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The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile
dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of
cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as
a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide
(CO) and hydrogen sulphide (H2S) in physiological and pathophysiological conditions. The role of NO and CO in sexual
function and dysfunction has been investigated more extensively and, recently, the involvement of H2S in erectile function
has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology,
pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of
soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed
alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do
not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and
treatments targeting these gasotransmitters in erectile function/ED.
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Abbreviations
CC, corpus cavernosum; ED, erectile dysfunction

Introduction

Erectile function
Erectile physiology is the interplay of vascular, neurological
and endocrine factors, which leads to an increase in or facili-
tates the vasodilatation (tumescence) and/or reduces the con-
traction (detumescence) of the corpus cavernosum smooth

muscle (CCSM) cells. Erection is the final outcome of a
complex integration of signals. It is essentially a spinal reflex
that can be initiated by recruitment of penile afferents, but
also by visual, olfactory and imaginary stimuli and all the
stimuli contribute to the increase in vasodilatation of penile
tissues (for details, see review by Cirino et al., 2006). Neuronal
and endothelial NO are considered as the most important
factors for relaxation of penile vessels and CCSM cells.
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Erectile dysfunction (ED)
ED is defined as the consistent or recurrent inability to attain
or maintain a penile erection sufficient for sexual activity in
man (2nd International Consultation on Sexual Dysfunction-
Paris, 28 June–1 July 2003). It is interesting to note that ED
and cardiovascular disease (CVD) share many of the risk
factors that contribute to their development and progression
such as age, hypercholesterolaemia, obesity, diabetes,
smoking and some less-traditional risk factors including
inflammation, hypoxia and homocysteinaemia (Brunner
et al., 2005). Moreover it is now well accepted that vascular
disturbance of the penile endothelium leads to ED and as a
consequence the possibility arises that ED may be an early
indicator of systemic endothelial dysfunction and subse-
quently of CVD. In fact, recognizing ED as a disease marker
for CVD may help to identify individuals at risk of having a
premature cardiovascular event (Shin et al., 2011).

Nitric oxide

The synthesis and physiological significance
of NO in erectile function
Constitutive forms of NOS (see Alexander et al., 2013b), the
endothelial (eNOS) and neuronal NOS (nNOS) have a role in
erectile process. In contrast, inducible form of NOS, iNOS
does not have a direct role but is involved in pathological
conditions in the penis (Gonzalez-Cadavid and Rajfer, 2005).
nNOS is localized in the pelvic plexus, dorsal penile nerve,
cavernous nerve and its branches in the cavernous tissue
(Sullivan et al., 1999). eNOS is localized in the arterial and
cavernous endothelial cells and also in the CCSM (Andersson,
2001). Penile nNOS variant (PnNOS) has been identified in
rat and mouse penis nerves, which is considered to be respon-
sible for the synthesis of NO in the terminal nerve of the
penis (Gonzalez-Cadavid et al., 2000).

The role of NO in erectile function as the principal media-
tor is confirmed by several studies where NOS is genetically or
pharmacologically inhibited (Burnett, 1995; Burnett et al.,
2002; Cashen et al., 2002; Lasker et al., 2010a).

Depolarization of the cavernous nerves by psychogenic
and reflex stimuli leads to rapid nNOS-mediated NO release
to initiate tumescence (Burnett, 1995; Burnett et al., 2002;
Cashen et al., 2002; Lasker et al., 2010a). NO diffuses the
CCSM, activates soluble guanylyl cyclase/cGMP (sGC/cGMP)
pathway and causes relaxation which increases blood flow to
the penis. Following this, blood flow-induced shear stress
causes an increase in sustained NO release via PI3K/Akt/eNOS
pathway to supply maintenance of tumescence (Hurt et al.,
2012; Lasker et al., 2013). It is believed that eNOS is more
significant than nNOS in erectile physiology (Bivalacqua
et al., 2007d). However, recently, it has been demonstrated
that nNOS also contributes to the maintenance of erectile
process via sustained release of NO through PKA activation-
induced phosphorylation of nNOS at Ser1412 (Hurt et al.,
2012). Protein–protein interaction, subcellular localization,
phosphorylation and deacetylation (Fleming and Busse,
2003; Mattagajasingh et al., 2007) are the main regulatory
mechanisms for eNOS activity. However only a few of eNOS
regulatory mechanisms are recognized in penis such as

