes despite significant differ-
ences in stromal content (p value < 0.005; Figure S4D), suggest-
ing that this group cannot be further separated using CpG
methylation markers.
Next, we sought to validate the methylation-based classifica-

tion of IDH-wild-type glioma in an independent cohort of 221
predicted IDH-wild-type glioma samples, including 61 grade I pi-
locytic astrocytomas (PAs). Toward this aim, we used a super-
vised random forest model built with the probes that defined
the IDH-wild-type clusters. Samples classified as Mesen-
chymal-like showed enrichment for the Sturm et al. (2012)
Mesenchymal subtype (29/88), and gliomas predicted as
Classic-like were all RTK II ‘‘Classic’’ (22/22), per the Sturm
et al. (2012) classification (Figures 4B and S4B). We observed
that PA tumors were unanimously classified as the third,
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LGG-enriched group (Figure S4B). Based on the molecular sim-
ilarity with PA, we labeled the LGGs in the third methylation clus-
ter of IDH-wild-type tumors as PA-like. The GBMs in this group
were best described as LGm6-GBM for their original pan-glioma
methylation cluster assignment and tumor grade.

Pilocytic astrocytomas are characterized by frequent alter-
ations in the MAPK pathway, such as FGFR1 mutations,
KIAA1549-BRAF, and NTRK2 fusions (Jones et al., 2013). The
frequency of mutations, fusions, and amplifications in eight
PA-associated genes (BRAF, NF1, NTRK1, NTRK2, FGFR1,
and FGFR2) rated from 11% (n = 12/113) of Classic-like, 13%
(n = 21/158) of Mesenchymal-like IDH-wild-type tumors to
32% (n = 7/22) of LGm6-GBM and 52% (n = 13/25) of PA-like
LGG (Fisher’s exact test [FET] p value < 0.0001; Figure 4C).
Conversely, only 2 of 25 (8%) PA-like LGG tumors showed

TERT expression, compared to 5 of 12 LGm6-GBM (43%), 60
of 65 Classic-like (92%), and 82 of 98 Mesenchymal-like (84%,
FET p value < 0.0001). The PA-like group was characterized by
relatively low frequency of typical GBM alterations in genes
such as EGFR, CDKN2A/B, and PTEN and displayed euploid
DNA copy number profiles (Figure S4E). To ascertain that the
histologies of the PA-like subgroup had been appropriately
classified, we conducted an independent re-review. This anal-
ysis confirmed the presence of the histologic features of diffuse
glioma (grade II or grade III) in 23 of the 26 cases in the cluster.
The remaining three cases were re-named as PA (grade I). An
independent review of the magnetic resonance diagnostic
images from 13 cases showed a similar pattern, with the ma-
jority of tumors showing behavior consistent with grade II or
grade III glioma. Taken together, the epigenetic analysis of the

Figure 4. A Distinct Subgroup of IDH-Wild-Type Diffuse Glioma with Molecular Features of Pilocytic Astrocytoma
(A) Kaplan-Meier survival curves for the IDH-wild-type glioma subtypes. Ticks represent censorship.

(B) Distribution of previous published DNA methylation subtypes in the validation set, across the TCGA IDH-wild-type-specific DNA methylation clusters.

(C) Distribution of genomic alterations in genes frequently altered in IDH-wild-type glioma.

(D) Heatmap of TCGA glioma samples ordered according to Figure 2A and two EReg gene signatures defined for the IDH-wild-type DNA methylation clusters.

Mean RNA sequencing counts for each gene matched to the promoter of the identified cgID across each cluster are plotted to the right.

(E) Heatmap of the validation set classified using the random forest method using the 1,300 probes defined in Figure 2A.
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IDH-wild-type group of adult glioma revealed the existence of a
novel subgroup sharing genetic and DNA methylation features
with pediatric PA and favorable clinical outcome compared to
diffuse IDH-wild-type glioma. This group may include but ex-
tends beyond BRAF-mutated grade II oligodendroglioma that
were previously recognized as a unique clinical entity (Chi
et al., 2013).
Through comparison of the methylation profiles of 636 glioma

and 110 non-neoplastic normal samples from different tissue
types, we defined EReg signatures consisting of 27 genes that
showed differential signals among IDH-wild-type subtypes in
the TCGA (Figure 4D) and the validation set (Figure 4E). EReg4
comprised a group of 15 genes hypermethylated and downregu-
lated in particularly Classic-like. EReg5 was defined as a group
of 12 genes associated with hypomethylation in LGm6/PA-like
compared to all other LGm clusters. These ERegs aided in char-
acterizing the biological importance of IDH-wild-type subtypes
and were subsequently used to evaluate the prognostic impor-
tance of the IDH-wild-type clusters.

The Epigenetic Classification of Glioma Provides
Prognostic Value Independent of Age and Grade
In order to assess whether the DNAmethylation-based subtypes
we identified carry prognostically relevant information indepen-
dent of known overall survival predictors, we constructed a se-
ries of survival regression models. To find the optimal model
for survival prediction, we studied covariates individually and in
combination with other covariates. Age at diagnosis, histology,
IDH/codel subtype, TERT expression, and epigenetic subtype
all contribute to survival in single-predictor analysis (log-rank p
value < 0.05, Table S4). As expected, agewas a highly significant
predictor (p < 0.0001, C-Index 0.78) and was included in all sub-
sequent multi-predictor models. We found that histology and
grade are highly correlated. Histology provided only marginal
improvement to a model that includes grade (likelihood ratio
test [LRT] p value = 0.08) and was therefore not included in
further analyses. Conversely, grade markedly impacted a histol-

ogy-based predictor model (LRT p value = 0.0005, Table S4) and
was retained in the subsequent models. In contrast to previous
reports (Eckel-Passow et al., 2015), we failed to observe a statis-
tically significant and independent survival association with
TERT expression (LRT p value = 0.82, Table S4) or TERTpmuta-
tions after accounting for age and grade (LRT p value = 0.85,
data not shown). Thus, the optimal survival prediction model in-
cludes age, grade, and epigenetic subtype (LRT p value <
0.0001, C-Index 0.836; Table 2).
To confirm that the epigenetic subtypes provide independent

prognostic information, we tested the survival model on the
validation dataset. Epigenetic subtypes in these samples
were determined as described above. The distinction between
LGm6-GBM and PA-like gliomas was made on the basis of tu-
mor grade and not by DNAmethylation signature. Using a subset
of 183 samples in the validation cohort with known survival, age,
and grade, we found that epigenetic subtypes are significant in-
dependent predictors of survival in the multivariate analysis (LRT
p value < 0.0001, C-Index 0.746, Table 2). This generalization of
our model supports the epigenetic subtypes as a means to
improve the prognostication of glioma.

Activation of Cell Cycle/Proliferation and Invasion/
Microenvironmental Changes Marks Progression of
LGG to GBM
We observed that, in spite of morphological differences between
LGG and GBM, such as high cell density and microvascular pro-
liferation, clustering of gene expression profiles frequently
grouped LGG and GBM together within the same subtype.
Gene Set Enrichment Analysis of the genes activated in G-
CIMP GBM as opposed to the IDH mutant-non-codel within
LGr3 (Figure 2B) revealed four major groups, including cell cycle
and hyperproliferation, DNA metabolic processes, response to
stress, and angiogenesis (Figure S5A and Table S5). These bio-
logical functions are consistent with the criteria based on mitotic
index used by pathologists to discriminate lower and high-grade
glioma and the significance of activated microglia for tumor

Table 2. DNA Methylation Subtypes Are Prognostically Relevant in Multivariable Analysis and in External Validation Data

Discovery (n = 809) Validation (n = 183)

C-Index: 0.835 ± 0.019 C-Index: 0.745 ± 0.032

Predictor Levels n HR (95% CI) Signif. n HR (95% CI) Signif.

Age at diagnosis per year 809 1.05 (1.03–1.06) *** 183 1.02 (1–1.04) *

WHO Grade II 214 1.0 (ref) 41 1.0 (ref)

III 241 1.96 (1.15–3.33) * 51 1.24 (0.55–2.76)

IV 354 2.38 (1.3–4.34) * 91 2.6 (1.08–6.3) *

Subgroup IDHmut-codel 156 1.0 (ref) 57 1.0 (ref)

G-CIMP-low 22 5.6 (2.49–12.62) *** 2 0 (0–Inf)

G-CIMP-high 219 1.92 (1.05–3.51) * 15 1.25 (0.43–3.66)

classic-like 143 5.4 (2.79–10.44) *** 22 4.55 (1.8–11.49) *

mesenchymal-like I 204 8.71 (4.59–16.53) *** 61 5.55 (2.52–12.21) ***

LGm6-GBM 39 5.79 (2.78–12.1) *** 22 6.8 (2.58–17.91) **

PA-like 26 2.02 (0.71–5.71) 4 3.64 (0.79–16.78) .

Survival regression analysis indicates that an optimal model of prognosis includes age, grade, and methylation subtype. These predictors are statis-

tically significant in both our discovery dataset and an external validation dataset. Significance codes: 0 ‘‘***’’; 0.001 ‘‘**’’; 0.05 ‘‘*’’; 0.1 ‘‘.’’
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aggressiveness (Roggendorf et al., 1996). Conversely, com-
pared with the G-CIMP GBM, IDH mutant-non-codel LGG in
LGr3 were characterized by enrichment of genes associated
with neuro-glial functions such as ion transport and synaptic
transmission, possibly suggesting a more differentiated nature.
The comparison of co-clustered GBM and LGG in LGr3 by the
PARADIGM algorithm that integrates DNA copy number and
gene expression to infer pathway activity confirmed that
GBMs express genes associated with cell cycle, proliferation,
and aggressive phenotype through activation of a number of
cell cycle, cell replication, and NOTCH signaling pathways
whereas LGGs exhibit an enrichment of neuronal-differentia-
tion-specific categories, including synaptic pathways (Fig-
ure S5C and Table S5).

The analysis of the genes activated in GBM versus the LGG
component of LGr4, which grouped IDH-wild-type tumors, iden-
tified an inflammation and immunologic response signature
characterized by the activation of several chemokines (CCL18,
CXCL13, CXCL2, and CXCL3) and interleukins (IL8 and
CXCR2) enriching sets involved in inflammatory and immune
response, negative regulation of apoptosis, cell cycle and prolif-
eration, and the IKB/NFKB kinase cascadeMap (Figure S5B and
Table S5). These characteristics suggest differences in the rela-
tive amount of microglia. We used the ESTIMATE method to es-
timate the relative presence of stromal cells, which revealed
significantly lower (p value 10!6) stromal scores of LGG IDH-
wild-type versus GBM IDH-wild-type (Figure S5F) (Yoshihara
et al., 2013). Resembling the functional enrichment for LGG
within LGr3, functional enrichment of LGG IDH-wild-type in com-
parison to GBMwithin LGr4 showed activation in LGG of special
glial-neuronal functions involved in ion transport, synaptic trans-
mission, and nervous system development.

