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Abstract
We introduce a wide class of singular inhomogeneously polarized beams characterized by a
nonuniform rotation rate of the local polarization azimuth about a C- or a V-point. They are
obtained by adding an extra phase modulation with an m-fold rotational symmetry to the helical
wavefronts underpinning Poincaré beams. The resulting modulated Poincaré beams have been
theoretically studied and experimentally generated using tailored space-varying-axis plates
based on liquid crystals.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Inhomogeneously polarized light is a ubiquitous phenomenon:
many animals can see variations in polarization just as humans
see variations in color and the varying pattern of polarized light
reflected from their bodies is used as a form of signaling [1];
spatially-varying polarization patterns arise in the speckle
fields produced by bulk scattering from molecular configura-
tions in liquid crystals (LCs) [2, 3], cell structures in biological
tissues [4], or in gravitational-lensing shear fields [5], just to
mention a few. This has fueled interest in better understand-
ing optical maps of polarization, particularly those containing
polarization singularities, i.e. points in which one of the para-
meters specifying the polarization of the light is undefined [6].
Such interest has been further enhanced by the possibility
of generating coherent optical beams with spatially varying
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polarization distributions over their cross section. Such beams
have been exploited in numerous applications to photonics
[7, 8], astronomy [9, 10], microscopy [11–13], optomechan-
ics [14, 15], materials structuring [16], nanophotonics [17, 18]
and quantum sciences [19–21]. Fundamental properties of
inhomogeneously polarized optical beams have been largely
studied in the last two decades [22–28]: they correspond to
whole regions on the Poincaré sphere and therefore are some-
times called Poincaré beams [29, 30], though such denom-
ination is generally reserved to beams in which the state of
polarization varies so as to cover the full Poincaré sphere.
The polarization state of inhomogeneously polarized beams
(IPBs), in the slow envelope limit, is represented by spatially
dependent Stokes parameters, i.e. S0(x, y), S1(x, y), S2(x, y) and
S3(x, y), with x and y being the coordinates in the plane trans-
verse to the propagation direction. The optical fields in which
the local polarization state is mainly elliptical, i.e. S3(x, y)̸=
0 almost everywhere in the transverse plane, are commonly
named ellipse fields; those in which the local polarization state
is mainly linear, i.e. S3(x, y)= 0 almost everywhere, are named
vector fields. In ellipse fields, points of undefined ellipse ori-
entation are named C-points [22]. A C-point, in the far field,
corresponds to a state of circular polarization, surrounded
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by a field of ellipses whose orientations rotate clockwise or
counterclockwise about it. Such rotation is represented by
an integer or half-integer index IC, indicating that the azi-
muthal coordinate on the Poincaré sphere rotates 2|IC| times
per turn about the singularity. Likewise, in vector fields, points
at which the linear polarization orientation is indeterminate are
named V-points. Actually, at such points both the polarization
azimuth and the handedness are undefined, and hence the field
itself must vanish. V-points are surrounded by points that have
linear states of polarization with varying azimuth character-
ized by a rotation index IV , also known as the Poincaré –Hopf
index [31, 32]. Unlike IC, the rotation index IV can only take
integer values. Ellipse field topology around a C-point is mul-
tifarious, even in the simplest case of radially invariant polar-
ization patterns. From C-points, radial polarization lines or L-
lines may originate. Along these lines, the orientation of the
major axis of the local polarization ellipse, or local polariza-
tion azimuth, matches the radial orientation [33, 34]. A num-
ber of L-lines may ray out of a C-point depending on the sign
of the rotation index IC and the degree of uniformity of the
rate of rotation of the azimuth about the C-point. Basic shapes
of the patterns of C-points are lemon (IC= 1/2, 1 radial line),
star (IC =−1/2, 3 radial lines) and monstar (IC= 1/2, 3 radial
lines). The first two disclinations have symmetric patterns; the
last one is asymmetric and occurs when the azimuth rotation
rate about a C-point exceeds a threshold value [33], giving rise
to a different number of radial lines than lemons or stars with
the same IC index [35, 36].

