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Gravitational waves are considered as metric perturbations about a curved background
metric, rather than the flat Minkowski metric since several situations of physical inter-
est can be discussed by this generalization. In this case, when the de Donder gauge is
imposed, its preservation under infinitesimal spacetime diffeomorphisms is guaranteed
if and only if the associated covector is ruled by a second-order hyperbolic operator
which is the classical counterpart of the ghost operator in quantum gravity. In such a
wave equation, the Ricci term has opposite sign with respect to the wave equation for
Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate the solutions
of the two problems, and the algorithm is applied to the case when the curved back-
ground geometry is the de Sitter spacetime. Such vector wave equations are studied in
two different ways: (i) an integral representation, (ii) through a solution by factoriza-
tion of the hyperbolic equation. The latter method is extended to the wave equation
of metric perturbations in the de Sitter spacetime. This approach is a step towards a
general discussion of gravitational waves in the de Sitter spacetime and might assume
relevance in cosmology in order to study the stochastic background emerging from
inflation.

Keywords: General relativity; gravitational waves; hyperbolic equations; Green func-
tions; world function; de Sitter spacetime.
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1. Introduction

One of the longstanding problems of modern gravitational physics is the detection
of gravitational waves, for which the standard theoretical analysis relies upon the
split of the space-time metric gab into “background plus perturbations”, i.e.

gab = γab + hab, (1)

where γab is the background Lorentzian metric, often taken to be of the Minkowski
form ηab, while the symmetric tensor field hab describes perturbations about γab.
However, the background γab needs not to be Minkowskian in several cases of phys-
ical interest, nor it has to be always a solution of the vacuum Einstein equations. As
a consequence, we are therefore aiming to investigate in more detail what happens
if the background space-time (M,γab) has a non-vanishing Riemann curvature.

This issue has to be seriously considered from an experimental point of view
since the gravitational wave detectors of new generation are designed also to inves-
tigate strong-field regimes: this means that the physical situations, where only the
standard Minkowski background is taken into account, could be misleading in order
to achieve self-consistent results.

In particular, several ground-based laser interferometers have been built in the
United States (LIGO) [1], Europe (VIRGO and GEO) [2,3], and Japan (TAMA) [4]
and are now in the data taking phase for frequency ranges about 10−1kHz. How-
ever, new advanced optical configurations allow to reach sensitivities slightly above
and below the standard quantum limit for free test-particles, hence we are now
approaching the epoch of second [5] and third [6] generation of gravitational wave
detectors. This fact, in principle, allows to investigate wide ranges of frequencies
where strong field regimes or alternative theories of gravity can be considered [7–9].
Besides, the laser interferometer space antenna (LISA) [10] (which is mainly devoted
to work in the range 10−4 ∼ 10−2Hz) should fly within the next decade principally
aimed at investigating the stochastic background of gravitational waves. At much
lower frequencies (10−17Hz), cosmic microwave background (CMB) probes, like
the forthcoming PLANCK satellite, are designed to detect also gravitational waves
by measuring the CMB polarization [11] while millisecond pulsar timing can set
interesting upper limits in the frequency range between 10−9 ∼ 10−8Hz [12]. At
these frequencies, the large number of millisecond pulsars detectable by the square
kilometer array would provide a natural ensemble of clocks which can be used as
multiple arms of a gravitational wave detector [13].

This forthcoming experimental situation is intriguing but deserves a serious
theoretical analysis which cannot leave aside the rigorous investigation of strong-
field regimes and the possibility that further polarization states of gravitational
waves could come out in such regimes. For example, if one takes into account scalar-
tensor theories of gravity [7] or higher-order theories [8], scalar-massive gravitons
should be considered. This implies that the standard approach where gravitational
waves are assumed as small perturbations (coming only from Einstein’s general
relativity) on a Minkowski background could be totally insufficient. On the other
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hand, the existence of these further polarization modes could be a straightforward
solution of the dark matter problem since massive gravitons could be testable cold
dark matter candidates as discussed in [14, 15].

