
February 8, 2008 11:58 WSPC/IJGMMP-J043 00263

International Journal of Geometric Methods in Modern Physics
Vol. 5, No. 1 (2008) 33–47
c© World Scientific Publishing Company

THE SCALAR WAVE EQUATION IN A NON-COMMUTATIVE
SPHERICALLY SYMMETRIC SPACE-TIME

ELISABETTA DI GREZIA,∗,† GIAMPIERO ESPOSITO‡
and GENNARO MIELE§,‡
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Recent work in the literature has studied a version of non-commutative Schwarzschild
black holes where the effects of non-commutativity are described by a mass function
depending on both the radial variable r and a non-commutativity parameter θ. The
present paper studies the asymptotic behavior of solutions of the zero-rest-mass scalar
wave equation in such a modified Schwarzschild space-time in a neighborhood of spatial
infinity. The analysis is eventually reduced to finding solutions of an inhomogeneous
Euler–Poisson–Darboux equation, where the parameter θ affects explicitly the functional
form of the source term. Interestingly, for finite values of θ, there is full qualitative
agreement with general relativity: the conformal singularity at spacelike infinity reduces
in a considerable way the differentiability class of scalar fields at future null infinity.
In the physical space-time, this means that the scalar field has an asymptotic behavior
with a fall-off going on rather more slowly than in flat space-time.

Keywords: Wave equation; conformal infinity; non-commutative geometry.

1. Introduction

The present paper, devoted to the scalar wave equation in a non-commutative
Schwarzschild space-time, is strongly motivated by three branches of modern
gravitational physics:

(i) In their investigation of quantum amplitudes in black-hole evaporation [1], the
authors of [2, 3] have considered emission of scalar radiation in a black-hole
collapse problem, assuming non-spherical perturbations of the scalar field φ on
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the final surface ΣF , and that the intrinsic three-metric describes an exactly
spherically-symmetric spatial gravitational field.

(ii) In general relativity, unexpected features of the asymptotic structure are
already found to occur: massless scalar fields which have a Bondi-type expan-
sion in powers of r−1 near null past infinity do not have such an expansion
near future null infinity; solutions which have physically reasonable Cauchy
data may fail to have Bondi-type expansions near null infinity [4].

(iii) According to the models studied in [5-7], the non-commutativity of spacetime
can be encoded in the commutator of operators corresponding to spacetime
coordinates, i.e. (the integer D below being even)

[xµ, xν ] = iθµν , µ, ν = 1, 2, . . . , D (1.1)

when the antisymmetric matrix θµν is taken to have a block-diagonal form

θµν = diag(θ1, . . . , θD/2)

with

θi = θ

(
0 1

−1 0

)
∀ i = 1, 2, . . . , D/2, (1.2)

the parameter θ having dimension of length squared and being constant. As shown
in [6], the constancy of θ is very important to obtain a consistent treatment
of Lorentz invariance and unitarity. The authors of [5] solve the Einstein equa-
tions with mass density of a static, spherically symmetric, smeared particle-like
gravitational source as (hereafter, in agreement with our earlier work [8], we use
G = c = � = 1 units)

ρθ(r) =
M

(4πθ)
3
2
e−

r2
4θ , (1.3)

which therefore plays the role of matter source. Their resulting spherically
symmetric metric is

ds2 = −
(

1 − 2m(r, θ)
r

)
dt2 +

(
1 − 2m(r, θ)

r

)−1

dr2 + r2(dΘ2 + sin2 Θdϕ2),

(1.4)

where, in terms of the lower incomplete gamma function

γ

(
3
2
,
r2

4θ

)
≡

∫ r2
4θ

0

√
te−t dt, (1.5)

we define the mass function [5, 8]

m(r, θ) ≡ 2M√
π

γ

(
3
2
,
r2

4θ

)
. (1.6)

Thus, if one tries to study emission of scalar radiation as in [2, 3] but in the
presence of a non-vanishing θ parameter (cf. [8] for the pure gravity case), one is
naturally led to study a scalar wave equation in a spherically symmetric spacetime
whose metric is affected by θ, which is the goal of the present paper. Section 2 builds
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conformal infinity for the space-time with metric (1.4). Section 3, following [4], turns
the scalar wave equation into an inhomogeneous Euler–Poisson–Darboux equation.
Section 4 solves such an equation and shows under which conditions there is full
qualitative agreement with general relativity. Concluding remarks and open prob-
lems are presented in Sec. 5, while the appendices describe relevant mathematical
details.