In the overwhelming majority of cases, the methods
adopted to synthesize IPBs are based on the coherent
superposition of two distinct spatial modes in two ortho-
gonal polarization states. However, distinct approaches have
been exploited depending on the actual tools used for
molding wavefronts: sub-wavelength structures [37, 38],
stress birefringence [29], interferometer-based superpositions
[30, 31, 39–42], q-plates [33, 43, 44]. To date, generating
arbitrarily tailored IPBs is difficult, as ideally this requires:
(i) determining a pair of spatial modes whose spatially vary-
ing phase difference yields the targeted polarization map in the
selected polarization basis; (ii) precisely generating the optical
beams in those spatial modes; (iii) superimposing such beams
in a stable way. In practice, we usually content ourselves with
‘fishing’ our polarization maps out of those that can be practic-
ally realized by combining easy-to-generate well-known spa-
tial modes. It is quite challenging to engineer more complex
patterns, such as those containing multiple C-points or mon-
star singularities, which also require being able to manipulate
the rotation rate of the polarization azimuth around a C-point.

In this paper, we present a general method for engineering
IPBs in which the rotation rate of the local polarization azi-
muth around a C- or a V-point can be set as desired and real-
ized in practice without resorting to computational approxim-
ations. The design procedure capitalizes on the same geomet-
ric approach underpinning the generation of free-form dark
hollow beams [45]: it enables one to shape the wavefronts of
the spatial modes required to generate the target polarization
map without passing through the direct manipulation of the
orbital angular momentum (OAM) spectrum. Our approach

delivers its full potential through properly designed LC-based
spatially varying axes retardation waveplates (SVAPs). The
well-known q-plates—which prototype SVAPs—have already
proved to be very convenient tools for generating polariza-
tion singularities [33, 43, 44, 46]. An SVAP, in fact, can be
operated so as to directly imprint the LC optic axis distribu-
tion onto the topographic map of the polarization azimuth,
over the whole transverse cross section of the transmitted laser
beam. No interferometer is needed. This makes our method
unique in its straightforward simplicity. The azimuth orienta-
tion information is actually encoded in the SVAP in the form
of the Pancharatnam–Berry phase. Alternatively, although less
conveniently, the same phase could be generated by a spatial
light modulator suitably inserted into an interferometric setup.
Here, we demonstrate the SVAP-based method for generating
exotic polarization-structured beams, with either V-points or
C-points on their axis. The resulting beam intensity patterns
are also rather complex, including the possible occurrence of
transverse amplitude ‘fault lines’, where intensity suddenly
vanishes.

The paper is organized as follows. In section 2 we present
the theory describing the generation of IPBs with a nonuni-
form azimuthal rotation rate. In section 3we illustrate the oper-
ation of SVAPs encoding geometric phase distribution with a
nonuniform azimuthal dependence and explain how we use
them to create various polarization patterns. In section 4 we
introduce some examples of such beams and demonstrate their
properties on experimental grounds.

2. IPBs with nonuniform rate of rotation of the
azimuth

In the paraxial regime, any spatially varying inhomogeneous
polarization distribution can be regarded as the superposition
of two orthogonal uniform polarization states with a spatially
varying phase difference. This suggests that any transverse
map of polarization can be obtained by interference between
two homogeneously polarized beams in two distinct and con-
veniently mismatched spatial modes,

|IPB⟩= cL fL(r,ϕ,z)e
iψL(r,ϕ,z)|L⟩

+ cR e
iαfR(r,ϕ,z)e

iψR(r,ϕ,z)|R⟩ (1)

where a cylindrical coordinates system has been set with
z along the propagation direction, |L⟩ and |R⟩ denote
left- and right-circular polarization states, respectively,
fL(r,ϕ,z)eiψL(r,ϕ,z) and fR(r,ϕ,z)eiψR(r,ϕ,z) are complex func-
tions describing the normalized scalar modes in the two ortho-
gonally polarized states, cL and cR eiα are the coefficients
providing the relative contribution of each mode to the over-
all amplitude and their global phase change. The topological
features of the polarization map will depend on the chosen
polarization basis states, on the coefficients ratio cR/cL and on
both the local, ψR(r,ϕ,z)−ψL(r,ϕ,z), and global, α, phase
differences between the selected spatial modes.