Finally, we aimed to identify transcription factors that may
exert control over prominent gene expression programs, known
as master regulators. Master regulator analysis comparing the
IDH-wild-type group to the IDHmutant group revealed transcrip-
tion factors that were upregulated in IDH-wild-type gliomas and
showed an increase in expression of target genes, including
NKX2-5, FOSL1, ETV4, ETV7, RUNX1, CEBPD, NFE2L3, ELF4,
RUNX3,NR2F2,PAX8, and IRF1 (Table S5). No transcription fac-
tors (TFs) were found to be upregulated in IDH mutant gliomas
relative to IDH-wild-type gliomas (at a log fold change > 1).

DISCUSSION

This study represents the largest multi-platform genomic anal-
ysis performed to date of adult diffuse glioma (WHO grades II,
III, and IV). A simplified graphical summary of the identified
groups and their main clinical and biological characteristics is re-
ported in Figure 5. The clustering of all diffuse glioma classes and
grades within similarly shaped methylation-based and expres-
sion-based groups has allowed us to pinpoint specific molecular
signatures with clinical relevance. The DNA methylation classifi-
cation proposed should be considered as a basis and it is likely
that future studies involving significantly larger cohorts andmore
refined profiling methods will be able to further reduce intra-sub-
type heterogeneity. The dissection of the IDH mutant non-codel
G-CIMP LGG and GBM into two separate subgroups (G-CIMP-

low andG-CIMP-high) based on the extent of genome-wide DNA
methylation has crucial biological and clinical relevance. In
particular, the identification of the G-CIMP-low subset, charac-
terized by activation of cell cycle genes mediated by SOX bind-
ing at hypomethylated functional genomic elements and unfa-
vorable clinical outcome, is an important finding that will guide
more accurate segregation and therapeutic assessment in a
group of patients in which correlations of conventional grading
with outcome are modest (Olar et al., 2015; Reuss et al., 2015).
The finding that G-CIMP-high tumors can emerge as G-CIMP-
low glioma at recurrence identifies variations in DNAmethylation
as crucial determinants for glioma progression and provides a
clue to the mechanisms driving evolution of glioma. Our results
unify previous observations that linked the cell cycle pathway
to malignant progression of low-grade glioma (Mazor et al.,
2015). Future updates of the TCGA glioma clinical annotation
and independent validation of our findings may be able to
consider additionally important clinical confounders such as
extent of resection and performance status to further optimize
the weights of the currently known prognostic variables and their
association to the molecular subtypes we identified.
Analysis of IDH-wild-type glioma revealed the PA-like LGG

subset that harbors a silent genomic landscape, confers favor-
able prognosis relative to other IDH-wild-type diffuse glioma,
and displays a molecular profile with high similarity to PA. Re-re-
view by neuropathologists and neuroradiologists confirmed that
the majority were correctly diagnosed as diffuse glioma, empha-
sizing the need for integration of molecular signatures intro clin-
ical classification (Chi et al., 2013) for this subgroup of patients
that may be spared potentially unnecessary intensive
treatments.
The large number of exomes in our dataset allowed identifica-

tion of novel glioma-associated somatic alterations, including in
the KRAS and NRAS genes, which were frequently used in
genetically engineered glioma mouse models (Holland et al.,
2000). Our analysis further nominates glial tumors to join an
increasing number of tumor types characterized by a deacti-
vated cohesin pathway (Kon et al., 2013; Solomon et al., 2011).
Cohesin mutant tumors may infer increased sensitivity to DNA
damage agents and PARP inhibitors (Bailey et al., 2014),
suggesting that gliomas with genetic alterations of key cohesin
regulatory factors may represent biomarkers and therapeutic
opportunities.
Overexpression of TERT mRNA was found to be associated

with increased telomere length in urothelial cancer (Borah
et al., 2015). Our results revealed that, in gliomas, increased telo-
mere length is associated with ATRX mutations, suggesting an
alternative lengthening of telomeres (ALT) mechanism. ALT has
been associated with sensitivity to inhibition of the protein kinase
ATR (Flynn et al., 2015).
In summary, our pan-glioma analysis has expanded our

knowledge of the glioma somatic alteration landscape, empha-
sized the relevance of DNA methylation profiles as a modality
for clinical classification, and quantitatively linked somatic
TERT pathway alterations to telomere maintenance. Combined,
these findings are an important step forward in our understand-
ing of glioma as discrete disease subsets and the mechanisms
driving gliomagenesis.
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EXPERIMENTAL PROCEDURES

Patient and Sample Characteristics
Specimens were obtained from patients with appropriate consent from institu-

tional review boards. Details of sample preparation are described in the Sup-

plemental Experimental Procedures.

Data Generation
In total, tumors from 1,132 patients were assayed on at least one molecular

profiling platform, which platforms included: (1) whole-genome sequencing,

including high coverage and low pass whole-genome sequencing; (2) exome

sequencing; (3) RNA sequencing; (4) DNA copy-number and single-nucleotide

polymorphism arrays, including Agilent CGH 244K, Affymetrix SNP6.0, and

Illumina 550K Infinium HumanHap550 SNP Chip microarrays; (5) gene expres-

sion arrays, including Agilent 244K Custom Gene Expression, Affymetrix

HT-HGU133A and Affymetrix Human Exon 1.0 ST arrays; (6) DNA methyl-

ation arrays, including Illumina GoldenGate Methylation, Illumina Infinium

HumanMethylation27, and Illumina Infinium HumanMethylation450 Bead-

Chips; (7) reverse phase protein arrays; (8) miRNA sequencing; and (9) miRNA

Agilent 8 3 15K Human miRNA-specific microarrays. Details of data genera-

tion have been previously reported (Brennan et al., 2013; Cancer Genome

Atlas Research Network et al., 2015). To ensure cross-platform comparability,

features from all array platforms were compared to a reference genome.

Data Analysis
The data and analysis results can be explored through the Broad Institute

FireBrowse portal (http://firebrowse.org/?cohort=GBMLGG), the cBioPortal

for Cancer Genomics (http://www.cbioportal.org/study.do?cancer_study_

id=lgggbm_tcga_pub), in a Tumor Map (http://tumormap.ucsc.edu/?

p=ynewton.gliomas-paper), the TCGA transcript fusion portal (http://www.

tumorfusions.org), TCGA Batch Effects (http://bioinformatics.mdanderson.org/

tcgambatch/), Regulome Explorer (http://explorer.cancerregulome.org/), Next-

Generation Clustered Heat Maps (http://bioinformatics.mdanderson.org/

TCGA/NGCHMPortal/). See also Supplemental Information and the TCGA pub-

lication page (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and five tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2015.12.028.
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Supplemental Figures

Figure S1. Telomere Length Quantification of 120 Gliomas with Known TERT Promoter and ATRX Mutational Status, Related to Figure 1
(A) RNaseq TERT expression is upregulated in TERTp mutant cases, but not in ATRX and double negative cases (p < 0.0001).

(B) TERT expression as quantified by RNA sequencing is a highly sensitive and specific marker for the absence or presence of the TERTp mutation (AUC 0.95).

Using a cutoff value of 2, sensitivity and specificity are 91% and 95%, respectively. Interestingly, microarray data is poor substitute for the TERT promoter

mutation with an AUC of 0.70 and 0.32 for the Agilent and Affymetrix microarray respectively.

(C) Telomeres gradually shorten with increasing age in tumor samples (p < 0.0001). Note the steeper decline relative to Figure 2B and that ATRXmutant patients

are in the younger age range whereas TERTpmutant patients are in the older age range. This suggests an independent contribution of telomere maintenance to

telomere length.
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Figure S2. Pan-glioma DNA Methylation and Transcriptome Subtypes, Related to Figure 2
(A) Boxplot of the mean DNAmethylation beta-values genome-wide (20,036 probes) for each sample distributed by the six Pan-glioma DNAmethylation clusters

(left) and divided by tumor type (right). Significant differences are highlighted with * (p-value < 0.01) and *** (p-value < 1e-04).

(B) Principal component analysis of 932 TCGA glioma samples and 77 non-tumor brain samples (Guintivano et al., 2013) performed on 19,520 CpG probes

(genome-wide).

(C) LGG-GBM mRNA merging analysis. Clustered heatmap of merged data with 569 GBM and 463 LGG non-duplicate samples, and 2000 most variable genes.

Consensus clustering revealed 9 clusters. The 3 left-most clusters show predominantly LGG samples, 3 clusters show predominantly GBM samples, whereas 3

(legend continued on next page)
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clusters show amixture of GBM and LGG samples. The LGG IDH-wild-type samples clusteredmostly with the GBM classical samples, whereasmany of the LGG

IDH mutant-non-codel samples cluster with the GBM G-CIMP samples.

(D) Functional Copy Number (fCN) gene signature Heatmap. Genes with Spearman’s correlation between CN and Expression above 0.5, abs (FC > 1.5) and

abs(DCN > 0.5) define the fCN signature. The Heatmap illustrate the samples unsupervised clustering given the fCN signature. RNA expression levels range from

green (low) to red (high). Each row reports the annotation of a different analysis performed in the paper. Last row reports the fCN annotation.

(E) Clustered heatmap of unsupervised hierarchical clustering of 473 samples (columns) and 196 antibodies (rows). The annotation bars (shown on top) were not

used for clustering. The legend for the annotation bars is shown on the left. Two clusters can be found that largely correspond to tumor type. The left cluster has

largely LGG samples and oneGBM sample. However, the right cluster hasmostly GBM samples but 26 LGG samples, 17 of which have nomutations in IDH1/2. In

the heatmap, low, medium, and high expression is represented by blue, white, and red colors, respectively.
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Figure S3. Identification of a Distinct IDH mutant Subtype Defined by Epigenomics, Related to Figure 3
(A) Left, Heatmap of DNA methylation data. Unsupervised consensus clustering analysis using 1,308 CpG tumor specific CpG probes defined among the TCGA

IDH mutant gliomas. Column-wise represents 450 IDH mutant glioma samples, row-wise represents probes. Samples are ordered according to the consensus

cluster output, and rows are ordered by hierarchical clustering. DNA methylation beta-values ranges from 0 (low) to 1 (high). Three clusters were defined, each

cluster separated and labeled. Non-tumor brain samples are represented on the left of the heatmap (Guintivano et al., 2013). Additional tracks are included at the

top of the heatmaps to identify each sample membership within separate cluster analysis (Glioma subtypes, tumor type, previous published subtypes (Brennan

et al. Cell, 2013, TCGA Research Network, NEJM, 2015), RNA sequencing and TERT expression). Legend is provided for the heatmap. Right, Clustering of IDH

mutant samples transcriptional profiles. Unsupervised clustering of gene expression separated by IDH status 426 samples confirming the presence of threemain

groups resembling the clusters reported in (TCGA Network, New Eng J Med 2015) where all GBM G-CIMP cluster together with the LGG IDHmutant-non-codel.