2. Conformal Infinity

Inspired by general relativity, we define a new radial coordinate r∗ in such a
way that

dr∗ =
dr

1 − 2m(r,θ)
r

. (2.1)

This equation is solved by

r∗ = r + 2
∫

m(r, θ)
r − 2m(r, θ)

dr, (2.2)

and the metric (1.4) can be re-expressed in the form

ds2 = −
(

1 − 2m(r, θ)
r

)
dudv + r2(dΘ2 + sin2 Θdϕ2), (2.3)

where θ ∈ [0, π], ϕ ∈ [0, 2π], and we have defined the “retarded” coordinate

u ≡ t − r∗ ∈ ] −∞,∞[, (2.4)

and the “advanced” coordinate

v ≡ t + r∗ ∈ ] −∞,∞[. (2.5)

The equations (2.2), (2.4) and (2.5) yield

2
(v − u)

=
1

r
[
1 + 2

r

∫ m(r,θ)
r−2m(r,θ)dr

] . (2.6)

To lowest order, Eq. (2.6) is solved by 1
r ≈ 2

(v−u) , and on defining

F (u, v, θ) ≡
∫

m(r, θ)
r − 2m(r, θ)

dr

∣∣∣∣
r= (v−u)

2

, (2.7)

one finds, by iterated approximations, the asymptotic expansion

1
r
∼ 2

(v − u)
+ 8

F (u, v, θ)
(v − u)2

+ O
(

F 2(u, v, θ)
(v − u)3

)
. (2.8)

The limit v → +∞ with u, Θ, ϕ fixed defines future null infinity I+; the limit
u → +∞ with v, Θ, ϕ fixed defines past null infinity I−, while the limit u → −∞,

v → +∞ with (u + v), Θ, ϕ fixed defines spacelike infinity, i.e. the point I0. The
figures below show the behavior of the denominator y ≡ 1 − 2m(r,θ)

r in Eq. (2.1)
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for various values of θ. Interestingly, the occurrence of θ does not introduce new
singularities with respect to general relativity.

It is actually simpler to introduce the coordinates u and v separately, which
yields the conformally rescaled, “unphysical” metrics (here f ≡ r−1, and dΣ2 is the
metric on a unit two-sphere)

d s̃2 = f2
[−(1 − 2mf)du2 − 2du dr + r2dΣ2

]
= −(f2 − 2mf3)du2 + 2du df + dΣ2, (2.9)

and

dS̃2 = −(f2 − 2mf3)dv2 − 2dv df + dΣ2. (2.10)

These metrics are manifestly regular and analytic on their respective hypersurfaces
f = 0, since their determinants are equal to − sin2 Θ for all f , including f = 0.
The physical space-time corresponds to f > 0 in (2.9), and we can extend the
manifold to include I+, given when f = 0. Similarly, in (2.10), the physical space-
time corresponds to f > 0 and can be extended to include I−, given when f = 0.
Only the boundary I ≡ I+ ∪ I− is adjoined to the space-time.

In common with general relativity, we note here a difficulty that is encountered
if we try to identify I− with I+. If we do extend the region of definition of (2.9) to
include negative values of f , and then make the replacement f → −f , we see that
the metric has the form (2.10) (with u in place of v) but with a mass function −m in
place of m. Thus, the extension across I involves a reversal of the sign of the mass
function, which is incompatible with Eq. (1.6) unless we advocate a discontinuity in
the derivative of the curvature [9] across I. It is therefore not reasonable to identify
I+ with I−.

