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Abstract: Trichostatin A ([R-(E,E)]-7-[4-(dimethylamino) phenyl]-N-hydroxy- 4,6-dimethyl- 7-oxo-
2,4-heptadienamide, TSA) affects chromatin state through its potent histone deacetylase inhibitory
activity. Interfering with the removal of acetyl groups from lysine residues in histones is one of
many epigenetic regulatory processes that control gene expression. Histone deacetylase inhibition
drives cells toward the differentiation stage, favoring the activation of specific genes. In this paper,
we investigated the effects of TSA on H3 and H4 lysine acetylome and methylome profiling in
mice embryonic stem cells (ES14), treated with trichostatin A (TSA) by using a new, untargeted
approach, consisting of trypsin-limited proteolysis experiments coupled with MALDI-MS and LC-
MS/MS analyses. The method was firstly set up on standard chicken core histones to probe the
optimized conditions in terms of enzyme:substrate (E:S) ratio and time of proteolysis and, then,
applied to investigate the global variations of the acetylation and methylation state of lysine residues
of H3 and H4 histone in the embryonic stem cells (ES14) stimulated by TSA and addressed to
differentiation. The proposed strategy was found in its simplicity to be extremely effective in
achieving the identification and relative quantification of some of the most significant epigenetic
modifications, such as acetylation and lysine methylation. Therefore, we believe that it can be used
with equal success in wider studies concerning the characterization of all epigenetic modifications.

Keywords: histone PTMs; limited proteolysis; mass spectrometry; TSA; activation of differentiation

1. Introduction

Trichostatin A ([R-(E,E)]-7-[4-(dimethylamino) phenyl]-N-hydroxy- 4,6-dimethyl- 7-
oxo-2,4-heptadienamide, TSA) is a pharmacological agent endowed with potent histone
deacetylase inhibitory activity (HDI or HDACI), thus promoting histone acetylation with
broad effects on epigenetic signature [1].

TSA-mediated HDAC inhibition contributes to chromatin relaxation, allowing tran-
scription factors to access the DNA molecule within the chromatin structure. TSA was
also reported to promote morphology and gene expression changes in embryonic stem
cells (ESCs) [2]. ESCs cultured in DMSO form round and compact colonies, while af-
ter TSA treatment, colonies are disrupted, and cells become flattened [3]. Inhibition of
histone deacetylases drives cells toward differentiation by regulating the expression of
differentiation- and pluripotency-associated genes. Many studies demonstrated that TSA
enhances cell differentiation [4–6] by negatively regulating the expression of stemness
markers [7], such as Oct4 [8], and simultaneously activating differentiation markers, such
as Pdx1 [9]. The molecular mechanism of TSA-mediated regulation of gene activation and
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repression is very likely related to post-translational modifications of histones. Interfering
with the removal of acetyl groups from lysine residues in histones is one of many epigenetic
regulatory processes that control gene expression. Because of its biochemical activities, TSA
has some activities as an anticancer drug [10,11] or as a cell differentiation promoter [12].

It is well known that lysine acetylation or methylation of various residues on histone
H3 and H4 are involved in transcriptional activation and/or silencing of different genes.
As a consequence, the combination of all modifications occurring within a histone, in a
nucleosome, and, in turn, within different nucleosomes, finely promotes the recruitment
of various components of multiprotein complexes, including a large number of enzymes
and accessories proteins known as writers, readers, and erasers [13], whose presence and
activities depend on specific molecular stimuli [14].

The qualitative and quantitative investigation of histone post-translational modifi-
cation (PTM) has been approached with several methods, most of them based on the
employment of specific antibodies [15]. However, all antibody-based techniques are tar-
get specific, and it is necessary to know the position and type of modification of interest
ab initio. More recently, untargeted alternative strategies have been developed for the
identification, localization, and quantification of epigenetic PTMs [16], among which the
most promising rely on the employment of mass spectrometry (MS) methodologies, es-
sentially following mass-mapping-based approaches [17,18]. Despite the advantages of
mass spectrometry technology in terms of versatility and sensitivity, two main problems
still remain to be solved entirely. They concern the development of suitable proteolytic
digestion protocols and the high level of PTM heterogeneity in the sample to be ana-
lyzed. Mass-mapping approaches rely on the use of proteolytic enzymes, above all trypsin,
commonly used in all proteomic applications. Unfortunately, the very high number of
basic residues occurring within the small histone proteins leads to the formation of short
peptides, impairing an effective MS analysis. Although alternative enzymatic digestion
protocols have been tested [19–22], this drawback still remains challenging. Moreover,
PTM heterogeneity generates isobaric peptides containing the same modification located
at different positions along the peptide chain, making their localization very difficult [23].

This paper reports a new approach for investigating histone epigenetic modifications
based on stringent trypsin digestion conditions to control hydrolysis kinetics and generate
peptides of suitable length for MS analysis. The identification and localization of occurring
PTMs relied on peptide retention times and fragmentation spectra recorded in LC-MS/MS
analyses. The whole procedure was developed on the standard chicken core histones
by testing short incubation time and different enzyme to substrate (E:S) ratios to achieve
the highest sequence coverage for H3 and H4 histones. The optimized protocol was
then applied for a proteome-wide investigation of the acetylation and methylation states
of histone H3 and H4 in ES14 mouse cells following either TSA or DMSO treatment.
The established strategy led to the identification and relative quantification of H3 and H4
acetylation/methylation distribution in differentiating (TSA treated) and stemness-retained
(DMSO incubation) ES14 mouse cells.