In this paper, we want to face the issue of the rigorous formulation of gravi-
tational wave problem in curved backgrounds. In particular, we want to perform
a consistency analysis of gravitational waves in the de Sitter spacetime. Achieving
solutions in this maximally symmetric background could constitute the paradigm
to investigate any curved spacetime by the same techniques and could have interest-
ing cosmological applications if a conformal analysis is undertaken as, for example
in [9], where it is shown how the amplitude of cosmological gravitational waves
strictly depends on the cosmological background.

It is straightforward to show that, in a covariant formulation, the supplementary
condition for gravitational waves can be described by a functional Φa acting on
the space of symmetric rank-two tensors hab occurring in Eq. (1). For any choice
of Φa, one gets a different realization of the invertible operator P cd

ab on metric
perturbations. The basic equations of the theory read therefore as

P cd
ab hcd = 0, (2)

Φa(h) = 0, (3)

where P cd
ab results from the expansion of the action functional to quadratic order in

the metric perturbations. A deep link exists between classical and quantum theory,
since in the latter, the one-loop analysis depends on the functional determinant of
P cd

ab , after requiring that all metrics in Eq. (1) are positive-definite, i.e. Rieman-
nian. Our analysis will instead be Lorentzian and classical.

The layout of the paper is the following. Section 2 studies the de Donder choice
for Φa and its preservation, while Secs. 3 and 4 deal with massless Green functions
in de Sitter spacetime. This is done because the problem of preserving Eq. (3) under
infinitesimal diffeomorphisms leads precisely to vector wave equations. These are
solved by an integral representation or by separation of variables. This analysis
prepares the ground for studying the wave equation on metric perturbations itself
through separation of variables, in Sec. 6. Concluding remarks and open problems
are presented in Sec. 7, while relevant details are given in the Appendix.

2. Preservation of the de Donder Supplementary Condition

Our first concern is how to implement in a consistent way the choice of supple-
mentary condition. In general relativity, this is taken to be of the de Donder type
(below h ≡ γcdhcd)

Φa(h) = ∇b

(
hab − 1

2
γabh

)
, (4)

if one wants to obtain the standard covariant wave operator on metric perturbations,
where ∇b denotes covariant derivative with respect to the background metric γab.
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Under infinitesimal space-time diffeomorphisms, the metric perturbations suffer the
variation (the round brackets denoting symmetrization)

δhab = ∇(a ϕb), (5)

where ϕb is a covector, with associated one-form ϕbdx
b and vector field ϕa ∂

∂xa

(having set ϕa ≡ γabϕb, which results from the isomorphism between tangent and
cotangent space to the background space-time, that turns covectors into vectors, or
the other way around). The change suffered from the de Donder gauge in (4) when
metric perturbations are varied according to (5) is then found to be

δΦa(h) = − (
δ b
a +R b

a

)
ϕb, (6)

where is the standard d’Alembert operator in curved space-time, i.e. ≡
γcd∇c∇d. By virtue of Eqs. (4) and (6), if the de Donder gauge was originally
satisfied, it is preserved under space-time diffeomorphisms if and only if ϕb solves
the equation δΦa(h) = 0. At this stage, to fully exploit what is known about the
wave equation for Maxwell theory in curved space-time in the Lorenz gaugea we
bear in mind that this reads as(−δ b

a +R b
a

)
Ab = 0. (7)

This suggests adding R b
a ϕb to both sides of δΦa(h) = 0 (see (6)), so as to cast it

eventually in the form

P b
a ϕb = 2R b

a ϕb, (8)

where

P b
a ≡ −δ b

a +R b
a (9)

is the standard gauge-field operator (see round brackets in Eq. (7)) in the Lorenz
gauge. For this operator, the inverse P̃ b

a is an integral operator with kernel given
by the photon Green function, so that we can solve Eq. (8) in the form

ϕc = ϕ(0)
c + 2P̃ a

c R b
a ϕb, (10)

where ϕ(0)
c is a solution of the homogeneous wave equation [17]