(B) Boxplot of the average DNA methylation beta-value genome-wide (20,000 probes) for each sample grouped by IDHmut K1 and IDHmut K2. Dots represent

LGG tumors and triangles represent GBM tumors. Significant difference is highlighted with *** (p-value < 2.2 3 10!16)

(C) Left, Heatmap of DNA methylation data. Supervised statistical analysis using 149 CpG tumor specific CpG probes that define each TCGA IDHmutant glioma

subtype. Column-wise represents 448 IDH mutant (codels and non codels) TCGA glioma samples, row-wise represents probes. DNA methylation beta-values

ranges from 0 (low) to 1 (high). Right, Heatmap of DNAmethylation data for the validation dataset (Sturm et al., 2012; Turcan et al., 2012;Mur et al., 2013), using the

149 CpG tumor specific probes that define each TCGA IDH mutant glioma subtype. Non-TCGA glioma samples were classified into one of the three IDH mutant

type specific clusters using the random forest machine learning method. DNA methylation beta-values ranges from 0 (low) to 1 (high). Additional tracks are

included at the top of the heatmap to identify tumor histology, published clusters (Published Clusters) and each sample membership according to its dataset

(Study). Legend is provided for the heatmap.

(D) Kaplan-Meier survival curves showing samples separated by IDHmut K1 low, IDHmut K1 high, IDHmut K2 and IDHmut K3. Tick represent censorship.

(E) Pathway analysis of differentially expressed genes between IDHmut K1, IDHmut K2, ranked by p-value. The top red panel shows categories enriched in

IDHmutK2; the bottom green panel displays categories enriched in IDHmutK1.
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Figure S4. Identification of a Distinct Subgroup of IDH-Wild-Type Gliomas with Pilocytic Astrocytoma Features, Related to Figure 4
(A) Heatmap of DNA methylation data. Unsupervised consensus clustering analysis using 914 CpG tumor specific probes defined among the TCGA IDH-wild-

type gliomas. Column-wise represents 430 IDH-wild-type TCGA glioma samples, row-wise represents probes. Samples are ordered according to the consensus

cluster output, and rows are ordered by hierarchical clustering. DNA methylation beta-values ranges from 0 (low) to 1 (high). Three clusters were defined, each

cluster separated and labeled. Non-tumor brain samples are represented on the left of the heatmap (Guintivano et al., 2013). Additional tracks are included at the

top of the heatmaps to identify each sample membership within separate cluster analysis (Glioma subtypes, tumor type, previous published subtypes Brennan

et al. Cell, 2013, TCGA Research Network, NEJM, 2015), RNA sequencing and TERT expression). Legend is provided for the heatmap.

(B) Heatmap of DNA methylation data for the validation dataset (Sturm et al., 2012; Turcan et al., 2012; Lambert et al., 2013; Mur et al., 2013), using the 914 CpG

tumor specific probes defined in panel S4A. Non-TCGA glioma samples were classified into one of the three IDH-wild-type specific clusters using the random

forest machine learning method. The second track from top to bottom shows the classification of non-TCGA glioma samples into one of the seven glioma

subtypes also using the random forest machine learningmethod. DNAmethylation beta-values ranges from 0 (low) to 1 (high). Additional tracks are included at the

top of the heatmap to identify each sample membership according to its dataset (Dataset), to previous published clusters (Published Clusters) and to tumor

histology. Legend is provided for the heatmap.

(C) Clustering of IDH-wild-type samples transcriptional profiles. Unsupervised clustering of gene expression separated by IDH status showed that the LGr4

cluster identified in the pan-glioma unsupervised analysis splits into four mixed LGG/GBM clusters (234 samples), where the first two, although separated by a

relatively small number of genes, are respectively enriched with Classical subtype (59%) and LGm4 samples and the second with Mesenchymal (75%) subtype

and LGm5 samples, the third enriched with Proneural subtype (85%) and a fourth mostly containing LGG IDH-wild-type samples.

(D) Boxplot of the estimate stromal score for each sample distributed by the four glioma IDH wild-type subtypes. Significant differences are highlighted with * (p-

value < 0.05) and ** (p-value < 0.005).

(E) IGV screenshot demonstrating differences in copy number landscape across glioma subtypes.
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Figure S5. Progression of LGG to GBM Is Marked by Cell Cycle/Proliferation or Invasion/Microenvironmental Changes, Related to the
Transcriptome Clusters Shown in Figure 2
The pathways involved with progression from LGG to GBM were identified through supervised analysis of co-clustered LGG and GBM using Gene Set

Enrichment Analysis. Gene sets were compiled from the Gene Ontology pathway database. Significantly enriched gene sets (FDR < 0.1, p-value < 0.005) were

depicted as an annotation module network using Cytoscape and EnrichmentMap. Nodes represent enriched gene sets, which are grouped and annotated by

their similarity. Node size is proportional to the total number of genes within each gene set. Proportion of shared genes between gene sets is represented as the

thickness of the line between nodes.

(A) Progression of LGG IDHmutant-non-codel to GBMG-CIMP in LGr3 was strongly marked by a hyper-proliferation signature and revealed four major gene sets

groups related to cell cycle and hyperproliferation, DNA metabolic processes, response to stress and angiogenesis.

(B) Similar analysis of the gene sets activated in the GBM compared to the LGG component of LGr4 (IDH-wild-type) identified an inflammation and immunologic

response signature characterized by the activation of several chemokines and interleukins enriching sets involved in inflammatory and immuno response,

negative regulation of apoptosis, cell cycle and proliferation, IKB/NFKB kinase cascade.

(C) Differential regulatory networks describing differential molecular activities betweenGBM and LGG in LGr3. Dichotomieswere selected by only choosing those

where samples form tight linearly separable clusters in the high dimensional genomic space. The size of the node is inversely proportional to the magnitude of the

p-value computed by LIMMA for each differential. Curated canonical MSigDB pathways significantly represented in these networks are listed below each

network, following the same color scheme as described above.

(D) Same as in C. for LGr4

(E) Overview of the adopted pipeline for extracting significant pathways.

(F) Distribution of Estimate, Immuno and Stromal score by tumor type in the IDH-wild-type samples.

S6 Cell 164, 550–563, January 28, 2016 ª2016 Elsevier Inc.



Cell 
Supplemental Information 

Molecular Profiling Reveals Biologically 
Discrete Subsets and Pathways 
of Progression in Diffuse Glioma 
Michele Ceccarelli, Floris P. Barthel, Tathiane M. Malta, Thais S. Sabedot, Sofie R. 
Salama, Bradley A. Murray, Olena Morozova, Yulia Newton, Amie Radenbaugh, Stefano 
M. Pagnotta, Samreen Anjum, Jiguang Wang, Ganiraju Manyam, Pietro Zoppoli, 
Shiyung Ling, Arjun A. Rao, Mia Grifford, Andrew D. Cherniack, Hailei Zhang, Laila 
Poisson, Carlos Gilberto Carlotti, Jr., Daniela Pretti da Cunha Tirapelli, Arvind Rao, Tom 
Mikkelsen, Ching C. Lau, W.K. Alfred Yung, Raul Rabadan, Jason Huse, Daniel J. Brat, 
Norman L. Lehman, Jill S. Barnholtz-Sloan, Siyuan Zheng, Kenneth Hess, Ganesh Rao, 
Matthew Meyerson, Rameen Beroukhim, Lee Cooper, Rehan Akbani, Margaret 
Wrensch, David Haussler, Kenneth D. Aldape, Peter W. Laird, David H. Gutmann, TCGA 
Research Network, Houtan Noushmehr, Antonio Iavarone, and Roel G.W. Verhaak 



Molecular profiling refines the classification of adult diffuse lower- and 
high-grade glioma  
 
 

Supplemental Information 
 
 

Supplemental Information content:  
Supplemental Experimental Procedures 

1. Biospecimens ................................................................................................................ 3 

2. DNA sequencing ............................................................................................................ 4 
2.1 DNA sequencing data production .......................................................................................................................... 4 

2.2 Identification of somatic mutations ........................................................................................................................ 4 

2.4 Identification of TERT promoter mutations ........................................................................................................ 6 

2.5 Mutation significant analysis ..................................................................................................................................... 6 

2.6 Telomere quantification ............................................................................................................................................... 6 

2.7 Whole genome mutation calling .............................................................................................................................. 7 

3. DNA copy number analyisis ........................................................................................ 7 
3.1 Preprocessing and peak calling .............................................................................................................................. 7 

3.2 Functional Copy Number (CN) analysis ............................................................................................................. 8 

3.3 Mutations with Common Focal Alterations (MutComFocal) ..................................................................... 8 

4. mRNA Expression ......................................................................................................... 9 
4.1 Data preparation and gene selection ................................................................................................................... 9 

4.2 Classification of Affymetrix samples ................................................................................................................... 10 

4.3 Tumor Map and Pathway Activity Analysis ..................................................................................................... 10 

4.3.1 Combining multi-platform multi-tumor datasets ........................................................................................ 10 

4.3.2. Tumor Map method (manuscript in preparation) .................................................................................... 10 

4.3.3 Multi-platform maps using Bivariate Standardization similarity space Transformation 
(BST) ................................................................................................................................................................................................ 11 

4.3.4 Extracting significantly active pathways ........................................................................................................ 12 

4.4 Combining GBM Agilent G4502A mRNA data with LGG Illumina Hi-Seq RNA-seq data ....... 13 

4.5 RNA Fusion analysis .................................................................................................................................................. 13 

4.5.1 Fusion transcript detection using PRADA .................................................................................................... 13 

4.5.2 Fusion transcript detection using deFuse ..................................................................................................... 14 

4.6 Identification of Transcriptional Regulatory Factors underlying IDH wild type and IDH mutant 
phenotypes in Glioma ........................................................................................................................................................ 14 

5. DNA methylation profiling ......................................................................................... 15 
5.1 Preprocessing and clustering ................................................................................................................................. 15 

5.2 Unsupervised clustering analysis of DNA methylation data ................................................................... 16 

5.3 Supervised analysis of DNA methylation ......................................................................................................... 17 



5.4 Identification of Epigenetically Regulated Genes ........................................................................................ 18 

5.5 Classification of new glioma samples based on DNA methylation glioma subtypes ................. 20 

5.6 Patient centric table (DNA methylation) ............................................................................................................ 20

  



5.7 Homer de novo motif searches ............................................................................................................................. 22 

6. Reverse phase protein array (RPPA) ........................................................................ 22 
6.1 Data Processing ........................................................................................................................................................... 22 

6.2 Data normalization ....................................................................................................................................................... 23 

6.3 Clustering ......................................................................................................................................................................... 24 

7. Regulome Explorer ..................................................................................................... 25 
7.1. Feature Matrix .............................................................................................................................................................. 25 

7.2. All-by-all Pairwise Associations ........................................................................................................................... 26 

8. Supplemental References .......................................................................................... 27 
 
 

  



Supplemental Experimental Procedures 
1. Biospecimens 
Authors: Jay Bowen, Kristen M. Leraas, Tara M. Lichtenberg 

Correspondence and questions should be directed to: Jay Bowen 

(jay.Bowen@nationwidechildrens.org) 

Biospecimens were collected from patients diagnosed with low grade gliomas (LGG) and 

glioblastoma multiforme (GBM) undergoing surgical resection. 