To sum up, we have two disjoint boundary hypersurfaces I+ and I−, each of
which is a cylinder with topology S2×R. It is clear from (2.9) and (2.10) that each
of I± is a null hypersurface (the induced metric at f = 0 being degenerate). These
null hypersurfaces are generated by rays (given by Θ, ϕ = constant, f = 0) whose
tangents are normals to the hypersurfaces. These rays may be taken to be the R’s
of the topological product S2 × R.

0 10 20 30 40 50
r
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0

y

Fig. 1. Plot of the denominator y ≡ 1 − 2m(r,θ)
r

in Eq. (2.1) when θ = 10−7.
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Fig. 2. Plot of the denominator y ≡ 1 − 2m(r,θ)
r

in Eq. (2.1) when θ = 10−4.
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Fig. 3. Plot of the denominator y ≡ 1 − 2m(r,θ)
r

in Eq. (2.1) when θ = 10.
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Fig. 4. Plot of the denominator y ≡ 1 − 2m(r,θ)
r

in Eq. (2.1) when θ = 104.

3. Inhomogeneous Euler–Poisson–Darboux Equation

The coordinates (u, v) defined in (2.4) and (2.5) are not the most convenient for
discussing the limits which define conformal infinity [4]. We therefore define (cf. [4])
a function wθ(x) by requiring that wθ(x = r−1) should be equal to r∗ in (2.2), i.e.

wθ(x) ≡
∫

dx

x2(2xm(x−1, θ) − 1)
, (3.1)
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which implies

gθ(x) ≡ −w′
θ(x) =

1
x2(1 − 2xm)

. (3.2)

Equation (3.1) defines a one-parameter family of monotone decreasing C∞ functions
taking values over the whole real line. The monotone decreasing character of wθ is
proved by imposing that 1− 2xm > 0. This is indeed satisfied for sufficiently small
values of θ, so that 1− 2xm ≈ 1− 2xM , which is positive provided x < 1

2M . A C∞

inverse function therefore exists, which makes it possible to define new coordinates
a, b according to (cf. [4])

wθ(x = a) ≡
∫

dx

x2(2xm − 1)

∣∣∣∣
x=a

=
v

2
=

t

2
+

r∗

2
, (3.3)

wθ(x = b) ≡
∫

dx

x2(2xm − 1)

∣∣∣∣
x=b

= −u

2
= − t

2
+

r∗

2
, (3.4)

where the integrals (3.3) and (3.4) involve the mass function m = m(r = x−1). On
defining f ≡ r−1 as in Sec. 2, one finds from (2.2), (3.1), (3.3) and (3.4) that

wθ(f(a, b)) = r∗(a, b) = wθ(x = a) + wθ(x = b). (3.5)

Moreover, from (3.2)–(3.4), the metric (2.3) in the (u, v, Θ, ϕ) coordinates takes the
following form in the (a, b, Θ, ϕ) coordinates:

ds2 = 4(1 − 2mf)g1(a)g2(b)da db + f−2dΣ2, (3.6)

having defined

M1(a) ≡ m(a−1, θ), g1(a) ≡ a−2(1 − 2aM1(a))−1 = gθ(a), (3.7)

M2(b) ≡ m(b−1, θ), g2(b) ≡ b−2(1 − 2bM2(b))−1 = gθ(b). (3.8)

In the analysis of the scalar wave equation ψ = 0, we now rescale the scalar
field ψ according to

ψ̃ = Ω−1ψ, (3.9)

where Ω is a real positive function such that

Ω = 0, Ω,k 
= 0, gikΩ,iΩ,k = 0 on I±. (3.10)

The “unphysical” scalar field ψ̃ satisfies the conformally invariant wave equation in
4 spacetime dimensions, i.e. (

+
R

6

)
ψ̃ = 0, (3.11)

where is the D’Alembert wave operator [4], and R is the scalar curvature in the
“unphysical” space-time with line element

d s̃2 = Ω2ds2 = 4Ω2(1 − 2mf)g1(a)g2(b)da db + Ω2f−2dΣ2. (3.12)
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On choosing the conformal factor in the form Ω = (a+ b)f , we therefore obtain the
metric tensor

gµν =


0 G(a, b) 0 0

G(a, b) 0 0 0
0 0 (a + b)2 0
0 0 0 (a + b)2 sin2 Θ

 (3.13)

having introduced

m(a, b) ≡ 2M√
π

γ

(
3
2
,

1
4θf2(a, b)

