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Abstract
The aim of this paper is to develop a general construction method of finite series of
a group G based on the existence of suitable finite series in the countable subgroups
of G. This method is applied to prove that certain group theoretical properties are
countably recognizable.
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1 Introduction

A class of groups X is said to be countably recognizable if, whenever
all countable subgroups of a group G belong to X, then G itself is
an X-group. Countably recognizable classes of groups were intro-
duced by R. Baer [1]. In his paper, Baer produced many interesting
examples of countably recognizable group classes, and later many
other relevant classes of groups with such a property were discov-
ered (see for instance [4],[12],[14],[15],[18] and the more recent pa-
pers [8],[9],[10],[11]; in particular, a detailed account of countable
recognizability for generalized soluble and nilpotent group classes

* The authors are members of GNSAGA (INdAM), and work within the ADV-AGTA
project
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can be found in [9]). The so-called local classes are of course count-
ably recognizable: a group class X is local if it contains all groups in
which every finite subset lies in some X-subgroup. It is clear that any
variety of groups is itself a local class, and so the property of being
soluble of bounded length and that of being nilpotent of bounded
class are both local. Although the class N of nilpotent groups and
the class S of soluble groups are not local, it is easy to see that they
are at least countably recognizable (see for instance [9, Lemma 2.1]).

A famous theorem of A.I. Mal’cev may be applied to prove that
many relevant group classes are local (see [17, Chapter 8], for a de-
scription of these methods). In particular, starting from suitable se-
ries of the members of a local system of a group G, Mal’cev’s result
allows to construct a new series of G. For instance, it follows that if B
is any variety, then the class of all groups admitting a series whose
factors are in B is local.

On the other hand, Mal’cev theorem does not allow to control the
order type of the new series, and the aim of this paper is to provide
a general method to construct finite series of a group G based on
suitable finite series of the countable subgroups of G.

Let B1, . . . ,Bt be finitely many varieties of groups and consider a
subset M of {−1,−2, . . . ,−t}. Put

Q =
⋃
k∈N

(M∪ {0})k

and let q ∈ Q. If Σ is a non-empty initial segment of N, a sub-
group H of a group G is said to be (q,Σ)-subnormal in G if there
exists a (q,Σ)-chain from H to G, i.e., a finite chain of subgroups

H = H0 6 H1 6 . . . 6 Hn = G,

where q = (q1, . . . ,qn) and for each i ∈ {1, . . . ,n} we have that

|Hi : Hi−1| ∈ Σ

if qi=0, while Hi−1 is normal in Hi and Hi/Hi−1∈B−qi when qi 6=0.

Define a partial order ≺ in Q by setting

(q1, . . . ,qm) = q ≺ q ′ = (q ′1, . . . ,q ′n) (n,m ∈N)
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if and only if m 6 n and there is a strictly increasing function

ϕ : {1, . . . ,m} −→ {1, . . . ,n}

such that qi = q ′ϕ(i) for i ∈ {1, . . . ,m}. This means that, q ≺ q ′ if and
only if one can go from q ′ to q by removing some components. Note
that every subset of Q has an element which is ≺-minimal.

Fix now a non-empty initial segment Σ of N. We will then speak
of q-subnormality and q-chains instead of, respectively, (q,Σ)-subnor-
mality and (q,Σ)-chains.

Our main result is the following.

Theorem Let G be a group, H a subgroup of G and q=(q1, . . . ,qk) ∈ Q.
If H∩C is q-subnormal in C for every countable subgroup C of G, then H
is p-subnormal in G, for some p ≺ q.

Let X and Y be group classes. We shall denote by XY the prod-
uct of X and Y, i.e. the class consisting of all groups G containing
a normal X-subgroup N such that the factor group G/N belongs
to Y. It seems to be unknown under which hypotheses the product
of two countably recognizable classes is likewise countably recogniz-
able. On the other hand, this problem has a positive solution in the
case of varieties, since it is well-known that the product of two vari-
eties is again a variety (see for instance [13]). Moreover, if {Bn}n∈N

and {Cn}n∈N are sequences of group varieties, then [9, Lemma 2.1]
implies that the class of groups(⋃

m

Bm

)(⋃
n

Cn

)
=
⋃
m,n

(
BmCn

)
is countably recognizable. Furthermore, the class of groups with a
finite series (of bounded length) whose factors belong to

⋃
n∈N Bn

is also countably recognizable. It follows for instance that the class
of metanilpotent groups, and more generally that of soluble groups
of bounded Fitting length is countably recognizable. Notice also that
the class of poly-B groups is countably recognizable for any group
variety B.