Poincaré and vector modes are nonseparable superpos-
itions of spatial and polarization modes like those in
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equation (1). In the past, IPBs have been realized by superpos-
ing Hermite–Gaussian modes with orthogonal linear polariza-
tion or combinations of high-order Laguerre–Gaussian modes
with orthogonal circular polarizations [30], giving rise to
different types of polarization singularities. Here, we pro-
pose to generate IPBs using nonseparable superpositions of
free-form helical (FFH) [45] modes with orthogonal circular
polarization.

2.1. FFH modes

An FFH spatial mode of m-order and topological charge ℓ is
obtained by subjecting an ℓ-charged helical-phase mode to an
additional m-fold rotation-symmetric phase. Examples of the
wavefront shapes resulting from such phase combinations are
provided in figures 1 and 2. Specifically, an FFH mode can be
generated by multiplying an ordinary TEM00 Gaussian mode
by the purely azimuthal phase factor [45]

ei2Ψ(ϕ) = eiℓϑ(ϕ), (2)

where ϑ is defined here as the polar angle of the unit vector
n̂= (nx,ny), with

nx(ϕ) = cosϑ=
ρcosϕ+ ρ̇sinϕ

(ρ̇2 + ρ2)
1/2

,

ny(ϕ) = sinϑ=
ρsinϕ− ρ̇cosϕ

(ρ̇2 + ρ2)
1/2

, (3)

and

ρ(ϕ) =

(∣∣∣∣∣cos mϕ4a
∣∣∣∣∣
n2

+

∣∣∣∣∣ sin mϕ
4

b

∣∣∣∣∣
n3)− 1

n1

, ρ̇=
dρ
dϕ
. (4)

By varying the parameters m, n1, n2, n3 and a and b,
equation (4) represents, in polar coordinates, multiple classes
of plane curves γm(a,b,n1,n2,n3) of the most diverse kinds.
It was introduced by the botanist Gielis in 2003, with the
name ‘superformula’, to study forms in plants and other liv-
ing organisms [47]. Specifically ρ is the distance of a point
of the curve γm from the origin of the coordinate system as
a function of the azimuthal angle ϕ, m is an integer num-
ber, n1, n2 and n3 are three integers controlling its local
radius of curvature and, finally, the positive real numbers a
and b parameterize the radii of the circumferences respect-
ively inscribed and circumscribed to the curve γm. For even
m= 2 k, equation (4) describes a curve γ2 k closing over the
interval [0,2π). Here, γ2 k is rotationally symmetric by an
angle 2π/k. For odd m= 2 k+ 1, γ2 k+ 1 closes over the inter-
val [0,4π). When a= b and n2 = n3, γm exhibits an m-fold
rotational symmetry Cm. While varying all the free paramet-
ers in equation (4), the generated curves can be very diverse
and possibly even develop cusps. It is worth noting that, for
m= 4, a= b and n2 = n3 > 2, the superformula simply returns
the superellipses first introduced by Lamé in 1818 [48].

According to equation (2), the phase of an FFH mode is
hence proportional to the angle ϑ(ϕ) formed by the unit vec-
tor n̂ normal to the curve γm(a,b,n1,n2,n3) with respect to

a b

Figure 1. Modulated vs unmodulated helical wavefronts: (a) a
uniform helical wavefront for ℓ= 2 (γ∞); (b) a modulated helical
wavefront for ℓ= 2 and γ5(a= b,n1 = 1/2;n2 = n3 = 4/3).

a b

Figure 2. Modulated vs unmodulated helical wavefronts: (a) a
uniform helical wavefront for ℓ= 1 (γ∞); (b) a modulated helical
wavefront for ℓ= 2 and γ6 (a= b, n1 = 2/3;n2 = n3 = 2.3).

a specified reference axis x. An ℓ-charge m-order FFH mode
obviously does not carry a well-defined OAM and its spec-
trum includes multiple indices reflecting the m-fold rotational
symmetry of the generating curve. To determine such indices,
it is convenient to express the phase Ψ(ϕ) in equation (2) as
follows

ei2Ψ(ϕ) = (nx+ iny)
ℓ
=

[
ρ(ϕ)− i ρ̇(ϕ)
ρ(ϕ)+ i ρ̇(ϕ)

]q
ei 2qϕ = eiq ψ̄(ϕ) ei 2qϕ, (5)

where we set q= ℓ/2. Here, q is hence integer or half-integer
depending on whether ℓ is even or odd, respectively. The FFH
phase factor therefore can be separated into the product of the
helical background phase factor eiℓϕ = ei 2qϕ times the modu-
lation phase factor eiq ψ̄(ϕ). The latter is a periodic function of
ϕ with period 2π/m, i.e.