)
, (3.14)

F (a, b) ≡ f2(a, b) − 2m(a, b)f3(a, b), (3.15)

G(a, b) ≡ 2(a + b)2g1(a)g2(b)F (a, b). (3.16)

By virtue of spherical symmetry, we look for solutions of Eq. (3.11) as a linear
combination of factorized terms as

ψ̃θ(a, b, Θ, ϕ) =
χθ(a, b)
(a + b)

Ylm(Θ, ϕ), (3.17)

where Ylm(Θ, ϕ) are the spherical harmonics on S2. Substitution of the ansatz (3.17)
into Eq. (3.11) gives

L[χ] = Sθ(a, b)χ, (3.18)

where L is the Euler–Poisson–Darboux operator [4]

L ≡ ∂2

∂a∂b
− l(l + 1)

(a + b)2
, (3.19)

which depends implicitly on θ through a, b defined in (3.3), (3.4), while Sθ is the
θ-dependent source term

Sθ(a, b) ≡ l(l + 1)

(
G
2 − 1

)
(a + b)2

+
1
12

GR(θ)

= l(l + 1)
[
g1(a)g2(b)F (a, b) − 1

(a + b)2

]
+

1
6
(a + b)2g1(a)g2(b)F (a, b)R(θ), (3.20)

having denoted by R(θ) the scalar curvature in Eq. (B24). Inspired by [4], we now
write the solution of Eq. (3.18) as the sum χ0 +L−1S, where χ0 is the general solu-
tion of the homogeneous Euler–Poisson–Darboux equation L[χ] = 0, while L−1 is an
integral operator with kernel given by the Riemann–Green function (see appendix)
of L [10]:

χθ(a, b) = χ0(a, b) −
∫ ∫

D(a,b)

R(a, b; a′, b′)Sθ(a′, b′)χθ(a′, b′)da′ db′, (3.21)
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having defined

D(a, b) ≡ {a′, b′ : 0 ≤ a ≤ a′ ≤ b′ ≤ b}. (3.22)

As is described in [4], χ0(a, b) has the general form

χ0(a, b) = (a + b)l+1

[(
∂

∂a

)l
A(a)

(a + b)l+1
+

(
∂

∂b

)l
B(b)

(a + b)l+1

]
, (3.23)

with A and B arbitrary Cl+1 functions. Moreover, the Riemann–Green function of
the operator L defined in (3.19) is obtained from the Legendre polynomial of degree
l according to [11]

R(a, b; a′, b′) = Pl(z(a, b; a′, b′)), (3.24)

having defined [4]

z(a, b; a′, b′) ≡ (a − a′)(b − b′) + (a + b′)(a′ + b)
(a + b)(a′ + b′)

. (3.25)

4. Qualitative Analysis of the l = 0 Solution

Hereafter we consider for simplicity the case l = 0; the comparison with our Ref. [4]
is then easier, and all main features are already displayed. Strictly, we consider an
asymptotic characteristic initial-value problem where data are specified on past null
infinity for a ∈ [0, a0] and on the outgoing null hypersurface a = a0 = constant. If
l = 0, it is clear from (3.23) that the characteristic data can be set to 1: χ0(a, b) = 1,
while the Riemann–Green function in (3.24) reduces to 1 [4]:

Rl=0(a, b; a′, b′) = P0(z(a, b; a′, b′)) = 1. (4.1)

The inhomogeneous wave equation (3.18) with l = 0 can be solved with the help of
a contraction mapping, i.e. [4]

χ(a, b) = χ0(a, b) +
∞∑

n=1

χn(a, b) = 1 +
∞∑

n=1

χn(a, b), (4.2)

where

χn(a, b) =
∫ ∫

D(a,b)

Sθ(a′, b′)χn−1(a′, b′)da′ db′ = O((a + b)n), (4.3)

and the series in (4.2) is known to be uniformly convergent near spacelike infinity
in general relativity [4]. Moreover, in general relativity the partial derivative χ,a as
a → 0 and b is fixed remains bounded, as well as the partial derivative χ,b as b → 0
and a is fixed. The second derivative χ,aa, however, diverges near future null infinity,
which implies that the presence of a conformal singularity at spacelike infinity
affects the behavior of scalar fields on future null infinity, reducing by a considerable
amount their differentiability class. Such a property is proved by exploiting the
integral representation of χ,aa, i.e.