As a consequence of our Theorem, we generalize the above results
proving, for instance, that the class of all groups with a finite series
whose factors are either finite or belongs to a given variety is count-
ably recognizable.
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The range of applicability of the Theorem and its method is not lim-
ited to properties of this type. In fact, in the last part of the paper we
prove that many different properties defined by subnormality condi-
tions can be countably detectable. In particular, it turns out that all
group classes and subgroup properties considered in [2, 3, 5, 6] have
countable character: this is, for instance, the case of f-subnormality.
Recall here that a subgroup H of a group G is said to be f-subnormal
if there is a finite chain

H0 = H 6 H1 6 . . . 6 Hn = G

such that for i = 1, 2, . . . ,n either the index |Hi : Hi−1| is finite
or Hi−1 is normal in Hi (see [16]).

Most of our notation is standard and can be found in [17]. In partic-
ular, we refer to the first chapter of [17] for definitions and properties
of Philip Hall’s operations on group classes.

2 Proof of the Theorem

Let C be the set of all countable subgroups of the group G. For
each C ∈ C, there is a qC ∈ Q such that qC ≺ q, H∩C is qC-subnormal
in C and qC is ≺-minimal with respect to these properties. Set

Cp = {C ∈ C : qC = p},

for all p ∈ Q. Suppose that, for each p ≺ q, there is a Cp ∈ C which
is not contained in any element of Cp. Then, the countable sub-
group 〈Cp : p ≺ q〉 is not contained in any element of⋃

p≺q
Cp = C,

which is a contradiction. Therefore, there exists p ≺ q in Q such
that Cp is a countable system of G.

For each C ∈ Cp, there is a p-chain from H∩C to C with a smallest
number of infinite jumps, say s(C). If C1 6 C2 are elements of Cp,
then s(C1) 6 s(C2)., and hence, the set

{s(C) : C ∈ Cp}
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has a largest element s = s(C1). Thus, whenever C ∈ Cp and C > C1,
it follows that s(C1) = s(C), which also means that the number of
finite jumps is the same, say fj. Let now for convenience

C1p = {C > C1 : C ∈ Cp}.

Suppose that fj 6= 0. For each C∈C1p, there is a p-chain from H∩C
to C having fj finite jumps and, under this condition, such that the
sum j(C) of the orders of its finite jumps is the smallest possible.
Again, it can be easily proved that, if C1 6 C2 are elements of C1p,
then j(C1) 6 j(C2). Suppose that the set

J = {j(C) : C ∈ C1p}

does not contains a largest element. Then there is a strictly increasing
sequence of numbers

j(C1) < j(C2) < . . . < j(Ci) < . . .

and the countable subgroup 〈Ci : i ∈ N〉 is contained in a suitable
element C∞ of C1p. However, this is a contradiction, since it should
be j(C∞) > j(Ci) for each i ∈N. Therefore, J has a largest ele-
ment j = j(C2). Notice that we have j(C2) = j(C), whenever C ∈ C1p
and C > C2. Clearly,

C2p = {C > C2 : C ∈ C1p}

is still a countable system of G and for every countable subgroup C
of C2p, there exists a p-chain

SC : H∩C = H0,C 6 H1,C 6 . . . 6 Hn,C = C

in which the orders of the finite jumps corresponding to the 0-com-
ponents of p are bounded by

l = min{j, sup(Σ)}.

Given SC, we define a binary relation RC on C by setting xRC y if
and only if ⋂

i :x∈Hi,C

Hi,C 6
⋂

i :y∈Hi,C

Hi,C.
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The relation RC can be encoded as a function

fC : C×C −→ {0, 1}

such that fC(x,y) = 1 if and only if xRC y.
Applying now Lemma 8.22 of [17], it follows that there is a func-

tion
f : G×G −→ {0, 1}

having the property that, for every finite subset

{x1, . . . , xm}

of G×G, there exists C ∈ C2p such that xi ∈ C×C and f(xi) = fC(xi)
for i = 1, . . . ,m. From this function we go back to a binary relation R

setting xRy whenever f(x,y) = 1, for each x,y ∈ G. Our next step in
the proof is to describe some properties of R in order to construct a
suitable chain from H to G.