2. Results
2.1. TSA Induces a Change of Morphology Corresponding to Oct4 and Pdx1 Gene Regulation
in ESCs

In order to validate our experimental system, the morphology of ES14 cells treated
with either TSA or DMSO for 24 h was analyzed by phase-contrast microscopy. Figure 1A
shows that ESCs treated with TSA undergo morphological changes suggestive of differ-
entiation. Moreover, the expression of Oct4 and Pdx1 genes, markers of stemness and
differentiation, respectively, was evaluated by qPCR. Data revealed a significant decrease
of Oct4 expression (Figure 1B, left panel) instead of the increased expression of Pdx1
(Figure 1B, right panel), confirming the tendency of TSA to induce differentiation and
validating the experimental system.
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Figure 1. Trichostatin A (TSA) induces differentiation in ES14. (A) Phase-contrast microscopy analysis
of ES14 cells following treatment with 0.1% DMSO or 100 nM TSA clearly showing morphology
changes (scale bar, 100 µm). (B) Gene expression analysis by qPCR for Oct4 (left panel) and Pdx1
(right panel) genes showing that incubation with TSA drives ES14 cells toward differentiation. Data
points represent the average of triplicate determinations ± SD. Similar results were obtained in three
independent experiments. * p < 0.05; ** p < 0.01.

2.2. Limited Proteolysis Standardization of H4 and H3 Histones

H3 and H4 histones were isolated from 4 µg of a standard mixture of chicken core
histones following SDS-PAGE fractionation. Protein bands corresponding to H3 and H4
species were excised from the gel and in situ digested with either 100, 50, or 10 ng of
trypsin in 50 mM ammonium bicarbonate for 2 h. The tryptic peptides released from each
enzymatic digestion were analyzed by MALDI-MS and LC-MS/MS and mapped onto
the respective H3 and H4 sequences. Mass spectral data showed that the tryptic peptides
obtained using 50 ng of trypsin were suitable in size for effective MS and MS/MS analyses
and led to the highest sequence coverage for both H4 (100%) and H3 (83%) proteins
(Figure 2).

Supplementary Table S1 reports the H4 (Figure 2A) and H3 (Figure 2B) tryptic peptides
identified by MS analyses in the best digestion conditions. Furthermore, MS experiments
revealed the occurrence of several post-translation modifications, including multiple acety-
lations (∆M = +n42 Da) and methylations (∆M = +n14 Da).

In H4, the N-terminal peptides 1–12, 1–16, 1–17, and 18–36 were found largely and
heterogeneously modified (Supplementary Table S1A). A careful inspection of the MS/MS
spectra of modified peptides identified the presence of acetylation sites at the level of the
N-terminus, K5, K8, K12, and K16, and the occurrence of di-methylation at K20 (Figure 2A),
according to literature data [24]. This analysis also confirmed that multiply acetylated
peptides consists of a heterogeneous mixture of isobaric species carrying the acetyl groups
on different lysine residues. Supplementary Table S1B reports the peptides identified
in the H3 tryptic digest obtained by incubation with 50 ng of trypsin. Although the H3
sequence coverage was not complete, the N-terminal 83 amino acids portion, i.e., the H3
region where most PTMs occur, was completely mapped. Again, several post-translational
modifications were detected in the H3 sequence and allocated by LC-MS/MS analysis.
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Acetylation was detected at K14, K18, and K23. In addition, several methylated residues
were also found: mono-methylation was pinpointed at K9, K27, K36, and K79, and both
di- and tri-methylation were identified at K9 and K27 by manual inspection of the MS and
MS/MS spectra confirming literature data (Figure 2B) [25].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW  4 of 16 
 

 

 

Figure  2.  MALDI‐MS‐  and  LC‐MS/MS‐derived  histone  mass  mapping  with  the  identified 

modifications. The underlined  regions  represent  the covered sequences obtained by MALDI‐MS 

and/or by LC‐MS/MS analyses. Black circles represent acetylation. Light grey, dark grey, and black 

triangles  are  for methylation, di‐methylation,  and  tri‐methylation,  respectively.  (A) Histone H4 

mass mapping obtained by  incubating 4 μg of chicken core histones with 50 ng of trypsin  in the 

limited proteolysis protocol. (B) Histone H3 mapping obtained from the reaction of 4 μg of chicken 

core histones with 50 ng of trypsin in the limited proteolysis procedure. 

Supplementary  Table  S1  reports  the H4  (Figure  2A)  and H3  (Figure  2B)  tryptic 

peptides  identified by MS  analyses  in  the best digestion  conditions. Furthermore, MS 

experiments revealed the occurrence of several post‐translation modifications, including 

multiple acetylations (ΔM = +n42 Da) and methylations (ΔM = +n14 Da). 