P b
a ϕ

(0)
b = 0, (11)

while P̃ a
c is the inverse operator, satisfying

P̃ a
c P b

a = δ b
c . (12)

aIn [16], the author L. Lorenz, who was studying the identity of the vibrations of light with
electrical currents, built a set of retarded potentials for electrodynamics which, with hindsight,
can be said to satisfy the gauge condition ∇µAµ = 0, which therefore should not be ascribed to
H. Lorentz.
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This P̃ a
c is an integral operator with kernel given by the massless spin-1 Green

function Gab(x, x′) ≡ Gab′ . The latter can be chosen, for example, to be of the
Feynman type, i.e. that solution of the equation (see Appendix for the notation)(−δ b

a +R b
a

)
Gbc′ = gac′

δ(x, x′)√−γ , (13)

having the asymptotic expansion as σ → 0 [18, 19]

Gab′ ∼ i
8π2

[√
� gab′

(σ + iε)
+ Vab′ log(σ + iε) +Wab′

]
, (14)

where σ(x, x′) is the Ruse–Synge world function [20–22], equal to half the square
of the geodesic distance µ between the points x and x′.

3. Massless Green Functions in de Sitter Spacetime

This general scheme can be completely implemented in the relevant case [23] of de
Sitter space where, relying upon the work in [24], we know that the massless spin-1
Green function reads as

Gab′ = α(µ)gab′ + β(µ)nanb′ , (15)

where µ(x, x′) ≡ √
2σ(x, x′) is the geodesic distance between x and x′, na(x, x′) and

na′
(x, x′) are the unit tangents to the geodesic at x and x′, respectively, for which

na(x, x′) = ∇aµ(x, x′), na′(x, x′) = ∇a′µ(x, x′), (16)

while, in terms of the variable

z ≡ 1
2

(
1 + cos

µ

ρ

)
, (17)

the coefficient functions α and β are given, in four dimensions, by [24]

α(z) =
1

48π2ρ2

[
3

(1 − z)
+

1
z

+
(

2
z

+
1
z2

)
log(1 − z)

]
, (18)

β(z) =
1

24π2ρ2

[
1 − 1

z
+

(
1
z
− 1
z2

)
log(1 − z)

]
. (19)

Strictly speaking, the formulae (18)–(19) are first derived in the Euclidean de Sitter
space. In the Lorentzian de Sitter spacetime M which is what we are interested in,
one can define the set [24]

Jx ≡ {x′ ∈M : ∃ geodesic from x to x′} . (20)

Moreover, it is well-known that M can be viewed as an hyperboloid imbedded in
flat space, i.e. as the set of points Y a ∈ Rn+1 such that

Y aY bηab = ρ2, (21)
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where ηab = diag(−1, 1, . . . , 1), so that its induced metric reads as

ds2 = ηabdY
adY b. (22)

As is stressed in [24], the relation

z(x, x′) =
1
2

[
1 +

ηabY
a(x)Y b(x′)
ρ2

]
(23)

is well defined both inside and outside Jx, and it is an analytic function of the
coordinates Y a. Thus, Eq. (23) makes it possible to define z(x, x′) everywhere on
de Sitter, and one can define the geodesic distance

µ(x, x′) ≡ 2ρ cos−1(
√
z) (24)

as the limiting value [24] above the standard branch cut of cos−1. Along similar
lines, the equations defining na, na′ and gab′ have right-hand sides which are ana-
lytic functions of the coordinates Y a, and are hence well defined everywhere on
Lorentzian de Sitter spacetime [24].

4. Evaluation of the Kernel

In a de Sitter background the Ricci tensor is proportional to the metric through
the cosmological constant: Rab = Λgab, and hence the formulae (10), (15), (18) and
(19) lead to the following explicit expression for the solution of the inhomogeneous
wave equation (8):

ϕc(x) = ϕ(0)
c (x) + 2Λ

∫
[α(z(µ(x, x′)))g a′

c + β(z(µ(x, x′)))ncn
a′

]

×ϕa′(x′)
√

−γ(x′)d4x′, (25)

where, from Eq. (24),

µ(x, x′) = 2ρ cos−1

√
1
2

(
1 +

ηabY a(x)Y b(x′)
ρ2

)
, (26)

while Eqs. (18) and (19) should be exploited to express α and β, bearing in mind
Eq. (26) jointly with

z(x, x′) =
1
2

[
1 + cos

(
µ(x, x′)

ρ

)]
. (27)

Moreover, the bivector g a′
c in the integrand (25) is given by [24]

g b′
a = C−1(µ)∇an

b′ − nan
b′ , C(µ) = − 1

ρ sin(µ/ρ)
. (28)