We claim that R is a total and transitive relation. In fact, if x,y
are elements of G, then there is a C ∈ C2p such that fC(x,y) = f(x,y)
and fC(y, x) = f(y, x). However, the construction of RC shows that ei-
ther fC(x,y) = 1 or fC(y, x) = 1. Therefore R is total. The transitivity
can be proved in a similar way.

Another relevant property of R is that, given n+2 arbitrary el-
ements x1, . . . , xn+2 of G, there are two of them which are each
other in relation. In fact, assume for a contradiction that xiRxi+1
and xi+1�R xi, for each i ∈ {1, . . . ,n− 2}. Then there is C ∈ C2p such
that fC(xk, xh) = f(xk, xh) for all h, k ∈ {1, . . . ,n+ 2} and hence

xiRCxi+1 and xi+1��RC xi,

for i ∈ {1, . . . ,n− 2}, which cleary is a contradiction. Since we have
already shown that R is total and transitive, it follows that the above
property holds.

Finally, it can be proved that, for x,y, z ∈ G with xRz and yRz, one
has xy−1Rz. As before, there is a C ∈ C2p such that

fC(xy
−1, z) = f(xy−1, z), fC(x, z) = f(x, z) = 1, fC(y, z) = f(y, z) = 1.

Again, the costruction of RC shows that f(xy−1, z) = fC(xy−1, z) = 1,
which is what was claimed.
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We can now proceed to construct the quoted chain from H to G.
Define by recursion a sequence of elements {xi}i∈N0

of G by put-
ting x0 = 1, and, by choosing xi+1 as an R-minimal element of G
such that xiRxi+1 and xi+1�Rxi, if there exists such an element and
by setting xi+1 = xi otherwise. By the above properties of R, this
sequence stops after at most n steps, and for each i = 0, . . . ,n the set

Hi = {x ∈ G|xRxi}

is a subgroup of G. Notice that Hn = G. If h1,h2 are arbitrary ele-
ments of H, there is C ∈ C2p such that

fC(h1,h2) = f(h1,h2).

On the other hand, by the construction of SC, it follows that h1RCh2,
and so f(h1,h2) = 1, which means that h1Rh2. Therefore H is con-
tained in H0. Suppose by contradiction that there exist g ∈ G\H such
that gR1. Then fC(g, 1) = 1 for some C ∈ C2p. However, by construc-
tion, no element of C\(H∩C) is in relation with an element of H∩C.
This contradiction proves that H0 = H.

Assume that H < G and let

SG : H = H0 < . . . < Hm = G (m 6 n)

be the above constructed chain (here m 6 n). Take ei ∈ Hi\Hi−1
for i = 0, . . . ,m, with the convention that H−1=∅. Suppose by contra-
diction that SG does not correspond to any p ′-chain with

p ′ = (p ′1, . . . ,p ′m) ≺ p.

Then, for each p ′ ≺ p, the jump (Hi−1,Hi) does not correspond to p ′i
for some positive integer i 6 n. If p ′i = 0, we take elements

y1,p ′ , . . . ,yl+1,p ′ ∈ Hi

such that

yh,p ′y
−1
k,p ′ 6∈ Hi−1 ∀h, k ∈ {1, . . . , l+ 1},

and define

Vp ′ = {yj,p ′ , yh,p ′y
−1
k,p ′ | j,h, k ∈ {1, . . . , l+ 1}}.
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Suppose instead that p ′i < 0 and that Hi−1 is not normal in Hi.
Then there are elements wp ′,1 and wp ′,2 in Hi such that

wp ′,2,w
wp ′ ,2
p, ′1 6∈ Hi−1 and wp ′,1 ∈ Hi−1.

In this case, we put

Vp ′ = {wp ′,1, wp ′,2, w
wp ′ ,2
p ′,1 }.