The case list freeze included 1122 cases comprising 516 LGG and 606 GBM. Samples were from 

the following 32 tissue source sites: Asterand (n=2); Case Western (n=188); Cedars Sinai (n=34); 

CHI-Penrose Colorado (n=2); Christiana Healthcare (n=12); Cureline (n=26); Dept of Neurosurgery 

at University of Heidelberg (n=48); Duke University (n=90); Emory University (n=44); Fondazione-

Besta (QH) (n=38); Greenville Health System (n=1); Hartford (n=2); Henry Ford Hospital (n=243); 

Huntsman Cancer Institute (n=8); International Genomics Consortium (n=2); John Wayne Cancer 

Center (n=2); Johns Hopkins (n=7); Mayo Clinic (n=39); MD Anderson Cancer Center (n=101); 

Memorial Sloan Kettering Cancer Center (n=15); Northwestern University (n=2); St. Joseph AZ 

(n=30); Swedish Neurosciences (n=6); The University of New South Wales (n=19); Thomas 

Jefferson University (n=44); Toronto Western Hospital (n=14); University of California San Francisco 

(n=50); University of Florida (n=30); University of Kansas (n=1); University of Miami (n=3); University 

of North Carolina (n=2); University of Sao Paulo (n=17). 

Samples were acquired and processed according to previous descriptions (Brennan et al., 2013; 

TCGA_Network, 2015). 

A detailed list of clinical and molecular data elements is included in Table S1 and reflects the clinical 

data package frozen on 05/01/2015. Clinical data elements comprise histology, grade, gender, age 

at diagnosis/surgery, treatments, vital status, overall and progression-free survival. Clinical data 

available at the BCR was manually curated. Where possible, additional de-identified follow-up data 

were requested from TSSs through BCR and manually added into the clinical data freeze package. 

Overall survival was defined as the time from surgical diagnosis until death. Cases that were still 

alive at the time of this study have overall survival time censored at the time of last follow-up. 

Survival curves were estimated and plotted using the Kaplan-Meier method. Log-rank tests were 

used to compare curves between groups. Single-predictor and multiple-predictor models were fit 

using Cox regression under the proportional hazards assumption. Hazard ratios and 95% 

confidence intervals are reported. Nested models were compared using the likelihood ratio test 

(LRT). Harrell’s concordance index (C-index) was used to assess and report model performance 

  



(Harrell et al., 1982). These analyses were conducted in R (v 3.1.2) using the survival package 

(Therneau, 2014; Therneau and Grambsch, 2000). 

      

2. DNA sequencing 
Authors: Floris Barthel, Bradley Murray, Siyuan Zheng, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 

(rverhaak@mdanderson.org)   

2.1 DNA sequencing data production 
Whole exome, whole genome and targeted validation and TERT promoter sequencing (including 

low-pass sequencing) was performed as previously described (Brennan et al., 2013; Cancer 

Genome Atlas Research, 2015; Verhaak et al., 2010).  

 
Platform Center Disease Exome capture kit Read length Paired samples 

Illumina HiSeq BI GBM Agilent Sure-Select Hum  

All Exon v2.0, 44Mb kit 

2 x 76 bp 307 

Illumina HiSeq BI LGG Agilent Sure-Select Hum  

All Exon v2.0, 44Mb kit 

2 x 76 bp 513 

Union     820 
Whole exome sequencing 
 
Platform Center Disease Libraries Read length Paired samples 

Illumina HiSeq  BI GBM 2-59 2 x 101 bp 38 

Illumina HiSeq BI LGG 3-11 2 x 101 bp 20 

Illumina HiSeq WUGSC GBM 16-167 100 bp 13 

Illumina HiSeq HMS-RK LGG 1 2 x 51 bp 52 

Union     123 
Whole genome sequencing (including low-pass) 
 
2.2 Identification of somatic mutations 
The Broad Institute’s Firehose cancer genome analysis pipeline used BAM files for tumor and 

matched normal samples to perform quality control, local realignment coverage calculations and 

others on whole exome sequencing (Table 1) as described (Imielinski et al., 2012). For the 

identification of somatic single nucleotide variations we used a multicenter approach integrating the 

output of three different somatic mutation algorithms:  MuTect (Cibulskis et al., 2013), RADIA 

(Radenbaugh et al., 2014) and Varscan (Koboldt et al., 2012). MAF files from each mutation calling 

algorithm were integrated in a unique MAF file considering those mutations that were called at least 

by two of the three considered methods. The integrated MAF contains 28637 somatic mutation 

called by all the methods, 5559 called by MuTect and VarScan, 7971 called by MuTect and RADIA 

  



and 730 called by VarScan and RADIA. Similarly, for the detection of somatic insertions and 

deletions we intersected the calls produced by Indelocator and Varscan algorithms obtaining 1956 

high confidence indels. 

2.3 Identification of IDH mutations 
In order to expand the annotation of IDH status in our cohort, previously reported (Cancer Genome 

Atlas Research, 2008) mutation calls on Sanger sequenced DNA and exome sequencing of whole 

genome amplified DNA were used. Sanger sequencing and whole exome sequencing of whole 

genome amplified DNA was performed as previously described (Brennan et al., 2013; Cancer 

Genome Atlas Research, 2008; Verhaak et al., 2010). Except for bona fide IDH1/2 mutations, no 

other mutations were called on these platforms.  

Platform Center Aliquot Disease Paired samples 

ABI WUGSC DNA GBM 158 

Illumina  BI WGA GBM 163 

Union*    174 
Additional data used to determine IDH mutation status. 

  



2.4 Identification of TERT promoter mutations 
Targeted sequencing at the TERT promoter region (Chr5:1295150-1295300) was performed on a 

subset of 287 cases as previously described (Cancer Genome Atlas Research, 2015). Additionally, 

we evaluated whole genome sequencing (including low-pass) for the presence of somatic variants 

using GATK pileup. We required a minimum coverage of at least 6 bp and a minimum variant allele 

faction of 15% for detection of TERT promoter mutations. A total of 328 cases had sufficient 

coverage to detect a mutation and 162 cases showed a somatic mutation at one of three sites. 

 

Nucleotide change Site Paired samples 

A161C Chr5:1295161 2 

C228T Chr5:1295228 121* 

C250T Chr5:1295250 39* 

*One case showed mutations in both C250T and C228T 

 

2.5 Mutation significant analysis 
Significantly mutated genes were identified using the MutSigCV algorithm. Analyses were conducted 

on the entire sample set (n=820) accept a single hypermutator phenotype (TCGA-DU-6392). Intronic 

mutations were excluded. A mutation blacklist was applied for remove potential technical artifacts 

(Lawrence et al., 2013b). Genes with a q-value less than 0.1 were considered significant. 

 

2.6 Telomere quantification  
Quantification of telomere length was performed using the TelSeq tool (Ding et al., 2014). This tool 

counts the number of reads containing any (range 0 to k) amount of telomeric repeats (nk), or 

TTAGGG, and then computes the estimated telomere length in bp l further based on the average 

chromosome length in bp c and the total coverage s. 

1) 𝑙 = 𝑐 × 𝑛𝑘
𝑠  

The authors recommend a k of 7 based on their experimentally validated results. Given that TelSeq 

was not designed for cancer, it does not take into account tumor ploidy and purity. We have 

therefore modified the TelSeq computation to consider tumor purity p and ploidy 𝜏: 

2) 𝑛𝑘𝑠 =
𝑙𝑡×𝜏×𝑝+𝑙𝑛×(1−𝑝)
𝜏×𝑐×𝑝+𝑐×(1−𝑝)  

Because p and 𝜏 are given by the ABSOLUTE analysis (Carter et al., 2012), solving 𝑙𝑡 is 

straightforward, whereas 𝑙𝑛 can be calculated using 1) above. 

The average chromosome length c is calculated as follows: 

3) 𝑐 = 46 𝐺⁄  

  



Here G is the total genome length and 46 is the expected number of chromosomes. Because GC 

content is a potential confounding factor, G was set to the genome length in bp with GC content 

between 48% and 52%. The average coverage s is adjusted in a similar fashion. 

 

2.7 Whole genome mutation calling 
MuTect (Cibulskis et al., 2013) was used to call somatic mutations on 89 matched primary tumor-

normal pairs. We required a minimum coverage of 14 in the tumor sample and 8 in the normal 

sample. Variants known to dbSNP v132 and unknown to COSMIC v54 were filtered resulting in 

714,305 variants. Using these samples we used overlapping RNA-seq expression data to form an 

integrated dataset of 67 pairs (29 GBM, 38 LGG).  In order to identify potential promoter sites we 

used the GENCODE v19 transcript annotation (n= 196,520 transcripts) and used a subset of 24,001 

transcripts that have an exact UniProt database match and has been curated according to known 

clinically relevant protein changes (Ramos et al., 2015). We then reduced the transcripts down to 

one transcript per gene (n=17,722 transcripts). For each remaining transcript we then took a region 

spanning from 2,000 bp upstream of the transcription start site and 200 bp into the coding region. 

We then determined overlapping mutations for each region using the Bioconductor package 

"GenomicRanges" (Lawrence et al., 2013a). We removed regions with hits from less than 7 unique 

samples, removed regions which were upstream of genes lacking RNA-seq counts or counts that 

were lacking any variability, removed regions in which the variants had a median of read count of 1 

or more alternate reads in the matching normal. This filtering resulted in 141 mutations across 12 

putative promoter regions (Table S2E). For each of the remaining gene promoter regions we then 

performed a t-test and a mann-whitney-U test comparing the log2 normalized gene expression 

counts in mutant cases to wild type cases. When we subsequently filtered out promoter regions with 

a Benjamini-Hochberg adjusted gene expression correlation Q-value < 0.05 only three promoter 

regions remained including TERT, TRIM28 and CACNG6. 

 

3. DNA copy number analyisis 
Authors: Bradley Murray, Floris Barthel, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 

(rverhaak@mdanderson.org)   

3.1 Preprocessing and peak calling 
Tumor and normal samples were profiled on Affymetrix SNP6.0 GeneChip arrays and subsequently 

processed into genome segmentation files (McCarroll et al., 2008). The tool GISTIC 2.0 was then 

used to identify significantly reoccurring focal and broad copy number changes (Mermel et al., 

  



2011). Events with a Q-value < 0.10 were considered significant. In order to identify low-frequent 

subtype specific events, we ran GISTIC both across the entire cohort (n=1084) and smaller subsets 

within DNA methylation clusters (n=6 groups), RNA expression clusters (n=4 groups) and IDH-codel 

subtypes (n=3 groups). For each statistically significant peak, GISTIC 2.0 indicates a narrow focal 

peak and a wider surrounding peak. We intersected all overlapping focal peaks across all GISTIC 

run and identified 57 disjoint amplified regions and 105 deleted regions. Using this method, while 

drastically limiting the number of genes compared to using the wide peak boundaries, we were still 

about to find 80% of genes that were considered as potential tumor drivers in previous studies. 