eiq ψ̄(ϕ+
2π
m ) = eiq ψ̄(ϕ), (6)

and hence can be expanded in a Fourier series

eiq ψ̄(ϕ) =
∑
h

χhe
ihmϕ,

χh =
m
2π

ˆ 2π
m

0

[
ρ(ϕ)− i ρ̇(ϕ)
ρ(ϕ)+ i ρ̇(ϕ)

]q
e−ihmϕ dϕ. (7)

3



J. Opt. 23 (2021) 054002 P Darvehi et al

Then, the OAM spectrum of an ℓ-charge m-order FFH beam
turns out to include only the components with indices ℓ± hm,
with h being any integer and ℓ= 2q the OAM index corres-
ponding to the background helical mode. The azimuthal phase
factor in equation (2) can be finally expressed as the following
helical mode expansion

ei2Ψ(ϕ) =
∑
h

χhe
i(2q+hmϕ) =

∑
l

cle
i lϕ, l= 2q+ hm.

(8)
The mean value of the OAM in an m-order FFH mode can be
easily calculated from equations (2) and (3),

⟨Lz⟩=− iℏ
2π

ˆ 2π

0
e−i2Ψ(ϕ) ∂

∂ϕ
ei2Ψ(ϕ)

=
ℏ
π

Ψ(ϕ)|2π0 =
ℏ
π
q ϑ(ϕ)|2π0 = 2ℏq. (9)

This result indicates that themeanOAMcarried by an ℓ-charge
FFHmode is always ℏℓ= 2ℏq per photon, independently ofm.
It is therefore coincident with theOAMper photon of the back-
ground helical mode and it is proportional to the overall topo-
logical charge of the transverse wavefront. The phase modu-
lation factor eiq ψ̄(ϕ) defined in equation (5) has a zero mean
OAM. However, the specific value of the fraction |cl|2 of the
total power of the optical field carrying an OAM proportional
to l depends on the geometric details of the generating curve
γm(a,b,n1,n2,n3) and ultimately on the specific values of the
parameters in equation (4). Uniform helical modes can be eas-
ily obtained as a special case of FFH modes when the gener-
ating curve γm degenerates into a circumference (γm → γ∞).

Phase profiles of ℓ-chargem-order FFHmodes have the fol-
lowing remarkable symmetry properties:

• for odd ℓ (half-integer q), the phase profile is invariant under
combined charge inversion and reflection across the x axis;

• for even ℓ (integer q) and even m, the phase profile is invari-
ant under combined charge inversion and reflection across
either the x or y axis;

• for even ℓ and odd m, the phase profile is again invariant
only under combined charge inversion and reflection across
the x axis.

Owing to diffraction, the rotational symmetry of the FFH
modes encapsulated in their phase modulation also affects the
intensity profile of the generated beam. In general, light intens-
ity is expected to be equally partitioned among the m equally
spaced sectors of the phase profile [45], giving rise to m-fold
rotationally invariant dark hollow beams, some examples of
which are shown in figures 10 and 11. When the azimuthal
phase modulation includes discontinuities (due to cusps in
the superformula curve γm), the intensity pattern may show
the appearance of ‘fault lines’ of vanishing intensity even in
the near field, i.e. after an infinitesimal propagation length, as
shown in figures 8 and 9.

Free space propagation obviously alters the shape of FFH
modes, but it does not influence their symmetry properties.

2.2. Modulated Poincaré beams

Awide class of inhomogeneously polarized optical beams can
be obtained by setting the two spatial modes in equation (1) to
FFH modes, i.e.

|MPB(m1,q1, ξ1;m2,q2, ξ2)⟩= cLFFH
m1
q1 (ξ1)|L⟩

+ cR e
iαFFHm2

q2 (ξ2)|R⟩, (10)

where FFHmi
qi (ξi) denotes the m-order FFH mode of topo-

logical charge 2 qi, corresponding to the set of parameters
ξi = (ai,bi,n1i,n2i,n3i). The beams are here dubbed ‘modu-
lated Poincaré beams’ (MPBs), since they can be regarded
as a generalization of ordinary Poincaré beams to the case of
nonuniform azimuthal rotation rate of the polarization ellipses.