χ,aa = −
∫ b

a

[S,a(a, b′)χ(a, b′) + S(a, b′)χ,a(a, b′)] db′. (4.4)
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By insertion of (4.2) into (4.4), and bearing in mind (4.3), one finds that the possible
singularities of χ,aa are ruled by the integrals [4]

I0(a, b) ≡
∫ b

0

S,a(a, b′)db′, (4.5)

I1(a, b) ≡
∫ b

0

(a + b′)S,a(a, b′)db′, (4.6)

where I0 remains finite as a → 0, whereas I1 displays a logarithmic singularity as
a → 0.

If l = 0 in Sec. 3 we find, for finite values of θ, the counterpart of (4.5) given by
the integral

Ĩ0(a, b) ≡
∫ b

0

Sθ,a(a, b′)db′, (4.7)

where, from the asymptotic formulae as a → 0 and b is fixed, we find, for all finite
values of θ,

f(a, b) ∼ ab

(a + b)
, (4.8)

m(a, b) ∼ 2M√
π

∫ (a+b)2

4θa2b2

0

√
te−t dt ∼ M, (4.9)

F (a, b) ≡ (f2 − 2mf3)(a, b) ∼ a2b2

(a + b)2
(1 + O(a)), (4.10)

Sθ ∼ 2Mab

(a + b)3
, (4.11)

Sθ,a ∼ 2Mb

[
− 2

(a + b)3
+

3b

(a + b)4

]
, (4.12)

and hence

Ĩ0 ∼ − 2Mb2

(a + b)3
as a → 0, (4.13)

in agreement with the analysis in [4] for general relativity. These approximations
should be abandoned only if θ is so large that (cf. (4.9))

lim
a→0

θa2 = constant. (4.14)

Furthermore, the counterpart of (4.6) is given by the integral

Ĩ1(a, b) ≡
∫ b

0

(a + b′)Sθ,a(a, b′)db′ ∼ −2M log(a) as a → 0, (4.15)
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again in full agreement with [4]. Note that a more accurate asymptotic expansion
of the source term would be

Sθ ∼ 2Mab

(a + b)3
(1 − 2bM2(b))−1, (4.16)

but this does not modify the leading terms as a → 0 in (4.13) and (4.15).
Figures 5–7 show the behavior of χ, χ,a, χ,b and χ,aa.

5. Concluding Remarks

Ever since Penrose [12] developed a geometrical picture of an isolated system in
general relativity as a space-time admitting future and past null infinity (with the
associated fall-off of the metric along null geodesics going off to infinity), there
has always been great interest in this coordinate-free way of bringing infinity to a
“finite distance” and discussing the asymptotic structure of space-time. Moreover,
the conceptual revolution brought about by non-commutative geometry [13–15]
has led to an assessment of the very concept of space-time manifold [16], with
“corrections” to it evaluated, for example, along the lines of the work in Refs. [5–7].
Within this broad framework, the contributions of our paper are as follows.

(i) Construction of conformal infinity for the spherically symmetric space-time
which incorporates noncommutative-geometry corrections to Schwarzschild
space-time.

(ii) Evaluation of the source term (3.20) in the inhomogeneous Euler–Poisson–
Darboux equation which describes the scalar wave equation in the unphysical
space-time obtained after conformal rescaling of the original metric (1.4).

(iii) Qualitative analysis of the asymptotic characteristic initial-value problem in
the l = 0 case, finding again the logarithmic singularity as shown in Eq. (4.15).
In the original, “physical” space-time with metric (1.4), such a singularity
implies that the large-r behavior of the scalar field is described by the asymp-
totic expansion [4]

ψ ∼ c1

r
+

c2

r2
+

d1 log(r)
r3

+ O(r−3), (5.1)

and therefore the field falls off at large r rather more slowly than in flat
space-time [4].