In H4, the N‐terminal peptides 1–12, 1–16, 1–17, and 18–36 were found largely and 

heterogeneously modified (Supplementary Table S1A). A careful inspection of the MS/MS 

spectra of modified peptides identified the presence of acetylation sites at the level of the 

N‐terminus, K5, K8, K12, and K16, and the occurrence of di‐methylation at K20 (Figure 

2A), according to literature data [24]. This analysis also confirmed that multiply acetylated 

peptides consists of a heterogeneous mixture of isobaric species carrying the acetyl groups 

on different lysine residues. Supplementary Table S1B reports the peptides identified in 

the H3  tryptic digest obtained by  incubation with  50 ng of  trypsin. Although  the H3 

sequence coverage was not complete, the N‐terminal 83 amino acids portion, i.e., the H3 

region  where  most  PTMs  occur,  was  completely  mapped.  Again,  several  post‐

translational modifications were detected in the H3 sequence and allocated by LC‐MS/MS 

analysis. Acetylation was detected at K14, K18, and K23. In addition, several methylated 

residues were also found: mono‐methylation was pinpointed at K9, K27, K36, and K79, 

and both di‐ and tri‐methylation were identified at K9 and K27 by manual inspection of 

the MS and MS/MS spectra confirming literature data (Figure 2B) [25]. 

2.3. Analysis of H4 Acetylation Landscape in DMSO vs. TSA 

The different degrees of acetylation in histones H4 and H3 from embryonic stem cells 

ES14 during differentiation were evaluated using the methodology described above. In 

addition, extracted  ion chromatogram  (XIC) procedures based on the evaluation of the 

area of chromatographic peaks associated with the peptide ions extracted from the total 

Figure 2. MALDI-MS- and LC-MS/MS-derived histone mass mapping with the identified modifica-
tions. The underlined regions represent the covered sequences obtained by MALDI-MS and/or by
LC-MS/MS analyses. Black circles represent acetylation. Light grey, dark grey, and black triangles
are for methylation, di-methylation, and tri-methylation, respectively. (A) Histone H4 mass mapping
obtained by incubating 4 µg of chicken core histones with 50 ng of trypsin in the limited proteolysis
protocol. (B) Histone H3 mapping obtained from the reaction of 4 µg of chicken core histones with
50 ng of trypsin in the limited proteolysis procedure.

2.3. Analysis of H4 Acetylation Landscape in DMSO vs. TSA

The different degrees of acetylation in histones H4 and H3 from embryonic stem
cells ES14 during differentiation were evaluated using the methodology described above.
In addition, extracted ion chromatogram (XIC) procedures based on the evaluation of
the area of chromatographic peaks associated with the peptide ions extracted from the
total chromatogram were employed for relative quantification of the differently modified
peptides. The chromatographic areas of the H4 46–55 and H3 57–63 unmodified peptide
ions were used for the normalization of H4 and H3 data, respectively (Supplementary
Table S2A,B). Both these peptides were chosen as internal standards since they are located
in unmodified protein regions and are then present in homogeneous form.

ES14 cells were allowed to differentiate by treatment with TSA, while the undifferenti-
ated state was maintained by incubation with DMSO and used as control. Cells grown in
DMSO or treated with TSA were lysed, and the histone proteins were extracted in acidic
conditions and fractionated by SDS-PAGE. Protein bands corresponding to H4 and H3
histones were quantified by densitometric analysis and treated with a suitable amount of
trypsin under strictly controlled conditions. The resulting tryptic peptide mixtures were
analyzed by both MALDI-MS and LC-MS/MS.

Figure 3 shows the partial MALDI-MS spectra of tryptic peptides from histone H4
extracted from DMSO- (Figure 3A) and TSA (Figure 3B)-treated ES14 cells in the m/z region
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where the signals corresponding to the differently modified forms of the 1–17 peptide
were recorded. As expected, both in DMSO and in TSA cells, H4 is multi-acetylated in
the N-terminal portion where, besides the N-terminus, four other acetylation sites are
present at K5, K8, K12, and K16. However, some differences in the two samples could
easily be observed.
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Figure 3. Partial histone H4 MALDI-MS spectra of E14 ES mouse treated cells. m/z signals of
differently modified species relative to peptide 1–17 are highlighted in DMSO- (A), and TSA-treated
cells (B). Peptide 1–17 sequence is reported upper in figure; in red K residues are highlighted, as
potential targets of acetylation, in addition to the N-terminus. Ac: acetyl group. The spectra are
reported in the same scale of intensity.

Although the MALDI-MS analysis does not allow a quantitative evaluation of peptides,
a general increase in acetylated species was observed in the presence of TSA with an
evident change in the relative abundance of the differently acetylated components. In the
DMSO sample, the di-acetylated form of the 1–17 peptide was the main species, while
species bearing four and five acetyl groups were barely detectable. On the contrary, in the
TSA sample, the fully acetylated peptides 1–17 carrying five acetyl groups was the most
abundant species, with the mono- and di-acetylated species being almost undetectable.