To discuss the features of the polarization maps of such
MPBs let us consider here a couple of simpler examples. Sup-
pose e.g. that, in the transverse plane at z= 0, both modes
have the same Gaussian radial profile E0e−r2/w2

0 , but the left-
polarized mode has ℓ1 = 2q1 = 0, while the right-polarized
mode has ℓ= 1 (q2 = 1/2). When cL = cR = 1 and α= 0, the
polarization map at z= 0 (near field), for any ϕ, turns out to
be linearly polarized along the local direction of the unit vec-
tor n̂ normal to the curve γ(m2, ξ2) generating FFHm2

q2 (ξ2). In
this case, in fact, according to equation (2), the local phase
difference between |L⟩ and |R⟩ coincides with the phase factor
e−iϑ(ϕ). A possible non-vanishing global phase α leads only
to an additional uniform rotation of the polarization orient-
ation by the same angle. In propagation the field becomes
an ellipse one, while maintaining the same topology. At the
center, the beam will have a C-point with a rotational index
IC = q2 = 1/2.

As a second example, if we take m1 = m2, ξ1 = ξ2, but
q1 =−q2, the polarization at z= 0 turns out to be linearly
polarized everywhere along a local direction that forms an
angle 2ϑ(ϕ) with respect to the x axis. In this case, in the far
field the field remains a vector one, with a central V-point that
has a rotational index IV =−2q1 = 2q2.

In these examples, the geometrical properties of the gen-
erating curves directly map onto the topological properties of
the resulting beam polarization distribution. This simple rela-
tionship turns out to be very useful in tailoring the rotation
rate of the local azimuth of the polarization patterns of the
beams described by equation (10). The ability to tailor the azi-
muthal rotation rate of polarization about a singular point, as
mentioned above, has great potential for both fundamental and
application purposes.

3. Generation of MPBs through free form azimuthal
SVAPs

The operation principle of SVAP devices has already been
described elsewhere [44, 49–51]. In particular, the optical
effect of a generic free-form azimuthal SVAP can be described
by the operator Q̂(q,m, ξ) acting on the local polarization state
of the field, defined as

4
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Figure 3. Phase profiles of starfish and water primrose FFH modes: (a) background phase profile 2ϕ (q= 1); (b) starfish phase modulation
ψ̄5(ϕ) generated from γ5(a= b,n1 = 1/2,n2 = n3 = 4/3); (c) total starfish phase 2Ψ5(ϕ) = ψ̄5(ϕ)+ 2ϕ; (d) background phase profile
ϕ (q= 1/2); (e) primrose phase modulation ψ̄6(ϕ) generated from γ6(a= b,n1 = 2/3,n2 = n3 = 2.3); (f) total primrose phase
2Ψ6(ϕ) = ψ̄6(ϕ)+ϕ.

Q̂(q,m, ξ) = cos
δ

2
(|L⟩⟨L|+ |R⟩⟨R|)

+ i sin
δ

2

(
ei 2Ψ(ϕ;q,m,ξ)|R⟩⟨L|

+ e−i 2Ψ(ϕ;q,m,ξ)|L⟩⟨R|
)
, (11)

in which the Pancharatnam–Berry phase factor ei 2Ψ(ϕ;q,m,ξ) is
defined by equations (2)–(5) and δ is the birefringent phase
retardation of the device, allowing its tunability.

Our LC SVAPs have been fabricated by adopting a ‘direct-
write approach’ to pattern the LC anchoring to the ITO-coated
glass walls of the cell. Electrical control of the retardation δ—
or electrical tunability—and non-diffractive operation are just
some of the main advantages of this technology.

Let us consider two specific operation modes of these
devices. In the first case, the SVAP retardation is set to δ=π/2
(quarter-waveplate operation) and the input light is a circularly
polarized Gaussian beam. In this case, if the input polarization
is left circular, the SVAP output is an MPB with q1 = 0, q2 =
q,m2 = m, ξ2 = ξ and cR/cL = 1. The global phase is α=π/2.
In the near field, the resulting MPB then has a linear polariz-
ation map just point-by-point coincident with the SVAP optic
axis distribution (except for a π/2 rotation due to the global
phase), with a central C-point of index IC= q, as discussed
in the previous section. Similar behavior is obtained with an
input right-circular polarization. A further possible variant of
the obtained polarization map can then be obtained by letting
the MPB pass through a half-waveplate, thus exchanging left
and right circular components.