Ca/calmodulin (Ca/CaM), PI3K/Akt-dependent phosphoryla-
tion and protein interaction with caveolin or heat shock
protein 90 (hsp90; Hurt et al., 2002; Musicki and Burnett,
2006). While hsp90 activates eNOS, caveolin-1 inactivates it
by binding to CaM-binding site on eNOS (Musicki et al.,
2009). However hsp90 and caveolin-1 are not targets solely
for NOS but also for other gaseous molecules and for sGC (see
last section of this review). Recently, it has been demon-
strated that urotensin II (U-II), an endogenous peptide iden-
tified as the natural ligand of a GPCR, physically interacts
with eNOS in penis and activates it via phosphorylation
(d’Emmanuele di Villa Bianca et al., 2012). Several agonist
and stimuli such as shear stress, VEGF, sildenafil, angiopoietin
and sphingosine-1-phosphate (S1-P) cause NO production by
phosphorylation of eNOS at Ser1177 (d’Emmanuele di Villa
Bianca et al., 2006; Musicki et al., 2009). There are six specific
sites of phosphorylation in eNOS. However only phosphor-
ylation sites at the Ser1177 and Thr495 residues, activating and
inactivating eNOS respectively, were demonstrated in the
penis (Hurt et al., 2002; Musicki et al., 2005a).

Pathophysiological significance of NO in ED
Decreased NO bioavailability in vasculogenic ED is caused by
decreased NOS activity/synthesis or the inactivation of NO
(Musicki et al., 2005a; Jin et al., 2008a; Claudino et al., 2009;
Park et al., 2009; Demir et al., 2010; Soner et al., 2010; Saito
et al., 2012; Bivalacqua et al., 2013; Dalaklioglu et al., 2013a;
Silva et al., 2013; Yang et al., 2013b). Oxidative stress impair-
ing NO bioavailability is a common mechanism for ED. Reac-
tive oxygen species (ROS) result from an imbalance between
antioxidant and ROS-generating systems such as NADPH
oxidase, myeloperoxidase and even eNOS itself (Zouaoui
Boudjeltia et al., 2007; Jin and Burnett, 2008). Oxidation
of tetrahydrobiopterin (BH4) or deficiency in cofactor BH4,
leads to eNOS uncoupling, in which eNOS becomes two
monomers and generates superoxide anion rather than NO
(Förstermann and Li, 2011; Johnson et al., 2011). The lack of
dimerization is responsible for the pathophysiology of ED in
hypercholesterolaemia (Musicki et al., 2010). Moreover, oxi-
dative stress increases iNOS expression, but decreases both
expressions of nNOS and eNOS and the erectile response in
ischaemic rabbit CC (Azadzoi et al., 2004).

It has been shown that eNOS phosphorylation is altered
in vasculogenic ED induced by aging, diabetes mellitus and
hypercholesterolaemia (Musicki et al., 2009) and has an
important role in the prolongation of erection. Thus, inhib-
iting phosphorylation of eNOS (p-eNOS Thr495) and dephos-
phorylation of eNOS (p-eNOS Ser1177) appear as new drug
targets for the treatment of ED.

Myristoylation, palmitoylation and acetylation are neces-
sary for caveolar localization of the enzyme, which inacti-
vates eNOS; however, the first two mechanisms have not
been investigated in the penis yet. Sirtuin-1 (SIRT-1) leads to
activation of eNOS through its deacetylation (Arunachalam
et al., 2010). Although a direct role of SIRT-1 has not been
investigated in the penis, decreased expressions of SIRT-1
expression in CC in androgen depletion (Tomada et al., 2013)
or diabetes (Yu et al., 2013)-induced ED has been shown.