Figure 4A,B shows the XIC chromatograms of the fully acetylated peptides 1–17 bear-
ing five acetyl groups (N-terminus, K5, K8, K12, and K16) and the reference peptides 46–55
from DMSO- (Figure 4A) and TSA (Figure 4B)-treated ES14 cells. Relative quantification
of the fully acetylated (1–17) peptide in the two conditions was performed by comparing
the XIC area of the corresponding peptide ions in both states after normalization with the
area of the 46–55 reference peptide ion. The calculated ratio was 66.3 (Table 1), confirming
the occurrence of a higher amount of the fully acetylated form in the TSA-treated cells, as
suggested by MALDI-MS analysis (Figure 3).
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Table 1. Results of LC-MS/MS analysis of H4 1–17 peptide: post-translational modifications (PTMs), m/z signal, calculated
and theoretical molecular weight (MW), retention time (RT), and peptide fold change (FC) are reported for each species.

PTMs m/z Calculated
MW (Da)

Theoretical
MW (Da) RT (min) FCs

(TSA/DMSO)

TSA Ac N-ter 806.98 1611.94 1611.93 26.33
0.05DMSO Ac N-ter 806.98 1611.94 1611.93 25.48

TSA Ac N-ter K16ac 827.98 1653.94 1653.94 28.59
0.34DMSO Ac N-ter K16ac 827.98 1653.94 1653.94 27.66

TSA Ac N-ter K8ac 827.98 1653.94 1653.94 29.10
0.45DMSO Ac N-ter K8ac 827.98 1653.94 1653.94 28.20

TSA Ac N-ter K12ac 827.98 1653.94 1653.94 28.28
0.73DMSO Ac N-ter K12ac 827.98 1653.94 1653.94 28.45

TSA Ac N-ter K5acK16ac 848.98 1695.95 1695.95 31.21
3.28DMSO Ac N-ter K5acK16ac 848.98 1695.95 1695.95 30.33

TSA Ac N-ter K8acK16ac 848.98 1695.95 1695.95 31.72
2.12DMSO Ac N-ter K8acK16ac 848.98 1695.95 1695.95 30.84

TSA Ac N-ter K5acK8acK16ac 869.99 1737.96 1737.96 34.94
24.28DMSO Ac N-ter K5acK8acK16ac 869.99 1737.96 1737.96 34.12

TSA Ac N-ter K5acK12acK16ac 869.99 1737.96 1737.96 35.67
20.56DMSO Ac N-ter K5acK12acK16ac 869.99 1737.96 1737.96 34.81

TSA Ac N-ter K8acK12acK16ac 869.99 1737.96 1737.96 37.05
54.51DMSO Ac N-ter K8acK12acK16ac 869.99 1737.96 1737.96 36.25

TSA Ac N-ter K5acK8acK12acK16ac 890.99 1779.97 1779.97 39.02
66.31DMSO Ac N-ter K5acK8acK12acK16ac 890.99 1779.97 1779.97 38.26

As stated above, multi-acetylated peptides showing the same mass might consist of a
heterogeneous mixture of isobaric species displaying a different distribution of modifying
groups that are indistinguishable in MALDI-MS analysis. The H4 tryptic digest was then
analyzed by LC-MS/MS, and both the modification sites and the relative abundance of the
modified species were assigned based on their retention time and fragmentation spectra
following the XIC procedure. When the partially acetylated forms of the 1–17 peptide
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were analyzed, a complete resolution and identification of the isobaric species could be
obtained. As an example, Figure 4C,D shows the XIC chromatograms of the ion at m/z
869.99 corresponding to the doubly charged peptides 1–17 carrying four acetyl groups
in DMSO- (Figure 4C), and TSA (Figure 4D)-treated ES14 cells. In both conditions, the
modified peptide originated three isobaric species differing in the distribution of the
acetylated residues that could be distinguished by their different retention times (Peaks 1,
2, and 3 in Figure 4C,D).

According to their fragmentation spectra, the three species could easily be identified.
Peak 1 corresponds to the peptide acetylated at the N-terminus, K5, K8, and K16. Peak 2
was associated with the peptide carrying acetyl groups at the N-terminus, K5, K12, and
K16; and peak 3 consists in the 1–17 peptide bearing acetylation at the N-terminus K8, K12,
and K16. The fragmentation spectra of Peak 1, 2, and 3 from the TSA sample are reported
in Figure 5.
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Figure 5. Fragmentation spectra of 1–17 peptide carrying four acetyl groups (including the N-terminus) in TSA-grown cells
of (A) Peak 1 relative to K5acK8acK16ac (RT: 34.94 min), (B) peak 2 relative to K5acK12acK16ac (RT: 35.67 min), and (C)
peak 3 relative to K8acK12acK16ac (RT: 37.05 min). In red, the differing daughter ions are highlighted.

The XIC chromatograms were then used to evaluate the different abundance of each
species in the two conditions using the area of the 46–55 peptide ion (Figure 4C,D) as an
internal reference for normalization. Again, a general increase in the amount of acetylated
species in the presence of TSA was observed. However, some differences could be detected
in the three isobaric species. When the normalized areas of the three peaks were compared
in the two conditions, Peak 1 increased by about 24 times in the TSA sample, Peak 2 by
about 21 times, and Peak 3 by about 54 times. Therefore, besides a general increase in the
acetylated level, the TSA treatment induces a higher effect on the fragment bearing acetyl
groups at K8, K12, and K16.