(iv) Numerical support for all results in Sec. 3 and 4, as shown by Figs. 5–7 at the
end of Sec. 4.

Our results are thus an encouraging progress towards a rigorous theory of
wavelike phenomena in noncommutative geometry, along the lines of the conformal-
infinity program of Penrose for general relativity [9]. Hopefully, the physical applica-
tions to isolated gravitating systems in a noncommutative framework, and possibly
to black-hole evaporation, will also become clear in the years to come.



February 8, 2008 11:58 WSPC/IJGMMP-J043 00263

Non-Commutative Spherically Symmetric Space-Time 43

0.05 0.1 0.15 0.2 0.25 0.3

0.75

0.8

0.85

0.9

0.95

Fig. 5. Plot of the solution χ(a, b) in (4.2) and (4.3) with n = 1 at small a, when θ takes finite
values and b = 0.3.
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Fig. 6. Plot of the partial derivative χ,a when θ = 10−3 and b = 0.3. Such a derivative is clearly
bounded, according to the theoretical expectations [4]. The identical behavior is displayed by χ,b

when θ = 10−3 and a = 0.3.

0.05 0.1 0.15 0.2 0.25 0.3

1

2

3

4

5

Fig. 7. Plot of the partial derivative χ,aa when θ = 10−3 and b = 0.3. The logarithmic singularity
as a → 0+ is clearly displayed, and it occurs at all finite values of θ.

Appendix A. The Riemann–Green Function

An hyperbolic equation in two independent variables can always be cast in the
canonical form [10]

L[χ] =
(

∂2

∂x∂y
+ a(x, y)

∂

∂x
+ b(x, y)

∂

∂y
+ c(x, y)

)
χ(x, y) = H(x, y). (A1)
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One can then use the Riemann integral representation of the solution [10]. For
this purpose, denoting by L† the adjoint of the operator L in (A1), which acts
according to

L†[χ] = χ,xy − (aχ),x − (bχ),y + cχ, (A2)

one has to find the Riemann kernel R(x, y; ξ, η) subject to the following conditions
((ξ, η) being the coordinates of a point P such that the characteristics through it
intersect a curve C at points A and B, AP being a segment with constant y, and
BP being a segment with constant x):

(i) As a function of x and y, R satisfies the adjoint equation

L†
(x,y)[R] = 0, (A3)

(ii) R,x = bR on AP , i.e.

R,x(x, y; ξ, η) = b(x, η)R(x, y; ξ, η) on y = η, (A4)

and R,y = aR on BP , i.e.

R,y(x, y; ξ, η) = a(ξ, y)R(x, y; ξ, η) on x = ξ, (A5)

(iii) R equals 1 at P , i.e.

R(ξ, η; ξ, η) = 1. (A6)

It is then possible to express the solution of Eq. (A1) in the form [10]

χ(P ) =
1
2
[χ(A)R(A) + χ(B)R(B)] +

∫
AB

([
R

2
χ,x +

(
bR − 1

2
R,x

)
χ

]
dx

−
[
R

2
χ,y +

(
aR − 1

2
R,y

)
χ

]
dy

)
+

∫ ∫
Ω

R(x, y; ξ, η)H(x, y)dxdy,

(A7)

where Ω is a domain with boundary.
Note that Eqs. (A4) and (A5) are ordinary differential equations for the Riemann

function R(x, y; ξ, η) along the characteristics parallel to the coordinate axes. By
virtue of (A6), their integration yields

R(x, η; ξ, η) = exp
∫ x

ξ

b(λ, η)dλ, (A8)

R(ξ, y; ξ, η) = exp
∫ y

η

a(λ, ξ)dλ, (A9)

which are the values of the Riemann kernel R along the characteristics through P .
Equation (A7) yields instead the solution of Eq. (A1) for arbitrary initial values
given along an arbitrary non-characteristic curve C, by means of a solution R of
the adjoint equation (A3) which depends on x, y and two parameters ξ, η. Unlike
χ, the Riemann function solves a characteristic initial-value problem [10].
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Appendix B. Scalar Curvature in the Unphysical Space-Time