S-nitrosylation negatively regulates NOS by inhibition of
sGC, eNOS itself and eNOS-regulating proteins including
hsp90 and Akt (PKB). Palmer and co-workers have shown that

BJPGasotransmitters in erectile function/dysfunction

British Journal of Pharmacology (2015) 172 1434–1454 1435



S-nitrosoglutathione reductase (GSNOR), which catalyses the
reduction of S-nitrosothiols (Lima et al., 2010), is co-localized
with eNOS in the endothelium of CC. Moreover, S-
nitrosylated eNOS levels are increased during detumescence
in wild-type mice compared with GSNOR-/- mice (Palmer
et al., 2012). The role of S-nitrosylation/denitrosylation of
NOS is well documented in erectile physiology but has not
been associated with the pathophysiology of erectile function
yet.

Beside NO bioavailability, downstream mechanisms of
NO, such as increased PDE-5 enzyme and reduced PKG-1
activation by cGMP have also been reported in ED. The
pathophysiological significance of eNOS/NO pathway in ED
is presented in Table 1.

Treatments targeting NO
Known NO-based therapies include NO precursors, NO
donors, NO-based gene therapy, pharmacological NOS

Table 1
eNOS/NO regulation in ED

Pathology Molecular mechanisms References

Hyperlipidaemia/
atherosclerosis

↓p-VASP Musicki et al., 2010

↓cGMP Musicki et al., 2008

↑NADPH oxidase, ROS, TBARS production Musicki et al., 2008; 2010; Fraga-Silva et al., 2013

↓eNOS and nNOS, eNOS Musicki et al., 2010; Fraga-Silva et al., 2013

p-eNOS S1177, uncoupled eNOS Musicki et al., 2008; 2010

↑ADMA Park et al., 2009

↑eNOS binding to Cav-1, Cav-1 Musicki et al., 2008

↑Rho A expression Dalaklioglu et al., 2013b

Aging ↓p-eNOS S1177 Dalaklioglu et al., 2013b; Silva et al., 2013

↑p-eNOS T495, ↓ p-Akt Musicki et al., 2005a

↑Arginase activity Sakai et al., 2004; Numao et al., 2007

↓cGMP Silva et al., 2013

↑ROS Johnson et al., 2011

↓L-arginine in CC Sakai et al., 2004

↓ eNOS and nNOS expression, total NOS activity Numao et al., 2007; Dalaklioglu et al., 2013b

↑p-AMPK Labazi et al., 2013

↓p-eNOS S1177, p-eNOS S1177 Saito et al., 2012; Labazi et al., 2013

Hypertension ↓cGMP Gur et al., 2010; Saito et al., 2012

↑ROCK mRNA expression, ↑Cav-1 Yono et al., 2009

↑ROS Jin et al., 2008a

↓nNOS and eNOS, ↑iNOS expression, nNOS Gur et al., 2010; Saito et al., 2012; Labazi et al., 2013

↑ERK1/2 Phosphorylation Labazi et al., 2013

↓eNOS, nNOS Li et al., 2012; Dalaklioglu et al., 2013a; Qiu et al., 2013

↓p-eNOS S1177 Musicki et al., 2005b; Dalaklioglu et al., 2013a;
Yang et al., 2013a

↑RhoA expression Dalaklioglu et al., 2013a

Diabetes ↑NADPH oxidase and ROS Li et al., 2012; Dalaklioglu et al., 2013a; Yang et al., 2013a

↓p-Akt Musicki et al., 2005b

p-eNOS T495 Musicki et al., 2005b

↓cGMP Fukuhara et al., 2011; Yang et al., 2013a

↑Arginase II Bivalacqua et al., 2001

↑Cav-1 Elçioğlu et al., 2010

↑ROS, uncoupled eNOS, ↑cGMP Bivalacqua et al., 2013

↓p-eNOS S1177, ↓ eNOS- HSP90 interaction, ↓ p-AKT,
p -eNOS T495, eNOS, Hsp90, Cav-1