Moreover, according to preliminary MALDI-MS analyses, the low acetylated com-
ponents, i.e., the mono- and di-acetylated peptides, are the least abundant species in the
TSA sample.
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2.4. Analysis of H3 Acetylation Landscape in DMSO vs. TSA

The same procedure was also applied to investigate the acetylation and methylation
state of histone H3 during TSA-induced differentiation. Differing from H4, histone H3 is
reported to be largely subjected to methyl modifications [26], and then, besides the effect
of acetylation, we also evaluated TSA’s indirect effect on H3 methylation patterns. In this
particular case, MALDI-MS analyses were not sufficient since the increase in molecular
weight associated with tri-methylation of lysine residues (+42 Da) is not distinguishable
from acetylation in MALDI-MS spectra. H3 samples from TSA- and DMSO-treated ES14
cells were digested under strictly controlled conditions, and the resulting peptide mixtures
were analyzed by LC-MS/MS on a high-resolution mass spectrometer to uniquely identify,
localize, and quantify each specific modified species.

Data recorded in the LC-MS/MS analyses were effective for distinguishing the iso-
baric forms of the modified peptides. For example, the mono-acetylated and singly
tri-methylated species of the H3 fragment 9–17 are discussed in detail. Peptides 9–17,
containing two lysine residues (K9 and K14), generated three isobaric species showing
∆M = +42 Da and a nominal mass of 943 Da, which were easily separated by reverse-phase
chromatography. Figure 6A,B shows the corresponding XIC chromatograms, in which
the three peaks were distinguishable in both conditions, according to their retention times
and specific fragmentation spectra. The peak with the lowest retention time (20.74 min) in
DMSO and TSA samples was assigned to the tri-methylated peptides 9–17 by its specific
fragmentation spectra, reported in Figure 6C, in which diagnostic peaks assigned to tri-
methyl lysine 9 are circled in red. On the other hand, the fragmentation spectrum of second
peak at 23.47 min (Figure 6D) showed the occurrence of daughter ions relative to acetyl
K9. Finally, the peak at the highest retention times (24.06 min in the DMSO and 22.07 min
in TSA samples) was assigned to the peptide ion 9–17 acetylated at K14 (data not shown).
This lysine was never found as a tri-methylated residue.
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Figure 6. Extracted ion chromatogram (XIC) of tryptic peptide ion 9–17 of H3 histone from E14 mouse ES cells treated
with DMSO (A) or TSA (B). Peak derived from the doubly charged 472.2867 m/z was detected as the species carrying a
trimethylation on K9 (lowest RT), 472.2705 m/z corresponded to the acetyl group on K9 (middle RT), 472.2687 m/z was
relative to K14 acetylated (highest RT), and reference peptides 57–63 eluting with an RT about 53 min is also reported. The
fragmentation spectra of tri-methylated (Me3) (C) and acetylated species (D) are also reported. Peptide 9–17 sequence is
reported upper in figure; in red K residues are highlighted, as potential targets of PTMs. In red circles, the specific daughter
ions are highlighted. Me: methyl group; Ac: acetyl group.

Once the identity of the isobaric peaks was established, their relative abundance in
the two conditions was calculated according to the XIC procedure, using the 57–63 peptide
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ion area for normalization. The species carrying tri-methylated K9 was found to be about
six times decreased in TSA-treated samples. In contrast, the mono-acetylated components
on K9 and K14 were about two- and threefold higher, respectively, suggesting that TSA
treatment increased acetylation at K9, with a corresponding decrease of tri-methylation at
the same residue.

Measurement of the fully acetylated 9–17 peptide showed a 28-fold increase in the
TSA sample in respect to DMSO-treated cells. A summary of the results obtained on 9–17
peptide is given in Table 2.

Table 2. Results of LC-MS/MS analysis of H3 9–17 peptide: post-translational modifications (PTMs), m/z signal, calculated
and theoretical molecular weight (MW), retention time (RT), and peptide fold change (FC) are reported for each species.

PTMs m/z Calculated MW (Da) Theoretical MW (Da) RT (min) FCs (TSA/DMSO)

TSA / 451.2642 900.51 900.51 18.75
0.18DMSO / 451.2649 900.51 900.51 20.01

TSA K9me 458.2720 914.53 914.53 19.28
0.14DMSO K9me 458.2714 914.53 914.53 20.50

TSA K9me2 465.2796 928.55 928.55 19.57
0.15DMSO K9me2 465.2796 928.55 928.55 20.84

TSA K9me3 472.2879 942.56 942.56 19.46
0.16DMSO K9me3 472.2867 942.56 942.56 20.74

TSA K9ac 472.2689 942.52 942.52 21.49
1.90DMSO K9ac 472.2705 942.52 942.52 23.47

TSA K14ac 472.2692 942.52 942.52 22.07
3.16DMSO K14ac 472.2687 942.52 942.52 24.06

TSA K9acK14ac 493.2743 984.54 984.54 25.44
28.16DMSO K9acK14ac 493.2735 984.54 984.54 27.75

TSA K9meK14ac 479.2776 956.54 956.54 22.59
2.68DMSO K9meK14ac 479.2765 956.54 956.54 24.56

TSA K9me2K14ac 486.2887 970.56 970.56 22.88
4.72DMSO K9me2K14ac 486.2847 970.56 970.56 24.88

The same outcome was observed for the 18–26 peptide doubly acetylated at K18
and K23, which exhibited a 13-fold increase under differentiation conditions, i.e., in the
presence of TSA-, as compared to the DMSO-treated cells. This effect of TSA promoting
multiple acetylation species is in agreement with that observed for H4.