Genes previously suggested as tumor drivers not found using this method include IRS2 gain, 

LSAMP loss and KDR/KIT gain (the neighboring oncogene PDGFRA however was still found). In 

order to further narrow down the list of genes per peak and to identify potential tumor drivers, we 

sought to correlate copy number change to gene expression and prioritized genes in which we found 

significant mutations. Using this method, we were able find evidence for several new tumor drivers 

including GIGYF2 loss, ERRFI1 loss, ARID2 loss and FGFR2 gain. For the complete list of peaks, 

genes and their mutation and expression correlates see Table S2B. 

 

3.2 Functional Copy Number (CN) analysis 
Authors: Pietro Zoppoli, Antonio Iavarone 

Correspondence and questions should be directed to: Pietro Zoppoli 

(zoppoli@icg.cpmc.columbia.edu) 

In order to define the functional copy number (fCN) genes we calculated the spearman’s correlation 

between the copy number and the expression of each gene in the dataset. We selected all the 

genes with p-value <0.05 and cor >0.5. 

In order to highlight the different behavior between the four expression groups, we selected only the 

differentially expressed (abs (FC>1.5)) and aberrated (abs (ΔCN>0.5)) fCN genes obtaining a list of 

57 genes (the fCN signature). 

 

3.3 Mutations with Common Focal Alterations (MutComFocal) 
Authors: Raul Rabadan, Jiguang Wang, Antonio Iavarone 

Correspondence and questions should be directed to: Antonio Iavarone 

(ai2102@cumc.columbia) 

By considering both copy number and somatic mutation data of LGG/GBM samples, we applied the 

algorithm of MutComFocal (Trifonov et al., 2013). Particularly, focality score and recurrence score 

were calculated based on samples with at least 10 and at most 1,000 copy number segments. The 

  



focality score assigns equal weight to all genes participating in a genomic alteration inversely 

proportional to the size of that alteration, while recurrence score assigns equal weight to all genes 

altered in a sample inversely proportional to the total number of gene altered in the sample (Frattini 

et al., 2013; Trifonov et al., 2013).  

 

4. mRNA Expression 
Authors: Michele Ceccarelli, Stefano M. Pagnotta, Antonio Iavarone 

Correspondence and questions should be directed to: Michele Ceccarelli 

(ceccarelli@unisannio.it)     

4.1 Data preparation and gene selection 
RNA-seq raw counts of 667 cases (513 LLG and 154 GBM) were downloaded, normalized and 

filtered using the Bioconductor package TCGAbiolinks (Colaprico et al., 2015) using TCGAquey(), 

TCGAdownload() and TCGAprepare() for both tumor types (“LGG” and “GBM”, level 3, and platform 

"IlluminaHiSeq_RNASeqV2"). The union of the two matrices was then normalized using within-lane 

normalization to adjust for GC-content effect on read counts and upper-quantile between-lane 

normalization for distributional differences between lanes applying the 

TCGAanalyze_Normalization() function encompassing EDASeq protocol. Gene selected for 

clustering were chosen by applying two filters, the first was aimed a reducing the batch effect 

between the two tumor cohorts. We computed differentially expressed genes with 

TCGAanalyze_DEA() (implementing the EdgeR protocol (Robinson et al., 2010)), and filtered out 

genes differentially expressed between the two sets (α = 10-10), obtaining 10,389 genes. We then 

applied variability filters that select genes having a sufficiently high variation (100%) between the 

mean of top 5% and the mean of the bottom 5% values and having these means respectively above 

and below the overall median value of the data matrix. The filtering steps resulted in 2,275 genes 

that were used for the consensus clustering. ConsensusClusterPlus Bioconductor package was 

used to perform the clustering with hierarchical clustering as inner method and 1000 resampling 

steps (epsilon=0.8). Number of cluster (n = 4) was used as local maxima of the Calinsky-Harabasz 

curve. Within cluster analysis was done generating differentially expressed genes between GBM 

and LGG cohorts (log fold change greater and 1.0 and FDR less than 0.05), lists were then analyzes 

using DAVID functional annotation tool (Huang et al., 2009) and ClueGO (Bindea et al., 2009). 

 

4.2 Classification of Affymetrix samples 
Once the four RNA-seq cluster were obtained, we reclassified 378 GBM samples for which no RNA-

seq data were available using their Affymetrix profiles. We used the 151 GBM samples (20 in LGr1, 

  



4 in LGr2, 10 in LGr3 and 117 in LGr4) having both the Affymetrix and RNA-seq profiles as training 

set of a kNN classifier (k = 3) to assign LGr cluster memberships to the remaining 378 Affymetrix 

samples. The feature set of the classifier was based on a signature of 327 probesets obtained by 

selecting up-regulated and down-regulated genes for the training samples in each cluster. 

 

4.3 Tumor Map and Pathway Activity Analysis 
Authors: Yulia Newton, Olena Morozova, Sofie Salama 

Correspondence and questions should be directed to: Sofie Salama (ssalama@soe.ucsc.edu) 

4.3.1 Combining multi-platform multi-tumor datasets 
We utilized the ComBat batch effect removal method (Johnson et al., 2007) in order to combine 

mRNA expression data from the GBM RNA-seq (n=154), GBM Agilent (n=525), LGG RNA-seq 

(n=513), and LGG Agilent (n=27) datasets. We chose to use data generated using Agilent 

microarray platform over those generated using Affymetrix because such data were available for 

both tumor types, while Affymetrix data were only available for GBM samples. We combined the 4 

datasets and ran ComBat. We flagged 4 batches, one for each dataset, to be removed by the 

ComBat method. One hundred and forty nine GBM samples were analyzed using both Agilent and 

RNA-seq platforms. Twenty seven LGG samples were analyzed using both Agilent and RNA-seq 

platforms. We utilized these matched samples as biological covariates in the ComBat method. Upon 

completion of the data transformation, we removed all redundant samples analyzed using the 

Agilent platform whenever the sample was also analyzed using RNA-seq. This combined mRNA 

expression dataset (n=1043) was used for Tumor Map analysis.  

 

4.3.2. Tumor Map method (manuscript in preparation) 
Tumor Map is a dimensionality reduction and visualization method for high dimensional genomic 

data. It allows viewing and browsing relationships between high dimensional heterogeneous 

genomic samples in a two-dimensional map, in a manner much like exploring geo maps in Google 

Maps web application. 

Prior to the analysis, technical and batch effects in the gene expression data were mitigated as a 

preprocessing step and as described above. We computed sample-by-sample pair-wise similarities. 

From RNA expression data, we selected 6002 genes whose expression was the most variable 

based on the variance distribution curve. The 1301 most important methylation probes were 

selected by manual curation of the probe list as described in the DNA methylation analysis section. 

We used Spearman rank correlation (Spearman, 1904) on these continuous variable data (mRNA 

and methylation). To build maps based on a single data type, for each sample the closest 

  



neighborhood of 10 samples is selected. The Tumor Map method represents these local 

neighborhoods as a graph. The edge weight in this graph is proportional to the magnitude of the 

similarity metric. Then spring-embedded graph layout (Golbeck and Mutton, 2005) algorithm is 

applied to the constructed graph. The spring-embedded layout algorithm treats edges as springs 

and allows the springs to oscillate for a fixed amount of time with the energy inversely proportional to 

the edge weights. Under these conditions, springs with large weights do not oscillate much, causing 

those vertices to stay together. However, springs with small weights oscillate more and end up 

farther away from each other. The method then projects the positions of all the vertices in the 

resulting graph layout onto a two-dimensional grid. Each cell in the grid allows only one vertex to be 

placed into it. If multiple vertices contest for the same grid cell, a random vertex selection is made 

and placed into the cell; and the other competing vertices are placed into the nearest empty cell, 

snapping around the original cell in a spiral-like manner. Thus, dense clumps of samples are 

separated so that they can be viewed at approximately the same scale as the distances that 

separate them. After computing pairwise sample similarities in the gene expression and DNA 

methylation space separately, the two similarity spaces are combined after standardizing each 

space was standardized. 

 

4.3.3 Multi-platform maps using Bivariate Standardization similarity space 
Transformation (BST)  
We computed sample pairwise similarities for each data type separately, producing a square 

samples-by-samples similarity matrix. For each of the similarity matrices, we perform bivariate 

standardization by transforming each value to be an arithmetic mean of the z-scores of this value 

within both the row and the column empirical distributions. This method is an adaptation of the 

approach by Faith et. al (2007). Once each of the similarity matrices is transformed into a z-score 

space, we combine each available z-scores (from N platforms) for each pair of samples by taking a 

weighted average of the z-scores, where the weights indicate the importance of each of the N 

platforms being combined. When genomic data for a given platform is not available for at least one 

of the samples from the pair, a pairwise similarity for this pair will not be available for this platform. 

Our method allows such omissions, as it will only combine similarity z-scores from those platforms 

that are available for any pair of samples. The resulting BST matrix is a square samples-by-samples 

matrix that contains a union of samples in all the platforms.  

 

  



4.3.4 Extracting significantly active pathways 
We used mRNA expression for samples available through RNA-seq platform only and the CNV data 

to transform the data into inferred pathway activity levels using PARADIGM (Vaske et al., 2010). We 

then considered a number of dichotomies, such as LGm1 GBM vs. LGG (see Table S5). Some of 

the dichotomies we considered have significantly different numbers of samples in each class (see 

Table S5). In order to make statistically strong inferences about pathway activities we only 

considered those dichotomies in which both classes are well represented by their members and the 

variance within the classes is much smaller than the variance between the classes. In other words, 

we selected those dichotomies where sample scatter is small within the classes and classes are 

separable in the pathway space. Based on the PARADIGM IPLs (Inferred Pathway Levels) we 

computed pair-wise Spearman rank correlation for each pair of samples. We then computed within-

class and between-class variance of the correlations, first for the first class and then for the second 

class. We then computed the F-statistic for each of the classes in the dichotomy and the p-value 

based on the F-distribution. We aggregated the p-value for the dichotomy by computing the mean p-

value. We selected those dichotomies that had an aggregated p-value of <= 0.05. Table S5 shows 

final dichotomies analyzed for the differential pathway activities. For each dichotomy selected, we 

computed differential activity levels using the linear models for microarrays and RNA-seq data 

(LIMMA) method (Smyth, 2005). We then applied Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005) to the HUGO members of the full differential vector. We extracted only 

those pathways that had FDR-adjusted q-value of <= 0.1. At the same time, we extracted 

statistically significant differentials (multiple hypothesis adjusted p-value <= 0.05). We ran 

PATHMARK (Cancer Genome Atlas Research, 2013) on the statistically significant differential 

activities obtained from LIMMA to extract connected components of the global PARADIGM 

regulatory network. An additional filter of 3 standard deviations was applied to the PATHMARK 

method. This means only those activities that fall outside 3 standard deviations of the empirical 

distribution of the statistically significant differentials pass through the filter. A network connection is 

extracted if both vertices connected by that connection pass the filter.  For each pathway gene set 

that passed the GSEA q-value of 0.1 we computed the overlap of the pathway genes and those that 

survived the PATHMARK filter as well as the over-representation hypergeometric p-value. We then 

extracted those pathways that passed with the p-value of <= 0.05. Figure S5E shows an overview of 

the process for extracting significantly active pathway from the glioma data. Figures S5C-D show 

pathway views of the significant IPLs from Table S5 in which IPLs representing families, complexes, 

phopho-events and redundant complexes were removed for better visualization.  