Musicki et al., 2011

↑, increase; ↓, decrease, , unchanged; p-VASP, vasodilator stimulated phosphoprotein; Cav-1, caveolin-1; p-AMPK phosphorylated 5′
AMP-activated PK; TBARS, thiobarbituric acid-reactive substances; ADMA, asymmetric dimethylarginine; p-eNOS T495, eNOS phosphor-
ylated on threonine 495; p-eNOS S1177, eNOS phosphorylated on serine 1177; uncoupled eNOS, monomer form of eNOS that is generating
ROS rather than NO; ROCK, Rho-kinase.
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activators such as resveratrol. See reviews by Decaluwe and
co-workers for details (Bryan, 2011; Decaluwe et al., 2013).
Although L-arginine substrate of NOS has been found to
increase relaxation in human or animal CC (Table 2), clinical
studies do not always support the beneficial effects of
L-arginine alone. However, it seems successful in combina-
tion therapies (Table 3). L-arginine is also a substrate for argi-
nase and its inhibition increases substrate availability of NOS.
Arginase inhibitors have been found to increase neuronal and
endothelial-dependent relaxation of CC, improve erectile
function especially in diabetic ED as well as aging-induced
ED. Recently, a protective effect of resveratrol, NOS activator,
has been shown in diabetes and hypercholesterolaemia-
induced ED (see Table 2). Even though there are many animal
studies that indicate the success of NADPH oxidase inhibitors
and gene therapies in ED (see Table 2), no clinical trial has
been performed with these therapies yet. The importance of
the NO/cGMP pathway as drug targets became clear with the
discovery of the PDE-5 inhibitors (PDE-5i) and their great
success in treating ED. However, there are significant
numbers of ED patients with diabetes mellitus and severe
vascular disease who do not respond to PDE-5i, suggesting
that maintaining physiological levels of NO may not be suf-
ficient in mild or severe ED associated with vascular risk
factors. Therefore, drugs targeting the bioavailability or
downstream mechanisms of NO or combination therapies
have started to be investigated. Clinical and preclinical phar-

macological treatments and gene therapies targeting the
NOS/cGMP pathway are summarized in Tables 2 and 3
respectively.

Carbon monoxide

CO was known as the ‘silent killer’ until the 21st century
because it is odourless and colourless and it can threaten life
by hypoxic intoxication without giving an obvious symp-
toms or indications. Unlike NO and H2S, CO elimination is
through exhalation by the lungs and does not involve a
biochemical modification (Kreck et al., 2001; Motterlini and
Otterbein, 2010). CO might exert its effects during longer
periods of time and distances compared with NO or H2S, as it
is the most biologically stable gasotransmitter with a half-life
of around 3 h (Motterlini and Otterbein, 2010) since it does
not have unpaired electrons, and does not chemically disso-
ciate in an aqueous solution to form different chemical
species.

The synthesis of CO
The majority of CO is produced by enzymatic haem metabo-
lism (Wu and Wang, 2005) and the remaining fraction of CO
arises from other sources that may include lipid peroxidation
and xenobiotic metabolism.

Table 2
Preclinical studies in ED targeting NOS/NO pathway

Drugs targeting NOS/NO pathway Effects in ED models References

NOS substrate L-arginine and
L-citrulline

↑ICP/MAP in acute arteriogenic rats and
relaxation in healthy human

Gur et al., 2007; Shiota et al., 2013

NOS cofactor
BH4

↑ICP/MAP in aged mice and neurogenic
relaxation in obese rat CC

Johnson et al., 2011; Sanchez et al., 2012

Arginase inhibitors
ABH and BEC

↑Neurogenic and ICP/MAP in aged
rats/mice and endothelial relaxation in
aged/diabetic mice CC

Bivalacqua et al., 2001; 2007a; Toque et al.,
2011; Segal et al., 2012

NADPH oxidase inhibitor apocynin ↑ICP/MAP in hypertensive/diabetic
rats/hypercholesterolaemic mice and
endothelium-dependent relaxation in
aged rat CC.

Jin et al., 2008a; Musicki et al., 2010; Li et al.,
2012; Silva et al., 2013

Pharmacological NOS activator
resveratrol

↑ICP/MAP in diabetic rats and endothelial
relaxation in hypercholesterolaemic
rabbit and healthy rat CC.

Shin et al., 2008; Soner et al., 2010; Fukuhara
et al., 2011; Yu et al., 2013

NO-releasing agents NaNO2 ↑ICP/MAP in healthy and diabetic rats and
endothelial relaxation in
hypercholesterolaemic rabbit CC.