3. Discussion

Besides its role in genome packaging, chromatin has a highly dynamic nature in
which histones’ post-translational modifications play an active role in modulating gene
activation and expression. In this study, we examined lysine residues’ acetylation and
methylation global profiles of H3 and H4 histones from E14 mouse embryonic stem cells
treated with either trichostatin A (TSA) or dimethylsulfoxide (DMSO) by using a newly
developed limited-proteolysis mass-spectrometry protocol. E14 mouse embryonic stem
cells are well-characterized and widely used, representing a good model for genome-wide
studies, recently also by next-generation sequencing analysis [27].

Trichostatin A is reported to be a cell differentiation promoter, mainly acting as a
histone deacetylase inhibitor. The acetylation of histone, mostly H3 and H4, partially
neutralizes the positive charges of lysine residues, decreasing their electrostatic interaction
with DNA phosphate groups, relaxing chromatin, and allowing the recruitment of the
transcriptional machinery for the activation of gene expression [28,29]. The global effects
induced by TSA treatment on lysine acetylation and methylation in H3 and H4 has not been
investigated in detail. More generally, studying histone PTMs is essentially a challenging
task due to the high content of basic amino acids that, following tryptic digestion, originate
many short peptides not amenable to mass spectrometry analyses. We developed an
optimized procedure based on limited-proteolysis mass spectrometry to identify and
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quantify H4 and H3 PTMs using standard chicken core histone as a model. This procedure
effectively produced tryptic peptides suitable in size for MS analyses and provided high
sequence coverage of the two histone proteins.

Once optimized, the protocol was applied to investigate lysine acetylation and methy-
lation profiles in H3 and H4 histones extracted from ES14 cells treated with either TSA or
DMSO as control. In agreement with the biological role of TSA, a general increase in the
highly acetylated forms of H3 and H4 histones following TSA treatment was observed with
an accumulation of the multiple-acetylated peptides. The fully acetylated H4 N-terminal
peptides 1–17 bearing five acetyl groups and the doubly acetylated 9–17 species from H3
showed a large increase in the acetylation state, up to 66-fold in H4 and 28-fold in H3. This
trend was confirmed by the decrease in the acetylation level of the less-modified species.
In H4, the relative abundance of the mono-acetylated peptide at K8 or K16 decreased in
TSA cells in respect to DMSO, while acetylation at K12 was roughly unchanged. Similarly,
in H3, the amount of the 18–26 peptide carrying a single acetylation at K18 or K23 was
lower in TSA than in DMSO, while the di-acetylated species with both residues modified
increased by about 13 times in TSA-treated cells.

A detailed investigation of multiple modified peptides confirmed that they consist
of a heterogeneous mixture of isobaric species carrying the modifying groups at different
lysine residues. Moreover, tri-methylated or mono-acetylated lysine residues exhibited
an identical mass difference (+42 Da), making their identification challenging. In these
cases, MALDI-MS analyses could not be used; however, LC-MS/MS procedures were
instrumental to uniquely identify, localize, and quantify each specific modified species. For
example, the three modified forms of the H4 1–17 peptide bearing three acetyl groups and
the three isobaric species of the doubly acetylated H3 9–17 peptide could be easily sepa-
rated, identified, and their relative abundance measured. Analogously, the tri-methylated
peptides 9–17 from H3 was distinguished from the mono-acetylated form by its specific
fragmentation spectra.

Measurement of the relative abundance of H4 isobaric species revealed that TSA
treatment induced different effects on the modified peptides bearing acetyl groups at
K5, K8, K12, and K16 that exhibited different fold change upon incubation with the
cell differentiation promoter. Moreover, quantification of the tri-methylated H3 peptide
demonstrated that methylation of histone residues was also affected by TSA treatment, as
increasing acetylation at K9 provided a corresponding decrease of tri-methylation at the
same residue.

These findings suggest that TSA inhibition on HDAC activities elicits a concerted
effect on the global acetylation within each histone molecule, more than affecting the
acetylation state of a single lysine residue. It is well known that the combination of
histone modification is a critical factor in gene expression regulation [30]. Several targeted
mutagenesis experiments on lysine residues 5, 8, and 12 in H4 showed that changes in
gene expression levels are due to cumulative rather than single effects [31]. Moreover,
acetylation and deacetylation processes carried out by HATs (histone acetyltransferases)
and HDACs (histone deacetylases), respectively, are concerted and finely tuned during the
cell cycle and differentiation [32]. According to our findings, the synergy of K8, K12, K16
has been previously described preponderantly in SUM159 and MCF7 cells treated with
butyrate, another HDAC inhibitor. Furthermore, a progressive and hierarchical order of
H4 acetylation following K20 di-methylation was observed; moreover, K5 was found to be
the last lysine acetylated by HATs and the first deacetylated by HDACs [33].