In the second operation mode, the SVAP retardation is set
to δ=π (half-waveplate operation) and the input polariza-
tion is linear. In this case the SVAP generates an MPB with

−q1 = q2 = q,m1 = m2 = m and ξ1 = ξ2 = ξ, leading to a vec-
tor field with a central V-point with IV = 2q. The MPB vector
field is of course also dependent on the input linear polariz-
ation orientation, which introduces a further local rotation of
the polarization by a uniform angle.

We shall see in the following specific examples of these
various operating modes for specific examples of SVAP
geometries.

4. Topological diversity of MPBs

To provide the readers with a glimpse of the wide variety
of possible MPBs that can be generated by SVAP devices,
here we analyze in detail two SVAP geometries, differing
in their charge q, order parity (−1)m and azimuthal modu-
lation strength as determined by the choice of parameters ξ.
The modulation strength is in turn determined by the local
curvature of the generating curve γm(a= b), as fixed by the
parameters n1 and n2 = n3 in equation (4).

4.1. Selection and generation of scalar FFHm
q modes via

SVAPs

We consider theMPBs generated by either the ‘starfish’ modes
FFH5

±1(a= b,n1 = 1/2,n2 = n3 = 4/3) or the ‘water prim-
rose’ modes FFH6

±1/2(a= b,n1 = 2/3,n2 = n3 = 2.3). The
starfish and primrose phase profiles are shown in figures 3(c)
and (f). Each profile has been represented as the sum of the
corresponding background helical phase (figures 3(a) and (d))
and modulation contribution (figures 3(b) and (e)).

The resulting azimuthal wavefronts at z= 0 (see
equation (5)) are sketched in figures 1(b) and 2(b),
respectively.
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Figure 4. OAM power spectra for starfish (a) and primrose (b) FFH modes.

Figure 5. Experimental observation of the optic axis distribution of the starfish SVAP (q= 1, a= b, m= 5, n1 = 1/2, n2 = n3 = 4/3):
(a) optics axis pattern; (b) the phase profile imparted by the SVAP to an input beam; (c) a microscope image of the SVAP between crossed
polarizers; (d) a microscope image of the SVAP between crossed polarizers+ and a birefringent compensator plate at 45◦. This image
unveils the optic axis pattern underlying the SVAP (a). The image has been recorded by illuminating the sample with white light,
sandwiched between crossed polarizers, and inserting, between the sample and the analyzer, a birefringent λ-compensator (λ= 550 nm),
with the optic axis rotated by 45◦. The arrows in the lower left corner sketch the axes orientations of the input linear polarizer (black arrow),
the output analyzer (red arrow) and the λ-compensator (blue arrow) [45].

Figure 4 shows the OAM power spectrum |cl|2 for FFH5
1

(figure 4(a)) and FFH6
1/2 (figure 4(b)). In classical optics,

the quantity |cl|2 is the fraction of the total power of the
optical field component carrying an OAM proportional to l.
In quantum optics, it is the probability that a photon in the
beam carries an OAM of ℏl. The actual values of |cl|2 have
been determined numerically.

Comparing the wavefronts in figures 1(b) and 2(b), we
clearly see that the primrose modulation is weaker than the
starfish’s. This is consistent with the fact that the starfish OAM
spectrum (centered around ℓ=−3) is broader than the prim-
rose one (centered around ℓ= 1). This is mainly due to the
value of the indices n2 = n3 = 2.3 characterizing the prim-
rose beam profile, which is close to the critical value n2 =
n3 = 2 corresponding to having a uniform profile with no
modulation.