The right-hand side of the formula expressing g b′
a is an analytic function of the

coordinates Y a and is therefore well defined everywhere on de Sitter [24]. The
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integral on the right-hand side of Eq. (25) can be conveniently expressed the form

fc(x) =
∫

[α(z)C−1(µ)∇c∇a′
µ+ (β(z) − α(z))(∇cµ)(∇a′

µ)]

×ϕa′(x′)
√
−γ(x′)d4x′, (29)

with α and β − α given by (cf. (18) and (19))

α(z) =
(1 + 2z)
48π2ρ2

[
1

z(1 − z)
+

1
z2

log(1 − z)
]
, (30)

β(z) − α(z) =
1

48π2ρ2

[
(−3 + 2z − 2z2)

z(1 − z)
− 3
z2

log(1 − z)
]
. (31)

Equation (25) is therefore an integral equation reading as

ϕc(x) = ϕ(0)
c (x) + Λ

∫
K a′

c ϕa′
√
−γ(x′)d4x′, (32)

with unbounded kernel given by

K a′
c ≡ 2

[
α(z)C−1(µ)∇c∇a′

µ+ (β(z) − α(z))(∇cµ)(∇a′
µ)

]
. (33)

This kernel is indeed unbounded by virtue of the limits

48π2ρ2 lim
z→0

zα(z) =
1
2
, (34)

48π2ρ2 lim
z→1

(1 − z)α(z) = 1, (35)

48π2ρ2 lim
z→0

z(β(z) − α(z)) = −3
2
, (36)

48π2ρ2 lim
z→1

(1 − z)(β(z) − α(z)) = −3. (37)

At this stage, we can exploit (23) and (33) to re-express the kernel in the form

K a′
c =

(∇cz)(∇a′
z)

24π2ρ4(1 − z)

[
2 +

(
−3 +

√
z

2
(1 + 2z)

)(
1

z(1 − z)
+

1
z2

log(1 − z)
)]

+
(∇c∇a′

z)
6π2

√
z(1 + 2z)

[
1

z(1 − z)
+

1
z2

log(1 − z)
]
. (38)

Note now that ϕ(0)
c (x) in Eq. (32), being a solution of the homogeneous vector wave

equation (11), admits the Huygens’ principle representation [18]

ϕ(0)
c (x) =

∫
Σ′

√
−γ(x′)

[
Gcb′ϕ

(0)b′

;m′ −Gcb′;m′ϕ(0)b′
]
gm′l′dΣ

′
l′ , (39)

where, from Sec. 3 and the present section,

Gcb′ = αgcb′ + βµ;cµ;b′ =
1
2
Kcb′ , (40)

Gcb′;m′ =
1
2
Kcb′;m′ . (41)
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Unlike the work in [18], we here advocate the use of the Green function (15) rather
than the sum, over all distinct geodesics between x and x′, of the Hadamard func-
tions. To lowest order in the cosmological constant Λ, Eq. (39) may be used to
approximate the desired solution of Eq. (32) in the form

ϕc(x) = ϕ(0)
c (x) + Λ

∫
K a′

c ϕ
(0)
a′

√
−γ(x′)d4x′ + O(Λ2). (42)

Omitting indices for simplicity, the general algorithm for solving Eq. (32), here
re-written in the form

ϕ = ϕ(0) + Λ
∫
Kϕ, (43)

would be instead

ϕ1 = ϕ(0) + Λ
∫
Kϕ(0), (44)

ϕ2 = ϕ(0) + Λ
∫
Kϕ1 = ϕ(0) + Λ

∫
Kϕ(0) + Λ2

∫∫
KKϕ(0), (45)

ϕn = ϕ(0) +
n∑

j=1

Λj

∫
· · ·

∫
Kjϕ(0), (46)

ϕ = lim
n→∞ϕn. (47)

5. Separation of Variables for the Vector Wave Equations

Consider now the de Sitter metric in standard spherical coordinates

ds2 = −fdt2 +
1
f
dr2 + r2(dθ2 + sin2 θdφ2), (48)

where f ≡ 1−H2r2 and H is the Hubble constant. This metric satisfies the vacuum
Einstein equations with nonvanishing cosmological constant Λ such that H2 = Λ