Data retrieved on H3 show the exclusive acetylation of K4 and K27 in the TSA sample.
Guillemette et al. found that H3K4Ac modification enriched promoters of actively tran-
scribed genes in Saccharomyces cerevisiae and human cells by ChIP experiments [34], while
Sato and colleagues observed an H3K27Ac accumulation in the first stage of zebrafish
embryo development [35]. These observations might indicate the co-occurrence of specific
molecular signaling at the level of individual lysine residues for chromatin relaxation.
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Finally, our data on H3 suggested an indirect effect of TSA on lysine methylation, a
further hallmark of gene expression regulation. H3K4Me3 and H3K9Me3 are indicated as
the signature of transcription activation and repression, respectively, in human cells. Mono-,
di-, and tri-methylated K9 were reported as gene silencing marks [36–38] and were found
downregulated in TSA treated cells. Crosstalk between different modifications of histone
Lys residues is well documented. Recently, Wu et al. demonstrated that dimethylation at
H3K4me2 occurs more slowly when the adjacent K14 is acetylated, and this residue was
found particularly resistant to deacetylation in agreement with our results [39]. Moreover,
it was demonstrated that in vivo, several multiprotein complexes such as CoREST NuRD,
MiDAC, and the Sin3a complex are composed of different enzymatic players affecting
epigenetic modifications [40,41].

Altogether identification and relative quantification of H4 and H3 modifications
suggest that TSA treatment induced hyperacetylation of Lys residues, with a concomitant
effect also on methylation. These findings might shed further light on the cryptic message
of the “histone code” as a global effect of crosstalk between all modifications and the other
epigenetic players.

Finally, the results presented in this work showed the efficacy of the newly devel-
oped limited proteolysis-mass spectrometry protocol to generate suitable tryptic peptides
providing an effective and general strategy to investigate a large number of different
histone PTMs.

4. Conclusions

In conclusion, this work has presented a new MS-based strategy to investigate histone
PTMs. The protocol has been applied in the study of histone acetylation and methylation
profiles of E14 mouse embryonic stem cells either grown in TSA- or DMSO-enriched
media. The results showed the efficacy of the protocol in the generation of suitable tryptic
peptides with an optimized, in-gel, limited proteolysis approach. This procedure effectively
produced tryptic peptides suitable in size for MS analyses and can be successfully applied
in the investigation of different epigenetic PTMs. In TSA-treated cells, the identification
and relative quantification of H4 and H3 histone acetylated and methylated peptides
have revealed the largest increase of hyperacetylated species, consisting of globally active
chromatin hallmarks.

5. Materials and Methods
5.1. Standardization of In Situ Limited Proteolysis Protocol

The set up of limited proteolysis conditions on histone H3 and H4 was carried out
on standard Core Histones from chicken (Merck Millipore, US-MA). Briefly, 4 µg of core
histones were loaded on a 15% acrylamide/bis-acrylamide SDS-PAGE gel (Supplementary
Figure S1). The bands corresponding to H3 and H4 were cut, and in situ digestions were
performed by using different trypsin (Sigma Aldrich, St. Louis, Missouri, USA) amounts
(10, 50, or 100 ng of trypsin/band) and a short incubation time (2 h) to obtain peptides
of appropriate length for MS analyses and the highest histone sequence coverage. In-gel
hydrolyses were carried out in ammonium bicarbonate 50 mM. Peptides were extracted in
acetonitrile and formic acid 0.2% and vacuum dried with a SpeedVac system.

5.2. Mass Spectrometry Analyses and Relative Quantification

Mass spectrometry techniques were employed to analyze histone peptide mixtures
obtained from in situ hydrolysis. Particularly, MALDI-TOF analyses were performed
using a MALDI-TOF/TOF 4800 (AB-SCIEX) mixing 1:1 samples with 10 mg/mL α-cyano-
4-hydroxycinnamic acid matrix. Samples were dissolved in a 2% TFA matrix in 70%
acetonitrile, 30% TFA 0.2%. Instrument setup was positive reflectron mode; MS acquiring
range was set up from 600 to 5000 m/z.

NanoLC-MS/MS analyses were performed using an Easy-nLC 1000 Proxeon chro-
matographer coupled to LTQ Orbitrap XL (Thermo Fisher Scientific, US-MA) mass spec-
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trometer. Peptide mixtures, dissolved in 2% TFA, were injected onto a capillary chro-
matographic system consisting of a 2-cm-long trapping column (C18, ID 100 µm, 5 µm,
Thermo Fisher Scientific) and a 20-cm-long C18 reverse-phase silica capillary column (ID
75 µm, 5 µm, Nanoseparations). A chromatographic separation based on a gradient lasting
overall 125 min was used for peptide fractionation, employing a 250 nL/min flow rate
of the following acetonitrile-based eluents: solvent A (0.2% formic acid, 2% acetonitrile
LC-MS-grade in water) and solvent B (0.2% formic acid, 95% acetonitrile LC-MS-grade).
MS analysis was performed in data-dependent acquisition (DDA) method with MS scans
range from 300 to 1800 m/z followed by isolation and CID fragmentation of the five most
intense MS ions (+2,+3,+4 charged) with a dynamic exclusion window of 40 s.

The acquired LC-MS/MS data were further processed with the software Xcalibur
v4.2.47. The extracted ion chromatogram (XIC) was obtained for each ion, and each
respective area was normalized by using a specific histone non-modified peptide as internal
standard. In particular, for H4-deriving peptides, each extracted ion area was divided for
the area of peptides 46–55, while for peptides genereting from H3, the reference species was
the area of 57–63 peptide ion. TSA/DMSO ratios were obtained by dividing the normalized
areas for each species in the respective condition.