Finally, if p ′i < 0 and Hi−1 is normal in Hi, there is a word θp ′

defining B−p ′i
and elements

z1,p ′ , . . . , ztp ′ ,p ′

in Hi such that

θp ′(z1,p ′ , . . . , ztp ′ ,p ′)

does not belong to Hi−1. In this case, define Vp ′ to be the set

{zj, θp ′(z1,p ′ , . . . , ztp ′ ,p ′)| j = 1, . . . , tp ′}.

Let
V =

⋃
p ′≺p

Vp ′

and put
U = V ∪ {e1, . . . , em}.

There exists C ∈ C2p such that f and fC act in the same way on U.
All elements of U which are in relation one another, are also in rela-
tion one another in relation with a unique ek, for some k = 0, . . . ,m.
It follows that all these elements lie in a set of the form K2\K1,
where (K1,K2) is a jump of SC. If we take the components of p corre-
sponding to these jumps ordered from H ∩C to C, we obtain a new
element p ′′ ∈ Q such that

(p ′′1 , . . . ,p ′′b) = p ′′ ≺ p.

Therefore, there is i 6 m such that the jump (Hi−1,Hi) does not cor-
respond to p ′′i and Vp ′′ ⊆ U. However, all elements of Hi\Hi−1 are
doubly in relation one another and also with ei, and hence they are
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contained in the set L2\L1, where (L1, L2) is the jump of SC corre-
sponding to p ′′i . On the other hand, the relations between the ele-
ments of U show that this is impossible. The statement is proved.

3 Main consequences

Notice first that if we choose H = {1} in the statement of our Theo-
rem, and with a suitable choice of the varieties defining Q, we obtain
that the property of being finite-by-abelian-by-finite is countably rec-
ognizable (see also [9], where other proofs of this fact are discussed).

The following statement is instead a special case of a more general
result proved in [9].

Corollary 3.1 Let X be a variety of groups. Then the class XF of all
groups containing an X-subgroup of finite index and the class FX of all
groups containing a finite normal subgroup with X-factor group are count-
ably recognizable.

In order to extend the range of applicability of the Theorem we
need the following result, in which Q is the set defined in Section 1.

Corollary 3.2 Let G be a group, and let H be a subgroup of G such that
for each countable subgroup C of G there exists q ∈ Q such that H ∩ C
is q-subnormal in C. Then H is p-subnormal in G for some p ∈ Q.

Proof — Suppose by contradiction that the statement is false. Then
it follows from the Theorem that for each q ∈ Q there is a countable
subgroup Cq of G such that H∩Cq is not q-subnormal in Cq. Let C be
the countable subgroup generated by all Cq’s with q ∈ Q. By hypoth-
esis, there is a q ′ ∈ Q such that H∩C is q ′-subnormal in C, which is
a contradiction since H∩Cq ′ is not q ′-subnormal in Cq ′ . ut

As an immediate consequence of Corollary 3.2, we obtain the fol-
lowing result.

Theorem 3.3 Let G be a group, and let H be a subgroup of G such
that H∩C is f-subnormal in C, for each countable subgroup C of G. Then H
is f-subnormal in G.

As an application of Corollary 3.2 forH = {1} and of [9, Lemma 2.1]
we have the following result.
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Theorem 3.4 Let {B}n∈N be a sequence of varieties of groups. Then the
class of all groups admitting a finite series whose factors either are finite or
belong to

⋃
n∈N Bn is countably recognizable.

A q-chain is said to be normal if all its terms are normal in the
group. In these circumstances a normal subgroup H of a group G
will be said q-normal if there is a normal q-chain from H to G. It
is easy to see that, with minor changes in the proofs, in the above
statement normality can be replaced by q-normality, obtaining thus
the following result.

Theorem 3.5 Let {Bn}n∈N be a sequence of varieties of groups, then the
class of all groups admitting a finite normal series whose factors either are
finite or belong to

⋃
n∈N Bn is countably recognizable.

4 Subgroup properties

Let Θ be a subgroup property. In the following, it will be often writ-
ten HΘG or “H is a Θ-subgroup of G” whenever H is a subgroup
of a group G and H has the property Θ in G. Following [9], we say
that Θ has countable character if a subgroup Y of an arbitrary group G
is a Θ-subgroup of G whenever Θ holds in G for all countable sub-
groups of Y.