3 .
Moreover, the timelike unit normal vector fields n to the t = constant hypersurfaces

n =
∂

∂t
(49)

form a geodesic and irrotational congruence. The 3-metric induced on the t =
constant hypersurfaces turns out to be conformally flat, and the (1, 1) form of the
spacetime Ricci tensor is simply given by

R b
a = −3H2δ b

a . (50)

From the previous sections it is clear we are interested in the generalized wave
equation

− Xa + εR b
aXb =

(
− + ε

R

4

)
Xa = 0, (51)

where ε ≡ ±1. By virtue of the spherical symmetry of de Sitter spacetime these
equations should be conveniently written by using the expansion of X in vector
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harmonics [25–27]. Following Zerilli [28] we have

X = Y (θ)e−i(ωt−mφ)[f0(r)dt + f1(r)dr]

+ e−i(ωt−mφ)

[
− mr

sin θ
f2(r)Y (θ) + f3(r)

dY

dθ

]
dθ

+ ie−i(ωt−mφ)

[
−r sin θf2(r)

dY

dθ
+mf3(r)Y (θ)

]
dφ, (52)

with Y (θ) solution of the spherical harmonics equation[
d2

dθ2
+ cot θ

d

dθ
+

(
− m2

sin2 θ
+ L

)]
Y = 0, (53)

with L ≡ l(l+ 1). These equations lead to a system of coupled ordinary differential
equations for the functions f0, f1, f3, besides a decoupled equation for f2 (f2 being
related to the transverse part of X). Indeed, for l 	= 0, 1 (the latter case being
trivial), we have

d2f0
dr2

= −2
r

df0
dr

− 1
r2f2

[ω2r2 − Lf − 3f(1 − f)(1 − ε)]f0 +
2iω(f − 1)

rf
f1, (54)

d2f1
dr2

=
2(2 − 3f)

rf

df1
dr

− 1
r2f2

[ω2r2 − Lf − 3f(1 − f)(ε+ 1)]f1

− 2iω(1 − f)
rf3

f0 − 2L
r3f

f3, (55)

d2f2
dr2

=
2(1 − 2f)

rf

df2
dr

− 1
r2f2

[ω2r2 − Lf + f(1 − f)(1 − 3ε)]f2, (56)

d2f3
dr2

=
2(1 − f)
rf

df3
dr

− 1
r2f2

[ω2r2 − Lf + 3f(1 − f)(1 − ε)]f3 − 2
r
f1. (57)

Equation (56) for f2(r) can be easily integrated in terms of hypergeometric func-
tions. In fact, assuming

f2(r) = f−iω/(2H)ψ(r), (58)

the resulting equation for ψ reads as

d2ψ

dr2
= − 2i

rf
(2iH2r2 − i+ ωHr2)

dψ

dr

− 1
r2f2

[ω2r2 − L+ (1 − 3ε)H2r2 + 3iωHr2], (59)

the solution of which is, in general, of the form

ψ(r) = C1r
l
2F1

(
a−, a+,

3
2

+ l, H2r2
)

+C2r
−1−l

2F1

(
a+, a−,

1
2
− l, H2r2

)
, (60)
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where we have defined

a± ≡ −1
4

[
2iω
H

− 3 − 2l ± (13 − 12ε)1/2

]
. (61)

Thus, when ε = 1, which corresponds to studying the vector wave equation (7), one
finds

a± = −1
4

(
2iω
H

− 3 − 2l± 1
)
, (62)

whereas on taking ε = −1, i.e. our consistency Eq. (8), one gets

a± = −1
4

(
2iω
H

− 3 − 2l± 5
)
. (63)

The Lorenz gauge condition ∇αX
α = 0, which only supplements Eq. (7), reduces

instead to

f3 =
r2f

L

df1
dr

− 2r(1 − 2f)
L

f1 +
ωr2i

Lf
f0. (64)

The latter condition can be used, in principle, to obtain closed-form solutions of
the various f0(r), f1(r), f3(r).