5.3. Mouse Embryonic Stem Cells (ES14)

Mouse embryonic stem cells, ES14, were grown on 01% gelatin in DMEM high glucose
(Gibco, Thermo Fischer Scientific) supplemented with 15% fetal bovine serum (Gibco),
0.1 mM 2(β)-mercaptoethanol (Sigma Aldrich), 1 mM NEAA (Gibco), 2 mM L-glutamine
(Gibco), and 1000 units/mL leukemia inhibitory factor (Lif) and grown at 37 ◦C with 5%
CO2 in a humidified incubator. Then the ES14 cells were treated with 0.1% DMSO and
100 nM TSA for 24 h. Live phase-contrast images were acquired using a Nikon Eclipse
microscope.

5.4. RNA Extraction and qPCR Analysis

Total RNA isolation and qPCR analysis have been performed as previously de-
scribed [42,43]. The following primers were used for Oct4 amplification (forward) 5′-
CCGTGTGAGGTGGAGTCTGGAGAC-3′ and (reverse) 5′- CGCCGGTTACAGAACCATAC
TCG-3′; Pdx1 amplification (forward) 5′- GCTCACCTCCACCACCACCTTCC-3′ and (re-
verse) 5′- GGGTCCTCTTGTTTTCCTCGGG-3′; Gapdh amplification (forward) 5′-AATGGT
GAAGGTCGGTGTG-3′ and (reverse) 5′- GAAGATGGTGATGGGCTTCC -3′. Each sample
was run in triplicate and normalized to the expression of the housekeeping (Gapdh) gene.
Statistical significance between groups was assessed by Student’s t-test. Data are expressed
as means ± standard deviation (SD). All experiments were repeated at least three times. A
p-value < 0.05 was considered to be statistically significant.

5.5. Histone Extraction

Core histones were extracted from ES14 cells by performing a fractionated lysis. ES14
cells were firstly resuspended in a hypotonic lysis buffer (10 mM Hepes, 10 mM KCl,
0.1 mM EDTA 0.5 mM PMSF, 0.5% Nonidet-P40 (NP-40), proteases cocktail inhibitors) in
a 1:40 v/v ratio and were left for 15 min on ice, 10 min on a rotator at 4 ◦C. Finally, the
samples were centrifuged for 5 min at 2000 rpm, cytosolic extracts were discarded, and
nuclei pellets were recovered and washed with Dulbecco’s phosphate buffer saline (DPBS)
and centrifuged for 20 min at 3750 rpm at 4◦C. Supernatants were removed, and nuclei
were resuspended in DPBS and 0.8 M HCl solution, put on a wheel at 4 ◦C for 5 h, and
then centrifuged for 10 min at 4 ◦C and 13,200 rpm. The histone’s core was extracted in
0.4 M HCl and dialyzed by 3500 Molecular Weight Cut-Off (MWCO) membranes against
0.1 M acetic acid. Finally, histones core samples were dried in a vacuum SpeedVac system
and then resuspended in water.
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5.6. Densitometric Analysis

Known amounts (1, 2, 4, and 8 µg) of chicken core histones were loaded on a 15%
acrylamide/bis-acrylamide SDS-PAGE gel (Supplementary Figure S2). Each histone of
the core was separated, and each band was quantified by densitometry analysis by using
Quantity One 1-D Analysis Software v4.6.8 (Biorad, Hercules, CA, USA). Each band
intensity was associated with the relative amount of core histone, allowing a calibration
curve construction for each core subunit. The histone’s core extracted from ES14 was
fractionated by SDS-PAGE (Supplementary Figure S3), and each Coomassie-stained band
was quantified by densitometry analysis as described for the standard preparation. By
interpolating the OD (optical density) of each band with the respective calibration curve, the
relative amount of each extracted histone species was determined, and, as a consequence,
the trypsin amount to be used for in situ digestion was calculated, with respect to the E:S
ratio defined on standard proteins.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422
-0067/22/4/2063/s1, Figure S1: Coomassie Blue-stained 15% SDS-PAGE of 4 µg of standard
chicken core histone (wells 1–9). Each histone band is reported. M: molecular weight size markers.
Figure S2: Coomassie Blue-stained 15% SDS-PAGE of 1 µg (wells 1 and 5), 2 µg (wells 2 and 6), 4 µg
(wells 3 and 7), 8 µg (wells 4 and 8) of standard chicken core histone. Each histone band is reported.
M: molecular weight size markers. Figure S3: Coomassie Blue-stained 15% SDS-PAGE fractionation
of acid extraction of ES14 core histones grown in TSA and DMSO conditions. M: molecular weight
size markers. Table S1A MALDI-MS and LC-MS/MS data of peptides tryptic mixture from H4
chicken histone, Table S1B: MALDI-MS and LC-MS/MS data of peptides tryptic mixture from H3
chicken histone, Table S2A: Total peptide table of LC-MS/MS analysis of H4 histone, Table S2B: Total
peptide table of LC-MS/MS analysis of H3 histone.
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