In figures 5(a) and 6(a), we show the optic axis patterns of
the SVAPs used for generating starfish and primrose modes,
respectively. Figure 5(c) shows a microscope image of the
starfish SVAP between crossed polarizers, while figure 5(d)
displays a similar microscope image obtained with a birefrin-
gent λ-compensator inserted between the SVAP and the ana-
lyzer. The λ-compensator has a path difference of 550 nm
and therefore introduces a π retardation at that wavelength.
The fast axis forms a 45◦ angle to the axis of the analyzer.
When the compensator is put in, the sample changes its color
depending on its orientation. The changes in color are based
on optical interference. This method fully unveils the optic
axis pattern underlying the SVAP (figure 5(a)), because, unlike
the simple crossed-polarizers method, it enables one to distin-
guish between orthogonal orientations of the optic axis. Sim-
ilar remarks apply to figure 6.
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Figure 6. Experimental observation of the optic axis distribution of the water primrose SVAP (q= 1/2, a= b, m= 6, n1 = 2/3,
n2 = n3 = 2.3): (a) optics axis pattern; (b) the phase profile imparted by the SVAP to an input beam; (c) a microscope image of the SVAP
between crossed polarizers; (d) a microscope image of the SVAP between crossed polarizers+ and a birefringent compensator plate at 45◦.
This image unveils the optic axis pattern underlying the SVAP (a). The image has been recorded by illuminating the sample with white light,
sandwiched between crossed polarizers, and inserting, between the sample and the analyzer, a birefringent λ-compensator (λ= 550 nm),
with the optic axis rotated by 45◦. The arrows in the lower left corner sketch the axes orientations of the input linear polarizer (black arrow),
the output analyzer (red arrow) and the λ-compensator (blue arrow) [45].

Figure 7. The experimental setup for spatially-resolved polarimetric measurements. A telescope including the lenses L1 and L2 expands the
light beam from a He–Ne laser source (λ= 632.8 nm, maximum power output Po= 5 mW, beam waist w0 = 0.5 mm). The linear polarizer
P1 and the QWP1 are used to make the input polarization circular. The latter is replaced with a half-waveplate HWP1 when the input
polarization is linear horizontal or vertical. A pair of half-waveplates, HWP2 and HWP3, have been inserted to precisely set the phase angle
α= 0 in equation (1). A half-waveplate HWP4 is used for swapping left-/right-handed circular polarized output states, when needed. The
SVAP, the lenses L3 and L4, and the CCD camera are positioned in the 4f configuration for near-field measurements. A single lens is
adopted for far-field measurements. The half-waveplate HWP3, the quarter-waveplate QWP2 and the linear polarizer P2 are used to measure
the local Stokes parameters over the wavefront.

4.2. MPBs and polarization singularities

Exploitation of the starfish and primrose SVAPs, exotic MPBs
and corresponding polarization singularities can be realized.
As mentioned, V-points are generated by setting the SVAP
retardation to δ=π (half-waveplate operation mode) and
using a linearly polarized Gaussian input beam. Similarly,
C-points are generated by setting the SVAP retardation to

δ=π/2 (quarter-waveplate operation mode), using a circu-
larly polarized input and, when required, swapping the output
handedness with an output half-waveplate.

The various resulting polarization patterns have been exper-
imentally generated and observed using the optical setup
sketched in figure 7. Polarization patterns have been observed
both in the near field (figure 8 for starfish MPBs and figure 9
for primrose MPBs) and in the far field (figure 10 for

7
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Figure 8. Near-field polarization patterns and transverse intensity distribution of starfish Poincaré beams. Theoretical predictions and
experimental results for different retardation values δ and different input polarization states |p0⟩. For each configuration, the
presence/absence of HWP4 is specified with the label Y/N, respectively. Axial V-points occur in the 1st and 2nd rows (a), (e) and (b), (f),
corresponding to predominantly radial and azimuthal patterns, respectively. Axial C-points occur in the 3rd and 4th rows (c), (g) and (d),
(h), corresponding to lemon-like and star-like patterns, respectively.

starfish MPBs and figure 11 for primrose MPBs). Experi-
mental findings quite satisfactorily match the theoretical pre-
dictions, shown aside for comparison purposes. Specifically,
the agreement between the experimental polarization pattern
in figure 10(h) and the theoretical prediction in figure 10(d)
is very satisfactory over the bright central spot of the far-
field beam transverse cross section, but it is less good in the
surrounding region. We ascribe this to the low experimental

signal-to-noise ratio in the outer region of the image. Generally
speaking, discrepancies between theoretical and experimental
profiles are ascribed to residual asymmetries in the fabricated
SVAPs and to the limited accuracy in the central singularity
manufacturing.