Suppose now that Θ is such that HΘK follows from HΘG, for an
arbitrary group G and two its subgroups H 6 K. In this case, it can be
easily proved that Θ has countable character if, given a group G and
a subgroup H, we have HΘG whenever H∩CΘC for all countable
subgroups C of G. If Θ satisfies this latter property, we shall say
that Θ has strong countable character.

It is clear that, if Θ is actually an absolute property (i.e. if all sub-
groups isomorphic to a Θ-subgroup likewise are Θ-subgroups), then
the concepts of countable character, strong countable character and
countable recognizability coincide. However, in general, they may
not coincide. In fact, let Θ be the embedding property defined in the
following way: HΘG if and only if |G : H| 6 ℵ0. Obviously, Θ has
countable character, but the consideration of any uncountable group
shows that this character is not strong.

It was recently proved in [11] that the property of being closed
in the profinite topology has strong countable character. The main
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theorem gives directly a further contribution to the list of properties
of strong countable character, adding the property of being q-sub-
normal for a given set Q. In particular, choosing B1 to be the class
of all groups, Σ = {1} and M = {−1} we get that the property of being
subnormal and that of being subnormal of bounded defect have both
strong countable character (see also [9, Theorem 2.4]). On the other
hand, Theorem 3.3 shows the strong countable character of f-subnor-
mality. The aim of this section is to prove that many other subgroup
properties have strong countable character. We first prove some corol-
laries of our main theorem.

Corollary 4.1 LetG be a group, and letH be a subgroup ofG. IfH∩C has
finite index in a subnormal subgroup of C, for each countable subgroup C
of G, then H has finite index in a subnormal subgroup of G.

Proof — For each countable subgroup C of G, denote by l(C) the
smallest subnormality defect of a subnormal subgroup L of C such
that H∩C 6 L and H∩C has finite index in L. Clearly, l(C1) 6 l(C2)
whenever C1 and C2 are countable subgroups of G such that C1 6 C2.
Therefore the set of all l(C)’s ranging on all countable subgroups C
of G has a largest element, l = l(C∗) say. If C is any countable
subgroup of G, also the subgroup 〈C, C∗〉 is countable and clear-
ly l(〈C, C∗〉) = l(C∗) = l. It follows that H ∩ C has finite index in
a subnormal countable subgroup C of subnormal defect at most l.
An easy application of the Theorem now gives the result. ut

The following result can be proved similarly. Note that in both
corollaries it is possible to add restrictions on the subnormality de-
fect and on the finite index.

Corollary 4.2 Let G be group and let H be a subgroup of G. If H ∩C is
subnormal in a subgroup of finite index of C, for each countable subgroup C
of G. Then H is subnormal in a subgroup of finite index of G.

We prove now that both the property of having finite index in the
normal closure and that of having a finite number of conjugates have
strong countable character.

Corollary 4.3 Let G be a group and H a subgroup of G such that H ∩C
has finite index (has index at most m, for some fixed positive integer m) in
its normal closure in C, for each countable subgroup C of G. Then H has
finite index (has index at most m) in its normal closure in G.



108 Maria Ferrara – Marco Trombetti

Proof — Fix B1 to be the class of all groups, Σ = N and M = {−1}.
Then, applying the Theorem for q = (0,−1), we get that H is either
of finite index in G, or is normal in G, or has finite index in a normal
subgroup of G. In every case, H has finite index in its normal closure.

If m is any positive integer, and Σ = {1, . . . ,m}, the same argument
proves the other point of the statement. ut
Corollary 4.4 Let G be a group and H a subgroup of G such that H ∩C
has a finite number of conjugates in C, for each countable subgroup C of G.
Then H has a finite number of conjugates in G. Moreover, if H ∩C has at
mostm conjugates in C, for each countable subgroup C of G, and for a fixed
positive integer m, then H has at most m conjugates in G.

Next lemmas deal with the countable character of some further
embedding properties.

Lemma 4.5 Let G be a group and let m be an element of N ∪ {ℵ0}. If H
is a subgroup of G such that |(H∩C)C : (H∩C)C| < m for each countable
subgroup C of G, then |HG : HG| < m.