In Sec. 3, the evaluation of the scalar curvature R = R(θ) in the unphysical
space-time with metric (3.13) is as follows. With the notation in Eqs. (3.13)–(3.16),
the non-vanishing connection coefficients turn out to be (no summation over
repeated indices)

Γa
ΘΘ = Γb

ΘΘ = −(a + b)G−1, (B1)

Γa
ϕϕ = Γb

ϕϕ = −(a + b)G−1 sin2 Θ, (B2)

Γa
aa = G−1G,a, Γb

bb = G−1G,b, (B3)

ΓΘ
aΘ = ΓΘ

Θa = ΓΘ
bΘ = ΓΘ

Θb = Γϕ
aϕ = Γϕ

ϕa

= Γϕ
bϕ = Γϕ

ϕb = (a + b)−1, (B4)

ΓΘ
ϕϕ = − sinΘ cosΘ, (B5)

Γϕ
Θϕ = Γϕ

ϕΘ = cotΘ. (B6)

The resulting Riemann tensor is evaluated from the general formula in a coordinate
basis

Rλ
µνρ = Γλ

µρ,ν − Γλ
µν,ρ + Γα

µρΓ
λ
αν − Γα

µνΓλ
αρ. (B7)

Since we evaluate the scalar curvature R = gµνRµν , which in our case is equal to
(hereafter, no summation over repeated indices a or b or Θ or ϕ)

R = 2gabRab + gΘΘRΘΘ + gϕϕRϕϕ, (B8)

we only need the 12 components of Riemann occurring in

Rab = Ra
aab + Rb

abb + RΘ
aΘb + Rϕ

aϕb, (B9)

RΘΘ = Ra
ΘaΘ + Rb

ΘbΘ + RΘ
ΘΘΘ + Rϕ

ΘϕΘ, (B10)

Rϕϕ = Ra
ϕaϕ + Rb

ϕbϕ + RΘ
ϕΘϕ + Rϕ

ϕϕϕ. (B11)

Among these, the only non-vanishing are

Ra
aab = −G−1G,ab + G−2G,aG,b, (B12)

Rϕ
ΘϕΘ = 1 − 2G−1, (B13)

RΘ
ϕΘϕ = (1 − 2G−1) sin2 Θ, (B14)

and hence

R = −2G−2

(
G,ab − G,aG,b

G

)
+ 2(a + b)−2

(
1 − 2

G

)
. (B15)
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With the notation in Eqs. (3.14)–(3.16), we find

G,a = G

[
2

(a + b)
+

g1,a

g1
+

F,a

F

]
, (B16)

G,b = G

[
2

(a + b)
+

g2,b

g2
+

F,b

F

]
, (B17)

G,ab =
G,aG,b

G
+ G

[
− 2

(a + b)2
+

F,ab

F
− F,aF,b

F 2

]
. (B18)

Therefore Eq. (B15) yields

R(θ) = (a + b)−2

[
2 − 1

g1g2F 2

(
F,ab − F,aF,b

F

)]
. (B19)

For example, in general relativity

F,a =
∂F

∂f

∂f

∂w0(f)
∂w0(f)
∂w0(a)

∂w0(a)
∂a

= g1(a)(2f − 6Mf2)F (B20)

by virtue of

∂w0(f)
∂f

= − 1
f2

+
1(

f2 − f
2M

) = − 1
F

,
∂w0(a)

∂a
= −g1(a), (B21)

and hence

F,ab − F,aF,b

F
= g1(a)(2f − 6Mf2),bF = g1(a)g2(b)(2 − 12Mf)F 2, (B22)

R(0) =
12Mf

(a + b)2
. (B23)

Our definition of scalar curvature has opposite sign with respect to the work in [4],
but of course this does not affect the results.

In Sec. 3, Eq. (B19) yields instead

R(θ) =
12mf

(a + b)2
, (B24)

where m is the mass function defined in Eqs. (1.6) and (3.14).
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