6. Wave Equation for Metric Perturbations

Although the vector wave equations in de Sitter spacetime are already considerably
involved, the final step consists in studying the invertible wave operator P cd

ab on
metric perturbations. On considering the DeWitt supermetric

Eabcd ≡ γa(c γd)b − 1
2
γabγcd, (65)

the de Donder gauge in Eq. (4) can be re-expressed in the form

Φa(h) = E bcd
a ∇bhcd, (66)

and the resulting Lichnerowicz operator [29], [30] on metric perturbations, obtained
by expansion of the Einstein–Hilbert action to quadratic order in hab, subject to
Φa(h) = 0, reads as [31]

P cd
ab ≡ E cd

ab (− +R) − 2E lf
ab Rc

lhfγ
dh − E ld

ab R c
l − E cl

ab R d
l . (67)

A wave equation for metric perturbations is therefore given by (see the
Introduction)

Pab
cdhcd = 0, (68)
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where [31]

Pab
cd = Eab

cd(− +R) − 2Eab
lfRc

lhfγ
dh − Eab

ldRl
c − Eab

clRl
d

= Eab
cd(− +R) − 2Eab

lfRml
dnγmcγnf − R

4
Eab

cd − R

4
Eab

cd

= Eab
cd(− +R) − R

6
Eab

lfδdn
mlγ

mcγnf − R

2
Eab

cd

= Eab
cd

(
− +

1
2
R

)
− R

6
Eab

lfδdn
mlγ

mcγnf

= Eab
cd

(
− +

1
2
R

)
+
R

6
Eab

cd +
R

6
γabγ

cd

= Eab
cd

(
− +

2
3
R

)
+
R

6
γabγ

cd. (69)

The wave equation then becomes

0 = Pab
cdhcd =

(
− +

2
3
R

)
h̄ab +

R

6
γabh, (70)

or (
− +

2
3
R

)
h̄ab − R

6
γabh̄ = 0, (71)

implying also (
− +

2
3
R

)
h̄− 2

3
Rh̄ = 0, (72)

that is

h̄ = 0, (73)

after contraction with γab.

6.1. Even metric perturbations

Metric perturbations of even parity can be written in the form

h00 = fe−i(ωt−mφ)H0(r)Y (θ),

h01 = e−i(ωt−mφ)H1(r)Y (θ),

h02 = e−i(ωt−mφ)h0(r)
dY

dθ
,

h03 = ime−i(ωt−mφ)h0(r)Y (θ),
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h11 =
1
f
e−i(ωt−mφ)H2(r)Y (θ),

h12 = e−i(ωt−mφ)h1(r)
dY

dθ
,

h13 = ime−i(ωt−mφ)h1(r)Y (θ),

h22 = r2e−i(ωt−mφ)

[
K(r)Y (θ) +G(r)

d2Y

dθ2

]
,

h23 = imr2G(r)e−i(ωt−mφ)

[
dY

dθ
− cot θY (θ)

]
,

h33 = r2e−i(ωt−mφ)

{
K(r) sin2 θY (θ) + G(r)

[
−m2Y (θ) + sin θ cos θ

dY

dθ

]}
.

(74)

The wave equation (68) leads to the following system of coupled differential
equations:

d2H0

dr2
=

2
rf

(2 − 3f)
dH0

dr
− 1
r2f2

[ω2r2 + 2(1 − f)(1 − 4f) − fL]H0

+
2H2r

f

dH2

dr
− 4H2r

f

dK

dr
+

2H2rL

f

dG

dr

+
2H2L

f
G− 4H2L

rf
h1 − 2H2(1 − 6f)

f
H2 − 4H2

f
K,

d2H1

dr2
=

2
rf

(1 − 2f)
dH1

dr
− 1
r2f2

[ω2r2 − Lf − 2(2 − f2)]H1

− 2L
fr3

h0 − 2iωrH2

f2
(H2 +H0),

d2H2

dr2
=

2(2 − 3f)
rf

dH2

dr
− 1
r2f2

[ω2r2 − Lf − 10 + 6f + 12(1 − f)2]H2

+
2H2r

f

dH0

dr
− 4H2r

f

dK

dr
+

2rLH2

f

dG

dr

+
2L(3 − 2f)

r2f
G− 4L

r3f
h1 − 4(3 − 2f)

r2f
K − 2H2(1 − 2f)