Proof — Suppose first that m 6= ℵ0 and assume by contradiction
that |HG :HG|>m. Then there are elements x1, . . . , xm of HG such
that xix−1j 6∈ HG for all i 6= j ∈ {1, . . . ,m}. Hence there exist ele-
ments g(i, j) such that xix−1j 6∈ Hg(i,j). Therefore we can find a count-
able subgroup L of G containing the elements g(i, j), for i 6= j, and
such that x1, . . . , xm belong to (H∩ L)L. This clearly implies that

|(H∩ L)L : (H∩ L)L| > m,

a contradiction. The proof is similar for m = ℵ0. ut

Notice that part of the above proof can be used to show that the
property of being finite (of bounded order) over the core has strong
countable character.

Recall that the normal oscillation of a subgroup X of a group G
is the cardinal number min{|X : XG|, |XG : X|} (see [7]). Our next
lemma proves that the property of having finite normal oscillation
has strong countable character.

Lemma 4.6 Let G be a group and let m be an element of N ∪ {ℵ0}. If H
is a subgroup of G such that, for each countable subgroup C of G, the sub-
group H∩C has normal oscillation strictly smaller than m in C. Then H
has normal oscillation strictly smaller than m in G.
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Proof — We assume thatm is finite (the proof is similar form=ℵ0).
Suppose for a contradiction that |HG : H| > m and |H : HG| > m.
Let x1, . . . , xm be elements of H such that xiHG 6= xjHG if i 6= j, and
put

X = 〈x1, . . . , xm〉.

For all elements i and j of {1, . . . ,m} such that i 6= j ∈ {1, . . . ,m} there
exists an element g(i, j) of G such that x−1i xj does not belong to the
subgroup Hg(i,j). On the other hand, as |HG : H| > m, there are count-
able subgroups Y of H and Z of G such that X 6 Y and the normal clo-
sure YZ contains a subset W = {w1, . . . ,wm} for which wiH 6= wjH,
whenever wi 6= wj. Then

C = 〈Y,Z, g(i, j); i 6= j ∈ {1, . . . ,m}〉

is a countable subgroup of G, and it is obvious that the normal oscil-
lation of H∩C in C larger than m, a contradiction. ut

Let G be a group. We say that a subgroup H has the χ property
in G if there is a subnormal subgroup H0 of G such that H0 6 H and
the index |H : H0| is finite. Groups in which all proper subgroups
have the χ property have been studied by C. Casolo and M. Mainar-
dis [3]. We end this section by sketching how to use the method of
the Theorem in order to prove that χ has strong countable character.

Lemma 4.7 Let G be a group and let H be a subgroup of G such that, for
each countable subgroup C of G, there is a subnormal subgroup H0,C of C,
such that H0,C 6 H∩C and H0,C has finite index in H∩C. Then G has a
subnormal subgroup H0 such that H0 6 H and |H : H0| <∞.

Proof — Let C be the set of all countable subgroups of G, and
let C∈C. There exists a subnormal subgroup H10,C of C such that H10,C
is contained in H ∩C and H0,C has smallest subnormal defect, s(C)
say, in C, and among these the smallest index in H ∩C, f(C) say. As
in the proof of the Theorem, we can find a countable system C1 of G
such that, for each C1,C2 ∈ C1 we have

s(C1)=s(C2) and f(C1)=f(C2).

For each C ∈ C1, consider the series

H0,C 6 H∩C = H1,C 6 H2,C = C
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and the series of normal closures of H0,C in C

H0,C = K0,C < . . . < Kn,C = C.

Define now two binary relations R1,C and R2,C on C by put-
ting xR1,Cy if and only if⋂

i :x∈Hi,C

Hi,C 6
⋂

i :y∈Hi,C

Hi,C,

and, we set xR2,Cy if and only if⋂
i :x∈Ki,C

Ki,C 6
⋂

i :y∈Ki,C

Ki,C.

We can encode these two relations in a function

f : C×C −→ {0, 1, 2, 3},

in such a way that f(x,y) = 1 whenever xR1,Cy and x���R2,Cy. Now,
applying Lemma 8.22 of [17], it follows that there is a function

f : G×G −→ {0, 1, 2, 3}

having the property that, for every finite subset {x1, . . . , xm} of G×G,
there exists a C ∈ C1 such that xi ∈ C × C and f(xi) = fC(xi) for
all i = 1, . . . ,m. From this function we go back to two binary rela-
tions R1 and R2 on G. Each of these relations has the analogous of
the properties mentioned in the proof of the Theorem. Hence, we can
define two series in G:

H0 6 H1 6 G

and

K0 6 K1 6 . . . 6 Kn = G.