Shukla et al., 2005; Lasker et al., 2010b; Soni
et al., 2013

Gene therapies eNOS/PnNOS/EC-SOD/
iNOS/PKG1α/VEGF gene and
angiopoietin-1

↑ICP/MAP in aged/ diabetic rat and in
healthy /diabetic rat CC.

Bivalacqua et al., 2000; 2003; 2004c; 2005;
2007b,c; Magee et al., 2002; Chancellor et al.,
2003; Ryu et al., 2006; Wang et al., 2013

Inhibition of genes PIN/arginase/RhoA
(T19NRhoA)

↑ICP/MAP in healthy/diabetic rat, aged
mice and healthy/aged rat CC.

Chitaley et al., 2002b; Bivalacqua et al., 2004b;
2007a; Jin et al., 2006; Magee et al., 2007

MAP, mean arterial pressure; BEC, S- (2-boronoethyl)-L-cysteine; ABH, 2(S)-amino-6-boronohexanoic acid; EC-SOD, endothelial cell super-
oxide dismutase; PIN, protein inhibitor of NOS.
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Haem oxygenase enzymes (HO) exist in constitutive
(HO-2 and HO-3) and inducible (HO-1) isoforms (see
Alexander et al., 2013b). HO-1, a 32 kDa mammalian stress
protein is induced by several stimuli including hypoxia,
stress, ROS, inflammatory cytokines and a variety of transi-
tion metals and heavy metals (see review by Ryter for a
detailed list of HO inducers; Ryter et al., 2006). HO-1 induc-
tion leads to the release of iron and the formation of biliver-
din and CO, which are able to regulate ROS level and
inflammatory processes to a certain extent. HO expression
regulates the level of ROS by increasing antioxidant, such as
glutathione and bilirubin. HO-1 is expressed less in nerve
fibres but is clearly identifiable in the endothelium lining of
penile arteries and the sinusoidal walls of the CC and spon-
giosum (Hedlund et al., 2000b). However, upon stimulation,
HO-1 expression in the testes overpowers the expression of
HO-2. HO-2 is a constitutively expressed ‘haem sensor’ in the
endothelium and CCSM, engaged in fine-tuning the activity
of transcriptional factors and genes that are haem-responsive,
including HO-1. HO-2 gene expression has been shown not
to be changed by either HO inducers or inhibitors (Abdel Aziz
et al., 2005). HO-2 expression is more condensed in the pelvic
ganglion and nerve fibres innervating bulbospongiosus
muscles in rat and human urogenital system (Burnett et al.,
1998; Hedlund et al., 2000b; Ushiyama et al., 2004).

HO-3 has only been found in rat tissues, including brain,
liver, kidney and spleen. HO-3 is related to HO-2 and repre-
sents pseudo genes originating from HO-2 transcripts
(Hayashi et al., 2004).

Physiological significance of CO in
erectile function
In isolated vessel preparations, both CO and haem-L-lysinate
increase the vasodilatation (Kozma et al., 1997) of which only
the latter can be reversed by inhibitors such as HO chromium
mesoporphyrin (Kozma et al., 1997). The role of HO/CO
pathway in erectile function was first demonstrated by
showing HO expression and CO induced relaxation in
human CC (Hedlund et al., 2000b). Further, it was confirmed
that exogenous CO relaxes the CC dose dependently in rat
(Ushiyama et al., 2004). NOS or HO inducers can equally
up-regulate expression of both genes and increase the tissue
levels of cGMP in CC. Aziz and colleagues suggest that
HO/CO system is supervising and dominating NO as a sig-
nalling molecule in erectile function (Abdel Aziz et al., 2005).
Thus, induction of HO may have therapeutic implications for
the management of ED (Decaluwe et al., 2013).