 

  



4.4 Combining GBM Agilent G4502A mRNA data with LGG Illumina Hi-Seq 
RNA-seq data 
Authors: Shiyun Ling, Rehan Akbani 

Correspondence and questions should be directed to: Rehan Akbani 

(rakbani@mdanderson.org) 

Approximately 15,700 genes were common between the two platforms and a total of 185 pairs of 

GBM and LGG sample replicates were run on both platforms. Initial tests by combining the GBM 

and LGG replicates and clustering them showed two clusters based entirely on platform differences 

and the replicates didn’t merge with each other. To remove the platform effect, we developed a 

novel algorithm that randomly divided the 185 replicate pairs into training, testing and validation 

sets. The training set was used to train an Empirical Bayes (Johnson et al., 2007) based model, 

which was then applied to the testing set. The testing set was used to figure out which genes didn’t 

merge well by using a t-test to find the genes with the most differences between the platforms. The 

process was repeated 1000 times by using a bootstrapping approach for the training set. The top 

3000 genes that were consistently found to be the most variable in the testing set were removed 

from the data set. The resulting model was then applied to the validation set, after removing those 

3000 genes, to evaluate the algorithm. The evaluations showed that all 43 of the replicate pairs in 

the validation set clustered in matched pairs. The median of Pearson’s correlations between the 

matched pairs was 0.23 before adjustment and 0.93 after adjustment, indicating very successful 

merging. We then applied the model to the full GBM and LGG dataset to perform overall merging, 

and then removed duplicates by randomly keeping one sample from the pairs. The final dataset had 

1032 samples and 12,717 genes.   

 

4.5 RNA Fusion analysis 
Authors: Olena Morozova, Floris Barthel, Sofie Salama, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 
(rverhaak@mdanderson.org)  

4.5.1 Fusion transcript detection using PRADA 
Transcript fusions were detected in 665 samples using the Pipeline for RNA-seq Data Analysis 

(PRADA) fusion detection tool (Torres-Garcia et al., 2014). We classified fusions to one of four tiers 

based on the number of junction spanning reads and discordant read pairs, gene partner 

uniqueness, gene homology, whether the fusion preserves the open reading frame, transcript allele 

fraction and DNA breakpoints in SNP6 array data, as previously described (Yoshihara et al., 2014). 

Briefly, tier one fusions are the highest confidence fusions and tier four fusions are the lowest 

  



confidence ones. For the purpose of this analysis we chose to include tiers one and two. A summary 

of included fusions can be found in Table S2C.  

 

4.5.2 Fusion transcript detection using deFuse 
RNA-seq reads were analyzed using deFuse package version 0.6.0 (McPherson et al., 2011). 

Fusions involving receptor tyrosine kinase genes were manually reviewed using blat analysis (Kent, 

2002) of the breakpoint sequence in the UCSC Genome Browser (Kent et al., 2002). Candidate 

fusions were filtered based on the following deFuse parameters: 

• Splitr_count > = 5 (5 or more split reads supporting the fusion) 

• Span_count > = 10 (10 or more spanning reads supporting the fusion) 

• Read_through ~ “N” (fusion is not a readthrough) 

• Adjacent ~ “N” (fusion does not involve adjacent genes) 

• Altsplice ~ “N” (fusion cannot be explained by alternative splicing) 

• Min_map_count = 1 (at least one spanning read supporting the fusion is uniquely mapped) 

• ORF ~ “Y” (fusion preserves the open reading frame) 

deFuse and PRADA fusion predictions were combined to generate a list of 204 events identified by 

both methods (Table S2C). 

 

4.6 Identification of Transcriptional Regulatory Factors underlying IDH wild 
type and IDH mutant phenotypes in Glioma 
Authors: Ganiraji Manyam, Arvind Rao, Ganesh Rao 

Correspondence and questions should be directed to: Ganesh Rao (grao@mdanderson.org)  

Batch-corrected expression data from Agilent Microarray and Illumina Hiseq RNA-seq platforms 

using MBatch was used for differential expression and transcription factor analysis. Linear 

regression was used to find the genes that are differentially expressed between IDH wild type and 

IDH-mutant groups after adjusting for the effect of expression platform (RNA-seq or microarray) in 

the model. The p-values are adjusted for multiple testing using the Bonferroni method. Genes with 

adjusted p-value less than 0.01 are considered significant. 

Transcription Factor (TFs) Analysis was performed using the Match Algorithm of Biobase 

(TRANSFAC) system to identify TFs enriched in promoters of genes differentially expressed 

between IDH wild type and mutant groups. This algorithm compares the number of TF binding sites 

found in a query sequence set against a background set and identifies factors whose frequencies 

are enriched in the query compared to the background. Genes significantly upregulated in the IDH 

  



mutant group are considered as the background for TF analysis of genes upregulated in IDH wild 

type group and vice-versa. The TFs enriched with p-value less than 0.05 are considered significant.  

Differential expression analysis was used to assess the expression differences of the enriched TFs 

themselves between the two groups (IDHmut vs wt). The transcription factors with Bonferroni-

adjusted p-value less than 0.05 are defined as significant candidates (Excel file). 

Ingenuity Pathway Analysis (IPA) was used to generate downstream networks for the top ranking 

transcription factors. Rank of the transcription factor is defined based on fold change between the 

two groups and the number of transcription factor binding sites in the promoter region of the target 

genes. Twelve transcription factor families were found to have log fold change of >1 between the 

IDH mut and IDHwt groups. The ones with the highest number of target genes are NKX2-5, PAX8, 

ETV7, CEBPD, ETV4, ELF4, and NFE2L3. Several of these TFs have been shown to be important 

for carcinogenesis. For example, Pax8 has been shown to be minimally expressed in LGG and 

normal brain but highly expressed in glioblastoma (Hung et al., 2014) and plays a role in telomerase 

regulation (Chen et al., 2008). Similarly, enrichment of the pro-proliferative TF ETV4 in 1p/19q 

codeleted gliomas has been demonstrated (Gleize et al., 2015).  

 

5. DNA methylation profiling  
Authors: Thais S. Sabedot, Tathiane M. Malta, Simon G. Coetzee, Peter W. Laird, Houtan 

Noushmehr 

Correspondence and questions should be directed to: Houtan Noushmehr (houtan@usp.br) 

5.1 Preprocessing and clustering 
For data acquisition, we used the the Bioconductor package TCGAbiolinks (Colaprico et al., 2015). 

First, TGCAquery() was used to search the samples of “GBM”  and “LGG” tumors in TCGA 

repository using the following parameters: data level = 3, platform type = “HumanMethylation450” 

and “HumanMethylation27”, version 12 for LGG and version 5 GBM samples. Second, 

TCGAdownload() was used to download the data; and, finally, TCGAprepare() was used to read the 

data into a dataframe. A total of 932 TCGA glioma samples assessed for DNA methylation, including 

516 LGG and 416 GBM samples, profiled using 2 different Illumina platforms, were included. During 

the initial phase of the TCGA project, 287 GBM samples (batches 1 to 9) were profiled using the 

Illumina HumanMethylation 27 platform (HM27), which interrogates 27,578 CpG probes. As a new 

platform became available, the TCGA LGG (batches 1 to 16) and 129 GBM (batches 1 to 12) 

samples were transitioning into the larger more comprehensive Illumina platform known as the 

HumanMethylation450 (HM450), which interrogates 485,421 CpG sites. The DNA methylation score 

for each locus is presented as a beta (β) value (β = (M/(M+U)) in which M and U indicate the mean 

  



methylated and unmethylated signal intensities for each locus, respectively. β-values range from 

zero to one, with scores of zero indicating no DNA methylation and scores of one indicating 

complete DNA methylation. A detection p-value also accompanies each data point and compares 

the signal intensity difference between the analytical probes and a set of negative control probes on 

the array. Any data point with a corresponding p-value greater than 0.01 is deemed not to be 

statistically significantly different from background and is thus masked as “NA” in TCGA level 3 data 

packages. The data levels and the files contained in each data level package are present on the 

TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). Please note that as continuing 

updates of genomic databases and data archive revisions frequently become available, the data 

packages on TCGA Data Portal are updated accordingly.  Data of the two platforms (HM450 and 

HM27) were merged as previously described (Brennan et al., 2013) and we ended with 25,978 

probes that match both 27k and 450k platforms, as illustrated in the following Venn diagram. 

Duplicated samples and secondary tumors were excluded. The 932 sample IDs used for DNA 

methylation analysis are listed in Table S1. 

 
5.2 Unsupervised clustering analysis of DNA methylation data 
Methods to capture tumor-specific DNA methylation probes were used as recently described 

(Cancer Genome Atlas Research, 2014b) and is provided here as reference, with slight 

modifications to the total numbers. We used the Level 3 DNA methylation data contained in the 

packages listed above for analyses. We first removed probes which had any “NA”-masked data 

points and probes that were designed for sequences on X and Y chromosomes. We selected CpG 

sites that are located in high CpG density regions (top 25% of the sites with the highest 

observed/expected CpG ratio around their 3kb regions spanning from 1,500 bp upstream to 1,500 
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bp downstream of the transcription start sites) and CpGs associated with CpG islands extracted 

from the UCSC Genome Browser (http://genome.ucsc.edu). To capture cancer-specific DNA 

hypermethylation events, we further eliminated sites that were methylated (mean β-value ≥0.3) in 

histologically non-tumor brain tissues (Guintivano et al., 2013). This selection method reduced the 

initial 25,978 probes to 1,300 glioma-specific CpG probes, which corresponded to 6.5% of the full 

available data. However, a clustering analysis can be strongly confounded by the purity of tumor 

samples. To alleviate the potential influence of variable levels of tumor purity in our sample set on 

our clustering result, we dichotomized the data using a β-value of >0.3 as a threshold for positive 

DNA methylation. We then performed unsupervised hierarchical clustering on 1,300 CpG sites with 

this threshold that are methylated in at least 10% of the tumors using a binary distance metric for 

clustering and Ward’s method for linkage. The cluster assignments were generated by cutting the 

resulting dendrogram. The probes are arranged based on the order of unsupervised hierarchical 

clustering of the dichotomous data using a binary distance metric and Ward’s linkage method. We 

identified six groups (LGm1-LGm6) shown in Figure 2A generated based on the original β-values to 

visualize 1,300 CpG sites used in the clustering. 

The approach described above to capture tumor-specific DNA methylation probes was used to 

select glioma-specific CpG probes and perform unsupervised clustering separated by IDH status. 

We identified 1,308 tumor specific CpG probes for IDH-mutant analysis and identified three IDH-

mutant-specific clusters (Figure S3A). Likewise, we identifed 914 tumor specific CpG probes for for 

IDH-wild type samples and identified three IDH-wildtype-specific clusters (Figure S4A).  