Near-field observations confirm that an SVAP operated as
a quarter-waveplate imparts to a circularly polarized input
beam an inhomogeneous polarization pattern replicating its

8
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Figure 9. Near-field polarization patterns and transverse intensity distribution of primrose Poincaré beams. Theoretical predictions and
experimental results for different retardation values δ and different input polarization states |p0⟩. For each configuration, the
presence/absence of HWP4 is specified with the label Y/N, respectively. Axial V-points occur in the 1st and 2nd rows (a), (e) and (b), (f),
corresponding to predominantly radial and azimuthal patterns, respectively. Axial C-points occur in the 3rd and 4th rows (c), (g) and (d),
(h), corresponding to lemon-like and star-like patterns, respectively.

axis distribution: compare figures 8(c) and (g) with figure 5(a)
and figures 9(c) and (g) with figure 6(a). Far-field observa-
tions support the conclusion that the primrose modulation is
weak, since the several polarization patterns observed return
the radial, azimuthal, lemon and star configurations typical
of Poincaré beams generated using uniform helical modes
with ℓ= 1. Poincaré beams generated using starfish modes, in

contrast, significantly deviate from their uniform counterparts
with ℓ= 2.

In particular, in the latter case, ‘fault’ radial lines of sharply
reduced intensity appear in the optical field, owing to the
presence of discontinuities in the azimuthal phase of the
FFH modes (cusps in the superformula). Such lines already
arise in the scalar wavefront, independently of polarization

9
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Figure 10. Far-field polarization patterns and transverse intensity distribution of starfish Poincaré beams. Theoretical predictions and
experimental results for different retardation values δ and different input polarization states |p0⟩. For each configuration, the
presence/absence of HWP4 is specified with the label Y/N, respectively. Axial V-points occur in the 1st and 2nd rows (a), (e) and (b), (f),
corresponding to predominantly radial and azimuthal patterns, respectively. Axial C-points occur in the 3rd and 4th rows (c), (g) and
(d), (h), corresponding to lemon-like and star-like patterns, respectively.
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Figure 11. Far-field polarization patterns and transverse intensity distribution of primrose Poincaré beams. Theoretical predictions and
experimental results for different retardation values δ and different input polarization states |p0⟩. For each configuration, the
presence/absence of HWP4 is specified with the label Y/N, respectively. Axial V-points occur in the 1st and 2nd rows (a), (e) and (b), (f),
corresponding to radial and azimuthal patterns, respectively. Axial C-points occur in the 3rd and 4th rows (c), (g) and (d), (h), corresponding
to lemon and star patterns, respectively.
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inhomogeneities, and consequently they are deeply different
in nature from the L-lines commonly observed in polarization
patterns. These intensity fault lines turn out to be more or less
pronounced according to the strength of the phase modulation
and are preserved, although smoothed out, on free space
propagation.

5. Conclusions

We have introduced a wide class of inhomogeneously polar-
ized optical beams obtained as inseparable superpositions of
left/right-handed circular polarization states and FFH modes.
Such beams, dubbed MPBs, are obtained by combining an
azimuthal phase modulation with a uniform helical one. The
phase modulation is selected on the grounds of a geometric
approach enabling one to transfer geometric properties of a
closed plane curve to the azimuthal phase of a paraxial light
beam. Specifically, the rate of change of the curvature is trans-
lated into the azimuthal rate of change of the optical phase.
Experimental generation of such beams can be advantage-
ously, although not exclusively, achieved by using electrically-
tunable spatially varying axis retardation waveplates based on
LCs. Such SVAPs have the remarkable property of translat-
ing their optic axis pattern into polarization distribution when
operated as quarter-waveplates with an input circularly polar-
ized beam.

As examples of such beams, we have generated and char-
acterized intensity distributions and polarization singularities
of two distinct groups of MPBs, which differ in topological
charge, rotational symmetry and strength of phase modulation.
We think that MPBs can be of help in exploring and mastering
a wider class of polarization singularities potentially relevant
in both fundamental and applied optics. MPBs can certainly be
used as a more flexible option to ordinary Poincaré beams in
all their currently investigated applications. In particular, they
could find applications in the optical manipulation of micro-
particles, such as in the control of polarotactic natural or arti-
ficial microswimmers [13].
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