Electrical field stimulation (EFS)-induced relaxations are
inhibited by HO inhibitors; tin-protoporphyrin (SnPP) and
zinc-protoporphyrin (ZnPP; Ushiyama et al., 2004) and
increased by exogenous CO in rat CC (Kim et al., 2010). The
suppression of EFS-induced relaxation by SnPP has been
found to be specific to HO inhibition and not related to NOS
inhibition, as is the case in the hippocampus (Meffert et al.,
1994), since the relaxation that remained in HO inhibitor
treated group was further inhibited by L-NNA. On the con-
trary, neurogenic relaxation by EFS is not inhibited in rabbit
CC by ZnPP (Kim et al., 1994) or in HO-2 knockout mice

Table 3
Clinical studies targeting NOS/NO in ED

Therapy Drug dose Patients Sexual function References

L-arginine
supplementation

L-arginine 3 ×
500 mg·day−1

32 patients with mixed-type
impotence

No difference Klotz et al., 1999

L-arginine (5 g·day−1) 50 organic ED patients. A
double-blind, randomized,
placebo-controlled study.

Significant improvement Chen et al., 1999

BH4 supplementation Single oral doses of BH4
200 mg or 500 mg

18 moderate ED patients in a
randomized,
placebo-controlled,
double-blind crossover study.

Increase duration of penile
rigidity.

Sommer et al., 2006

Combined therapies
with L-arginine

L-arginine aspartate 8 g +
adenosine
monophosphate
200 mg

Mild-to-moderate ED whose
erectile function domain score
between 14 and 22

Effective Neuzillet et al., 2013

L-arginine + L-carnitine +
nicotinic acid +
vardanafil

Insulin-dependent diabetic
patients

Better than PDE-5
inhibitor alone

Gentile et al., 2009.

L-arginine 6 g +
yohimbine 6 g during 2
weeks or L-arginine 6 g

42 patients mild to moderate
ED. Double-blind, placebo-
controlled, three-way crossover,
randomized clinical trial.

L-arginine do not improve
alone but combined
therapy improve erectile
function

Lebret et al., 2002

L-arginine aspartate 1 g
during 3 months +
pycnogenol 3 × 40 mg
during 2 months

40 ED patients Improve sexual function. Stanislavov and
Nikolova, 2003
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(Burnett et al., 1998). Nevertheless, more rigorous investiga-
tions need to be performed before suggesting that the role of
CO in neurogenic erection may be different in rats compared
with other species, since the expression and the biological
status of HO-1 are not clear in this HO-2-deficient mice model
and HO-1 may also cause neurogenic erection.

In addition to the involvement in penile erection control,
CO also plays an important role in regulating ejaculation
(Burnett et al., 1998). HO-2 knockout mice have less reflex
activity of the bulbospongiosus muscle, where the HO-2
localization is condensed, and substantially reduced ejacula-
tion, without a significant change in erectile function. In the
same year, another study reported that prenatal exposure
to CO (150 ppm) leads to increased mount/intromission
latency, decreased mount/intromission frequency, and a sig-
nificant decrease in ejaculation frequency, which are associ-
ated with changes in mesolimbic dopaminergic function in
male rats (Cagiano et al., 1998). The authors speculated that
prenatal exposure to CO might influence the development or
function of neurons releasing CO locally in the penis and
decreases HO-2 expression/activity parallel to the findings in
HO-2 −/− animals.

Pathophysiological significance and
treatments targeting CO in ED
Drugs targeting activation of HO/CO pathway. A number of
studies have suggested that impaired CO-mediated vasodila-
tation is implicated in ED (Abdel Aziz et al., 2009c; Shamloul,
2009). Ushiyama and colleagues clearly showed that NO- and
CO-dependent relaxation of the CC in response to EFS is
diminished in spontaneously hypertensive rats (SHR) and
suggested that this may be due to decreased activity of HO-2,
since the HO-2 gene expression was unchanged (Ushiyama
et al., 2004). This study for the first time showed that the
impairment of neurogenic relaxation induced by HO/CO
systems may, to a certain degree, be involved in the dimin-
ished erectile responses in SHR (Ushiyama et al., 2004). Two
studies suggest that HO inducers may ameliorate the erectile
function in SHR by showing that; (i) a potent HO-1 inducer,
haemin, increased both intracavernous pressure (ICP) and
HO-1 level, but not HO-2, as well as HO-1 downstream mol-
ecule sGC expression in SHR (Shamloul and Wang, 2006);

and (ii) the improved erectile function by the antioxidant
α-tocopherol in SHR could be blocked by an HO inhibitor
(Ushiyama et al., 2008).