In order to classify the newly acquired TCGA samples (not included in the previous studies; LGG = 

227; GBM = 20) into the context of previously published DNA methylation clusters (Brennan et al., 

2013; TCGA_Network, 2015), we randomly selected a set of 80% of TCGA samples to train a 

random forest machine-learning. We then evaluated the performance on the remaining 20% of 

samples and got an accuracy of more than 88% on average. We then tested the new TCGA 

samples and classified them into the previously DNA methylation clusters. 

 

5.3 Supervised analysis of DNA methylation 
We used Wilcoxon test followed by multiple testing using the Benjamini and Hochberg (BH) method 

for false discovery rate estimation (Benjamini and Hochberg, 1995) to identify differentially DNA 

methylated probes between two groups of interest.  

The 131 probes presented in Figure 3A were defined comparing samples from IDHmut-K1 (n=53) to 

IDHmut-K2 (n=221), using the following criteria: FDR < 10e-15, absolute difference in mean 

methylation beta-value > 0.27. 
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The 90 probes presented in Figure 3H were identified comparing samples from G-CIMP-low (n=25) 

to G-CIMP-high (n=249), in order to identify probes defining the G-CIMP-low group, using the 

following criteria: FDR < 10e-13, difference in mean methylation beta-value > 0.3 and < -0.4. 

The 149 probes presented in Figure 3H were a combination of the 90 probes described above with 

73 probes identified from the comparison between non-codels (from LGm2, n=210) and codels (from 

LGm3, n=120), using the following criteria: FDR < 10e-30, absolute difference in mean methylation 

beta-value > 0.25, removing probes with NA values. All probeset lists are provided on the publication 

portal accompanying this publication (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/). 

 

5.4 Identification of Epigenetically Regulated Genes 
To increase our statistical power, we decided to evaluate epigenetically regulated genes using the 

Pan-glioma subtypes, which allowed us to use the entire TCGA glioma cohort. We selected tumor 

samples that have both DNA methylation and RNA-sequencing based gene expression data to do 

this analysis, resulting in 636 samples (513 LGG and 123 GBM). We also randomly selected 110 

non-tumor TCGA samples from 11 different tissues (https://tcga-

data.nci.nih.gov/docs/publications/lgggbm_2015/), profiled using the same platforms. Each DNA 

methylation probe was mapped to the nearest UCSC gene, and after merging the DNA methylation 

and gene expression data, we retained a total of 19,530 pairs of DNA methylation and gene 

expression probes. We organized the tumor samples as either methylated (β >= 0.3) or 

unmethylated (β < 0.3) for each probe. We selected the pair of DNA methylation and gene 

expression probes for which the mean expression in the methylated group was lower than 1.28 

standard deviation (bottom 10%) of the mean expression in the unmethylated group, and in which 

>80% of the samples in the methylated group have expression levels lower than the mean 

expression in the unmethylated group. We labeled each tumor sample as epigenetically silenced for 

a specific probe/gene pair if: it belonged to the methylated group and the gene expression level was 

lower than the mean of the unmethylated group silenced (Cancer Genome Atlas Research, 2014a), 

resulting in 3,806 probes/genes identified as epigenetically regulated. A Fisher test was used to 

detect if these 3,806 pairs were enriched in a DNA methylation cluster. For each probe, tumor 

samples labeled as methylated and downregulated by cluster, while non-tumor samples labeled as 

unmethylated and upregulated, were counted and arranged into a contingency table for a Fisher 

test, using 50% as a cutoff. p-value was calculated for each probe/gene pair and then was adjusted 

for multiple testing using the BH method for false discovery rate estimation (Benjamini and 

Hochberg, 1995). This analysis identified 3 Epigenetically Regulated groups (EReg): EReg2 with 

233 genes enriched in LGm2 (resembling G-CIMP high), EReg3 with 15 genes enriched in LGm3 
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(resembling Codels) and EReg4 with 14 genes enriched in LGm4 (resembling Classic-like) and 1 

gene enriched in LGm5 (resembling Mesenchymal-like). Since LGm1 (enriched for G-CIMP-low) 

and LGm6 (comprising LGm6-GBM and PA-like) are heterogeneous clusters, we applied a different 

approach in order to identify epigenetically regulated genes for these groups. For EReg1, we 

compared the DNA methylation and gene expression levels for G-CIMP-low samples (n=25) with G-

CIMP-high samples (randomly selected 50 samples out of 249) and those probes/genes with 

Wilcoxon BH adjusted p-value less than 1e-10, methylation difference greater than 0,25 and RNA 

expression log Fold Change greater than 0,85 were selected, resulting in 15 epigenetically regulated 

genes enriched in G-CIMP-low. For EReg5, we compared the DNA methylation levels for LGm6 

samples (n=77) with a subset of randomly selected samples from the 855 remaining TCGA glioma 

samples (n=140) and those probes with Wilcoxon BH adjusted p-value less than 1e-21 and 

methylation difference greater than 0,33 were selected, resulting in 12 epigenetically regulated 

genes enriched in LGm6.  

To validate the EReg genes in order to confirm the existence of these signatures in an independent, 

non-TCGA data, we downloaded 4 different and publicly available datasets (Lambert et al., 2013; 

Mur et al., 2013; Sturm et al., 2012; Turcan et al., 2012), comprising 324 samples with distinct 

histology and clinical attributes. These samples included adult, pediatric gliomas of both low and 

high grade, reported with codel, IDH status and G-CIMP status. Our independent data set included a 

pool of 61 pilocytic astrocytomas defined as grade I gliomas (Lambert et al., 2013). In order to 

classify the additional non-TCGA gliomas into our LGm clusters, we selected a random set of 80% 

TCGA samples to train a random forest machine-learning model and evaluated the performance on 

the remaining 20%. Given the high specificity and sensitivity of our model (accuracy > 88% on 

average), we, then, tested the LGm cluster prediction model on the additional non-TCGA samples 

using the random forest method. Data were visualized using the same 45 pairs of CpG 

probes/genes that define the epigenetically regulated genes for IDH mutant samples (Figure 3F) and 

the same 27 pairs of CpG probes/genes that define the epigenetically regulated genes for IDH wild 

type samples (Figure 4D). Applying a similar ordering in the validation set and accounting for 

differences in sample size, we recapitulated the five EReg groups both for IDH mutant samples 

(Figure 3G) and IDH wild type samples (Figure 4E) in molecular level. The list of epigenetically 

regulated genes can be found at https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/ .  

The same random forest machine learning model approach was used for the IDH-mutant samples 

(using the 1,308 IDH-mutant tumor specific CpG probes) and for the IDH-wildtype samples (using 

the 914 IDH-wildtype tumor specific CpG probes), separately. We then tested the models in the IDH-
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mutant and IDH-wildtype samples from the validation set (Lambert et al., 2013; Mur et al., 2013; 

Sturm et al., 2012; Turcan et al., 2012) (Figure S4B). 

5.5 Classification of new glioma samples based on DNA methylation glioma 
subtypes  
New glioma samples can be classified into one of our glioma subtypes using our CpG probe 

methylation signatures provided on the publication portal accompanying this publication 

(https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/). 
 

First, all glioma samples should be divided by their known IDH status, separated into either IDH-

mutant and IDH-wildtype.  IDH-mutant is defined as those samples harboring any type of known 

IDH1 or IDH2 mutation as described recently (TCGA_Network, 2015).  IDH-wildtype refers to those 

samples with an intact IDH1 or IDH2. Samples as either IDH-mutant or IDH-wildtype are then further 

classified accordingly: 

IDH-mutant: 
In order to define newly diagnosed glioma samples into one of the 3 glioma subtypes within IDH-

mutants, we recommend applying Random Forest in a two-step process.  1) using the 1,308 tumor 

specific CpG probes which defines the IDHmut specific clusters (Fig S3A) and 2) using the 163 CpG 

probes which defines each TCGA IDH-mutant glioma subtype (Fig S3C).  

1. If the sample was classified as IDHmut-K1 or IDHmut-K2 using the 1,308 tumor specific CpG 

probes for IDH-mutant and as G-CIMP-low using the 163 CpG probes defined by a 

supervised analysis across IDH-mutant subgroups, we classify the sample as G-CIMP-low; 

2. If the sample was classified as IDHmut-K1 or IDHmut-K2 using the 1,308 tumor specific CpG 

probes for IDH-mutant and as G-CIMP-high using the 163 CpG probes defined by a 

supervised analysis across IDH-mutant subgroups, we classify the sample as G-CIMP-high; 

3. If the sample was classified as IDHmut-K3 using the 1,308 tumor specific CpG probes for 

IDH-mutant, we classify the sample as Codel. 
 

IDH-wildtype: 
Likewise, IDH-wildtype can be classified using a single random forest machine-learning model 

applied with a signature defined by the 914 tumor specific CpG probes for IDH-wildtype (Figures 

S4A-B).  Samples following into IDHwt-K3 (aka LGm6), we recommend subdividing this group 

based on grade, resulting in either LGm6-GBM and PA-like (LGG). 
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5.6 Patient centric table (DNA methylation) 
To generate DNA methylation calls for each sample per gene per overlapping platforms (HM27, 

HM450), we began by first collapsing multiple CpGs to one representative gene. Using the 

associated gene expression data (organized as one gene - one expression value per sample), we 

merged the samples and CpG probes with gene expression data for each platform. We next 

calculated the spearman correlation (ρ) across all samples for all CpG probes for each gene to one 

gene expression value. For multiple CpGs for each annotated gene promoter, we selected one CpG 

probe with the lowest correlation rho value to the associated gene expression profile to capture the 

most biologically representative event (epigenetic silencing). This effectively reduced the number of 

CpG probes from N:1 to 1:1. Our data set was then reduced down to 636 samples x 19,486 

CpG:Gene. 

Next, we assigned discrete categories based on the spearman correlation rho value according to the 

following criteria: 

1. Strongly negatively correlated (SNC) when ρ value is less than 0.5; 

2. Weakly negatively correlated (WNC) when ρ value is between 0.5 and 0.25; 

3. No negative correlation (NNC) when ρ value is greater than 0.25. 

Next, we assigned samples to either the 10th (T10 or N10) or 90th (T90 or N90) percentile based on 

the observed beta-value across tumor samples (T) and normal samples (N). For the normal 

samples, we used 110 non-tumor TCGA samples from 11 different tissues previously described. We 

assigned labels for each gene per platform per tissue type (tumor and normal) according to the 

following rules: 

1. If percentile 90 < 0.25, we assign it as CUN or CUT (constitutively unmethylated in normal or 

tumor); 

2. If percentile 10 > 0.75, we assign it as CMN or CMT (constitutively methylated in normal or 

tumor); 

3. If percentile 10 > 0.25 and percentile 90 < 0.75, we assign it as IMN or IMT (intermediate 

methylated in normal or tumor); 

4. If it doesn’t fall in any of the above categories, it is assign VMN or VMT (variably methylated in 

normal or tumor). 

Next we assigned a ‘call’ and a confidence ‘score’ for each possible combinations (48) [3 (SNC, 

WNC, NNC) x 4 (CUN, CMN, VMN, IMN) x 4 (CUT, CMT, VMT, IMT)]. We created the following 

relationship for each call and score based on our interpretation of the most informative epigenetic 

event (e.g. promoter DNA hypermethylation and low expression). Users should understand that the 

selection and criteria performed were done to the best of our knowledge at the time. We felt most 

  



confident with calling epigenetically silenced events and this is reflected in the confidence score. 