Since

H0 = {g ∈ G : gR11} and K0 = {g ∈ G : gR21},

it is easy to show that H0 = K0. It can be also proved that Ki is nor-
mal in Ki+1, and that H0 is a subgroup of finite index in H. This
completes the proof. ut
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5 Group properties

In [3], Casolo and Mainardis studied the structure of groups in which
every subgroup is f-subnormal; these were called S-groups. Further-
more, they studied groups in which all subgroups have finite index
in a subnormal subgroup and groups with every subgroup subnor-
mal in a subgroup of finite index, proving that these groups are
precisely the S-groups. Here we show that the class of S-groups is
countably recognizable, as well as the other classes of groups defined
below (see also [2, 6, 5], where they were introduced).

• The class of L-groups: a group G is said to be a L-group if for
every subgroup H of G there is a subnormal subgroup H0 of G
with H0 6 H and |H : H0| finite.

• The class of T∗-groups: a group G is said to be a T∗-group if
every subnormal subgroup of G has finite index in its normal
closure.

• The class of Tm-groups, for m ∈ N: a group G is said to be
a Tm-group if every subnormal subgroup of G has finite index
at most m in its normal closure.

• The class of V-groups: a group G is said to be a V-group if every
subnormal subgroup H of G has finitely many conjugates. This
clearly is equivalent to require that the normalizer of H has
finite index in G.

• The class of Vm-groups, for m ∈ N: a group G is said to be
a Vm-group if every subnormal subgroup H of G has at most
m conjugates. This clearly is equivalent to require that the nor-
malizer of H in G has index at most m.

• The class of U-groups: a group G is said to be an U-group
if |HG : HG| is finite for every subnormal subgroup H of G.

• The class of Um-groups, for m in N: a group G is said to be
an Um-group if |HG : HG| is at most m for every subnormal
subgroup H of G.

• The class of T∗-groups: a group G is said to be a T∗-group if
every subnormal subgroup of G is finite over its core.
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• The class of Tm-groups, for m ∈ N: a group G is said to be
a Tm-group if |H : HG| is at most m for every subnormal sub-
group H of G.

• The class of T(∗)-groups: a group G is said to be a T(∗)-group
if either |H : HG| or |HG : H| is finite for every subnormal sub-
group of G.

• The class of T(m)-groups, for m in N: a group G is said to be
a T(m)-group if either |H : HG| 6 m or |HG : H| 6 m for every
subnormal subgroup H of G.

First, we introduce a lemma which enables us to pass from the
strong countable character of the embedding properties to the count-
able recognizability of some group classes.

Lemma 5.1 Let Ξ be an embedding property with strong countable char-
acter and Θ any subgroup property such that X ∩H is a Θ-subgroup of H
whenever X is a Θ-subgroup of a group G and H 6 G. Then the class of
groups with all Θ-subgroups satisfying Ξ is countably recognizable.

Proof — Let G be a group and suppose that each countable sub-
group of G has all its Θ-subgroups satisfying Ξ. Take an arbitra-
ry Θ-subgroup H of G. Then H∩C is both a Θ-subgroup and a Ξ-sub-
group of C for each countable subgroup C of G. The strong countable
character of Ξ now implies that HΞG. The statement is proved. ut

Our final corollary is a trivial application of Lemma 5.1 and results
of the previous section.

Corollary 5.2 The group classes S, L, T∗, Tm,V ,Vm,U,Um, T∗, Tm, T(∗)
and T(m) are all countably recognizable, for m ∈N.

The above corollary should be compared with some analogous re-
sults in the last part of [8]. Finally, we remark that if X is a sub-
group closed class of groups, it follows from the same results that,
for instance, the class of groups in which all X-subgroups are f-sub-
normal is countably recognizable. In particular, notice that the class
of groups with all abelian subgroups f-subnormal is countably rec-
ognizable.
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