An HO-1 inducer reversed the decreased erectile function,
gene expression and enzymatic activity of HO-1 in CC of
diabetic rats (Abdel Aziz et al., 2009a). This study suggests
that the decline in erectile function in diabetic rats may be
attributed to a down-regulation of the HO/CO pathway and
indicates that stimulating this pathway could be an effective
treatment for ED in diabetic patients. In addition, HO-1
induction also restores decreased eNOS expression and vas-
cular responses as well as reversing the increased iNOS expres-
sion in diabetic rat aorta (Ahmad et al., 2005). It has been
suggested that the antioxidant effects of HO might also con-
tribute to its endothelial protective effect in diabetes (Kruger
et al., 2006).

In addition, chronic administration of the HO-1 inducers
in hypertensive and diabetic rats and an in vivo gene therapy
using HO-1 cDNA-liposome complex transfer have been
found to be beneficial for ED induced by aging (Abdel Aziz
et al., 2009b). HO-1 inducers, which have been reported to
augment HO-1 expressions and/or cGMP concentrations
together with subsequent relaxation in CC, are listed in
Table 4. Several studies show that HO-1 induction by losartan
and/or CoPP (Abdel Aziz et al., 2009a), hemin (Abdel Aziz
et al., 2008), curcumin (Abdel Aziz et al., 2010) restores ED
through the up-regulation of the local tissue levels of cGMP.
The erectile function induced by HO-1 induction was found
to be as effective as up-regulating NOS by L-Arg. (Abdel Aziz
et al., 2005), complementary to and even dominating NO in
mediating erectile function (Abdel Aziz et al., 2009a).

Interestingly, NO itself has been shown to induce HO-1 to
produce CO (Durante et al., 1997). Thus if the HO/CO
pathway is involved in the mechanism of the NO targeting,
drug-induced beneficial effects in relaxation should be inves-
tigated. Moreover, the effect of sildenafil on ED has been
attributed to interactions between CO and NO (Abdel Aziz
et al., 2007a). α-tocopherol has been shown to enhance erec-
tile function in both a NOS- and HO-dependent manner in
ED in SHR (Ushiyama et al., 2008). Some of the cardiovascular
drugs targeting HO/CO pathway are listed in Table 5 as well
as losartan and sildenafil, which are listed in Table 4. Among
those drugs, losartan, α-tocopherol and PDE-5i are shown to

Table 4
Targeting HO/CO in erectile function

HO-1 inducing drug Model References

HO-1 cDNA-liposome complex transfer Aged rats Abdel Aziz et al., 2009b

Hemine SHR Shamloul and Wang, 2006

Losartan Diabetic rats Abdel Aziz et al., 2009a

Hemin Healthy rat Abdel Aziz et al., 2008

Curcumin Healthy rat Abdel Aziz et al., 2010

α-tocopherol SHR Ushiyama et al., 2008

PDE-5 inhibitors; sildenafil, tedalafil, verdanafil Healthy rat Abdel Aziz et al., 2007a,b,c; Liu et al., 2012

Approaches increasing HO-1 induction and subsequently erectile functions are listed.
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induce HO/CO in CC but HO-related effects of statins have
not been investigated in the penis yet. However, there is
increasing knowledge concerning the significance of the
HO/CO pathway in the pathophysiology, which has led to
the development of CO-releasing molecules, known as
CORMs, a safe therapeutic strategy, releasing CO with con-
trollable kinetics (Motterlini et al., 2002). Tayem and col-
leagues indicated that CORMs can induce HO-1 and thus
have a dual action, releasing CO and increasing HO-1 (Tayem
et al., 2006). This is not surprising since the ability of CO to
induce HO activity has already been shown (Kim et al., 2007).
In vivo delivery of CORM-3 increases blood flow in penile
arterioles and sinuses (Abdel Aziz et al., 2008). CORM-2 also
induces relaxation in mice CC but differently from CO,
CORM-2-induced corporal relaxation was not affected by sGC
inhibition. (Decaluwe et al., 2012b) Readers interested in CO
targeting molecules as therapeutics in specific pathological
conditions are referred to a recent review by Motterlini and
co-workers (Motterlini and Foresti, 2014).