The methylation calls are as follows: 

MG: Methylation gain compared to normal 

ML: Methylation loss compared to normal 

MT: Methylated in tumor 

UT: Unmethylated in tumor 

ES: Epigenetically silenced 

UC: Unable to make call 

Methylation class confidence scores vary from 0 (no call) to 4 (high confidence). Patient centric table 

can be accessed at https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/.  

 

5.7 Homer de novo motif searches 
De novo Motif discovery was performed using HOMER (script v4.4 (8-25-2014)), an algorithm 

previously described (Heinz et al., 2010). Briefly, differentially methylated probes were classified 

according to genomic location into CpG island, CpG shores, and open seas as follow: CpG islands 

were defined based on UCSC annotation and as per the criteria previously described (Gardiner-

Garden and Frommer, 1987; Takai and Jones, 2002). Coverage of CpG island regions was further 

enhanced by including the 2 kb regions flanking CpG island, referred to here as CpG shores. CpGs 

isolated in the genome were defined as open seas. Probes mapped to each region were used to 

performed de novo motif analysis using HOMER (HOMER perl script ‘findMotifsGenome.pl’). To 

increase sensitivity of the method, up to two mismatches were allowed in each oligonucleotide 

sequence and distributions of CpG content in ‘target’ and ‘background’ sequences were selectively 

weighted to equalize the distributions of CpG content in both sets. Raw outputs from HOMER can 

be found at https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/ .  

 

6. Reverse phase protein array (RPPA)  
Authors:  Rehan Akbani, Zhenlin Ju, Yiling Lu, Gordon Mills 

Correspondence and questions should be directed to:  (rakbani@mdanderson.org) 

6.1 Data Processing  
Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 

mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% 

glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from 

human tumors and RPPA was performed as described previously (Coombes, 2011; Hennessy et al., 

2007; Hu et al., 2007; Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen 
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tumors by Precellys homogenization. Tumor lysates were adjusted to 1 µg/µL concentration as 

assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were manually 

serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer 

(Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides 

were probed with 196 validated primary antibodies (Cancer Genome Atlas Research, 2015) followed 

by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-

Goat IgG). Signal was captured using a DakoCytomation-catalyzed system and DAB colorimetric 

reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and quantified 

using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot signal intensities 

(Level 1 data). The software SuperCurveGUI (Coombes, 2011; Hu et al., 2007), available at 

http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 values 

of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") was plotted 

with the signal intensities on the Y-axis and the relative log2 concentration of each protein on the X-

axis using the non-parametric, monotone increasing B-spline model (Tibes et al., 2006). During the 

process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. A QC 

metric (Coombes, 2011) was returned for each slide to help determine the quality of the slide: if the 

score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was 

repeated to obtain a high quality score. If more than one slide was stained for an antibody, the slide 

with the highest QC score was used for analysis (Level 2 data). Protein measurements were 

corrected for loading as described (Coombes, 2011; Gonzalez-Angulo et al., 2011; Hu et al., 2007) 

using median centering across antibodies (level 3 data). In total, 196 antibodies and 473 samples 

were used. Final selection of antibodies was also driven by the availability of high quality antibodies 

that consistently pass a strict validation process as previously described (Hennessy et al., 2010). 

These antibodies are assessed for specificity, quantification and sensitivity (dynamic range) in their 

application for protein extracts from cultured cells or tumor tissue. Antibodies are labeled as 

validated and use with caution based on degree of validation by criteria previously described 

(Hennessy et al., 2010).  

Two RPPA arrays were quantitated and processed (including normalization and load controlling) as 

described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R package 

SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/OOMPA (Hu et al., 

2007; Tibes et al., 2006). Raw data (level 1), SuperCurve nonparameteric model fitting on a single 

array (level 2), and loading corrected data (level 3) were deposited at the DCC. 

 

  



6.2 Data normalization 
We performed median centering across all the antibodies for each sample to correct for sample 

loading differences. Those differences arise because protein concentrations are not uniformly 

distributed per unit volume. That may be due to several factors, such as differences in protein 

concentrations of large and small cells, differences in the amount of proteins per cell, or 

heterogeneity of the cells comprising the samples. By observing the expression levels across many 

different proteins in a sample, we can estimate differences in the total amount of protein in that 

sample vs. other samples. Subtracting the median protein expression level forces the median value 

to become zero, allowing us to compare protein expressions across samples. 

Surprisingly, processing similar sets of samples on different slides of the same antibody may result 

in datasets that have very different means and variances. Neely et al. (2009) processed clinically 

similar ALL samples in two batches and observed differences in their protein data distributions. 

There were additive and multiplicative effects in the data that could not be accounted by biological or 

sample loading differences. We observed similar effects when we compared the two batches of 

GBM and LGG tumor protein expression data. A new algorithm, replicates-based normalization 

(RBN), was therefore developed using replicate samples run across multiple batches to adjust the 

data for batch effects. The underlying hypothesis is that any observed variation between replicates 

in different batches is primarily due to linear batch effects plus a component due to random noise. 

Given a sufficiently large number of replicates, the random noise is expected to cancel out 

(mean=zero by definition). Remaining differences are treated as systematic batch effects. We can 

compute those effects for each antibody and subtract them out. Many samples were run in both 

batches. One batch was arbitrarily designated the “anchor” batch and was to remain unchanged. We 

then computed the means and standard deviations of the common samples in the anchor batch, as 

well as the other batch. The difference between the means of each antibody in the two batches and 

the ratio of the standard deviations provided an estimate of the systematic effects between the 

batches for that antibody (both location-wise and scale-wise). Each data point in the non-anchor 

batch was adjusted by subtracting the difference in means and multiplying by the inverse ratio of the 

standard deviations to cancel out those systematic differences. Our normalization procedure 

significantly reduced technical effects, thereby allowing us to merge the datasets from different 

batches. 

 

6.3 Clustering 
We used consensus clustering to cluster the samples in an unsupervised way, with Pearson 

correlation as the distance metric and Ward as the linkage algorithm. A total of 473 samples and 

  



196 antibodies were used in the analysis. Two clusters were observed that largely corresponded 

with tumor type (Figure S3E), however, there were a few notable exceptions. Whereas only one 

GBM sample clustered with the LGG samples, twenty-six LGG samples were found to cluster with 

the GBM samples. Seventeen of those twenty-six samples had no mutations in IDH1/2, similar to 

the GBM samples. Furthermore, compared to the LGG-like cluster, the GBM-like cluster had 

elevated expression of IGFBP2, fibronectin, PAI1, HSP70, EGFR, phosphoEGFR, phosphoAKT, 

Cyclin B1, Caveolin, Collagen VI, Annexin1 and ASNS, whereas it had low expression of PKC 

(alpha, beta and delta), PTEN, BRAF, and phosphoP70S6K.  

 

7. Regulome Explorer 
Authors: Geetika Sethi, Brady Bernard, Vesteinn Thorsson, Sheila Reynolds, Lisa Lype, Ilya 

Shmulevich 

Correspondence and questions should be directed to: ilya.shmulevich@systemsbiology.org 

 

7.1. Feature Matrix 

Associations among the diverse clinical and molecular data are identified through construction 

of a “feature matrix” (FM) by integrating values from all data types. Each column in the FM 

represents one of the 1123 tumor samples. Each row in the FM represents a single clinical, 

sample or molecular data element (mRNA expression levels, microRNA expression levels, 

protein levels (RPPA), copy number alterations, DNA methylation levels and somatic 

mutations), and the individual data values may be numerical (continuous or discrete) or 

categorical, as appropriate. Missing values are indicated within the FM by “NA”, and the number 

of non-NA data values varies significantly across the different data types (rows). Data were 

retrieved from the DCC on November 18, 2015 and further processed as follows. Clinical and 

sample data (633 features): DCC clinical and sample data were processed into a matrix. Cluster 

assignments: Cluster memberships resulting from unsupervised clustering for each of the 

individual molecular data types: SCNA (Supplement 3), RNAseq (Supplement 4), DNA 

methylation (Supplement 5), and RPPA (Supplement 6) were incorporated into the FM. Mutation 

  



rates and categories (Supplement 2) were included in the FM as well. Molecular datasets 

include Gene expression (15,401 features): Gene level RSEM values from RNA-seq 

(Supplement SA) were log2 transformed, and filtered to remove low-variability genes (bottom 

25% removed, based on interdecile range). MicroRNA expression (692 features): The summed 

and normalized microRNA quantification files were log2 transformed, and filtered to remove low-

variability microRNAs (bottom 25% based on zero-count). Somatic copy number alterations: 

Copy number and focal copy number changes were obtained for peaks identified by GISTIC as 

described above (Supplement 3, 6318 features). DNA methylation (19,727 features): Probe-

specific level-3 β-values were obtained as described above (Supplement). We started with the 

probes common between the two methylation platforms, and then removed the bottom 25% 

based on interdecile range. Somatic mutations (2842): The Mutations Annotation Format file 

(Supplement 1), was used to generate a binary indicator vector indicating whether a particular 

non-silent mutation is present in a specific sample. Mutation features found in fewer than two 

tumor samples were removed. Overall, the gbm_lgg feature matrix has 45839 features 

(inclusive of the above mentioned analysis platforms) for all the 1122 patients (data freeze list) 

resulting in 51477197 matrix elements (48501 x 38), with approximately 89% non-NA elements 

(197478 out of 1843038). 

The Synapse platform by Sage Bionetworks (www.sagebase.org, [1]) was used during the 

development of this project for distributing versioned data to project researchers and as a 

staging area for assembling files into the Feature Matrix. 

 

7.2. All-by-all Pairwise Associations 

Statistical association among the diverse data elements in this study was evaluated by 

comparing pairs of columns in the feature matrix. Hypothesis testing was performed by testing 
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against null models for absence of association, yielding a p-value. P-values for the association 

between and among clinical and molecular data elements were computed according to the 

nature of the data levels for each pair: discrete vs. discrete (Fisher’s exact test); discrete vs. 

continuous (ANOVA F- test, equivalently t-test for binary vs. continuous) or continuous vs. 

continuous (F-test). Ranked data values were used in each case. To account for multiple- 

testing bias, the p-value was adjusted using the Bonferroni correction. Exploring potentially 

interesting genomic relationships have been of interest to researchers previously [2]. In order to 

allow researchers to further explore genomic associations in TCGA gbm_lgg dataset, including 

primary data, the statistically significant pairs of associations were loaded into the Regulome 

Explorer web application, which is designed to enable researchers to explore associations 

among multiple data types in cancer genomics. Prior to loading, a p-value threshold was chosen 

specific to each pair of data types in such a way as to strike a balance between making 

potentially interesting associations available to queries by the tool, while still allowing the tool to 

be responsive, since the number of loaded graph edges (each corresponding to a statistically 

significant relationship) is in the millions. All identified pairwise relationships, including those 

described in this manuscript can be found at http://explorer.cancerregulome.org. 
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