f2
H0,

d2h0

dr2
= − 1

r2f2
[ω2r2 − Lf − 4f(1 − f)]h0 − 2iωrH2

f
h1 − 2

r
H1,

d2h1

dr2
=

6rH2

f

dh1

dr
− 1
r2f

[ω2r2 − Lf − 10(1 − f)2 − 6 + 2f ]h1 +
2
rf2

[1 − Lf ]G

− 1 + f

rf2
H2 +

2
rf
K +

H2r

f2
H0,
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d2G

dr2
=

2
rf

(1 − 2f)
dG

dr
− 1
r2f2

[ω2r2 − Lf + 2f(3f − 2)]G− 4h1

r3
,

d2K

dr2
=

2(1 − 2f)
rf

dK

dr
− 1
r2f2

[ω2r2 − Lf − 2f(2 − f)]K − 2L
r2
G

− 2
r2f

H2 +
2H2

f
H0.

(75)

To these equations one should add the de Donder gauge components

dH1

dr
=
iωL

2f
G+

L

r2f
h0 − iω

2f
H2 − iω

f
(K +H0) +

2(1 − 2f)
rf

H1,

dH2

dr
=

2(1 − 3f)
rf

H2 − dH0

dr
+ 2

dK

dr
− L

dG

dr
− 2L

r
G

(76)
+

2L
r2
h1 +

4
r
K +

2H2r

f
H0 − 2iω

f
H1,

dh1

dr
= −2(1 − 2f)

rf
h1 +

L− 2
2f

G− iω

f2
h0 +

1
2f

(H2 −H0).

Metric perturbations of odd parity are instead found to vanish identically.

7. Concluding Remarks

A consistency analysis for gravitational waves in curved background is not, by
itself, new in the literature and it has been outlined, for example, in [32, Sec. II
and Appendix B]. However, that paper was mainly concerned with gravitational
instability in higher dimensions. In this paper, we have endeavored to provide
explicit solution formulae for the covector which solves the residual gauge prob-
lem expressed by Eq. (6), and this has been accomplished in Secs. 4 and 5. Section
6 has then moved on to work out all equations obeyed by metric perturbations
subject to the de Donder gauge in the de Sitter spacetime. Although the system
(74)–(76) obeyed by metric perturbations looks very complicated, our approach is
suitable for computer-assisted investigation of such equations, with the possibil-
ity of investigating gravitational waves in inflationary cosmology [23] and/or other
curved backgrounds relevant for strong-gravity regimes. In particular, as discussed
in [33], a significant fraction of energy, in the form of a stochastic background of
gravitational waves could emerge during the reheating after inflation. In this situa-
tion, the exact classification of gravitational wave solutions (as in Sec. 6) could be
crucial in order to discriminate among the various signals. In a forthcoming paper,
starting from the presented solutions, we will discuss the problem of generation and
production of gravitational waves in the de Sitter background [34].

Appendix A. Bivectors and Biscalars

In Eq. (13), ga
c′ is the geodesic parallel displacement bivector (in general, bitensors

behave as a tensor both at x and at x′) which effects parallel displacement of vectors
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along the geodesic from x′ to x. In general, it is defined by the differential equations

σ;b ga
c′;b = σ;b′ ga

c′;b′ = 0, (A.1)

jointly with the coincidence limit

lim
x′→x

ga
c′ =

[
ga

c′

]
= δa

c. (A.2)

The bivector ga
c′ , when acting on a vector Bc′ at x′, gives therefore the vector B

a

which is obtained by parallel transport of Bc′ to x along the geodesic connecting x
and x′, i.e.

B
a

= ga
c′ B

c′ . (A.3)

In Eq. (14), �(x, x′) is a biscalar built from the Van Vleck–Morette determinant

D(x, x′) ≡ det(σ;ab′) (A.4)

according to

�(x, x′) ≡ 1√−γ(x)
D(x, x′)

1√−γ(x′)
. (A.5)

The biscalar �(x, x′) has unit coincidence limit: [�] = 1; as a function of x
(resp. x′), it becomes infinite on any caustic formed by the geodesics emanating
from x′ (resp. x). When � diverges in this way, x and x′ are said to be conjugate
points [35].
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