Drugs leading to inhibition of HO/CO pathway. Priapism rep-
resents a ‘medical emergency’ with a persistent, usually
painful erection that lasts for more than 4 h and occurs
without sexual stimulation. It may lead to permanent ED and
penile necrosis if left untreated and occurs in approximately
40% of patients with sickle cell disease (SCD; Kato and
Gladwin, 2008). HO-1 expression is increased in SCD patients
(Nath et al., 2001; Jison et al., 2004) in transgenic sickle mice
(Belcher et al., 2006) and in artificially- induced veno-
occlusive, low-flow priapism (Jin et al., 2008b).

The question arising is this; should we try to prevent
HO-1 activation before it appears? Or inhibit the HO-1 activ-
ity in late priapism? Prompt treatment for priapism is usually
needed to prevent tissue damage that could result in ED. The
evidence to recommend medical prophylaxis is sparse but
based on a consensus of experts and small phase 2 or 3
clinical trials (Olujohungbe and Burnett, 2013). It has been
shown that HO inhibition by ZnPP reversed the apoptosis
induced by ischaemic priapism in rats and seems promising
for preserving erectile function in late priapism (Karakeci
et al., 2013).

Hydrogen sulphide

This molecule, now considered to be the third gaseous trans-
mitter, shares many characteristics with the other gaseous
transmitters: NO and CO (Wang, 2002). The role of H2S in the
homeostatic control of our body is now consistently sup-
ported by the literature (Wang, 2012).

H2S presence in mammalian tissues was known even in
the eighties but it was considered a metabolic waste product,
and its potential physiological activity was ignored. Kruszyna
and co-workers in 1985 described an influence by cyanide
and sulphide compounds in the relaxation induced by nitrog-
enous compounds (Kruszyna et al., 1985). The first evidence
indicating this gas as an endogenous mediator was in 1996 by
Abe and Kimura (1996) and it was in the brain.

Solid evidence demonstrated that H2S acts as a potential
neurotransmitter (Gadalla and Snyder, 2010) and exerts
many activities in mammalian cardiovascular and respiratory
systems (Hosoki et al., 1997; Zhao et al., 2001). Regarding the
physiological significance of H2S, a turning point has been
achieved by the development of the knockout (KO) strain for
both cystathionine β-synthase (CBS) and cystathionine
γ-lyase (CSE) enzymes. CBS is essential for life since in
homozygous KO of CBS mice the lifespan would only be
(about) 4 weeks (Watanabe et al., 1995) and CSE-KO mice
develop hypertension (Yang et al., 2008).

Synthesis of H2S
H2S is generated within the mammalian cells via both enzy-
matic and non-enzymatic pathways, although the major con-
tribution comes from the enzymatic one. CBS and CSE use
L-cysteine (L-Cys) as the substrate to produce H2S, while CBS
can also use homocysteine to produce cystathionine that is
metabolized by CSE to H2S. Both CBS and CSE use pyridoxal
5′-phosphate, as a cofactor. The main H2S-producing enzyme
in the CNS is CBS while in the cardiovascular system, it is CSE
(Zhao et al., 2001; Eto et al., 2002). Moreover, it has been
suggested that H2S could exert a negative feedback effect on
the enzyme activity to regulate its synthesis and release
(Kredich et al., 1973). Other enzymes mainly localized in
endothelial cell have been proposed to synthesize this gas,

Table 5
Cardiovascular treatments targeting HO/CO in the vascular system

Cardiovascular drug Explanation References

Atorvastatin Activates HO-1 to get compensatory
anti-inflammatory and vasorelaxant effect in
hypercholesterolaemic rabbit aorta

Muchova et al., 2007; Fujita
et al., 2010; Ong et al., 2011

Atorvastatin-clinical study Decreases inflammation and oxidant stress via
mechanisms associated with HO-1 induction and
CO, but not bilirubin

Ong et al., 2011

Angiotensin II Regulates HO-1 in rat vascular smooth muscle cells Ishizaka and Griendling, 1997

Resveratrol Induces HO-1 in human aortic smooth muscle cells
in a concentration-dependent manner

Juan et al., 2005

NO donors (SpermineNONOate,
SNAP)

Inhibits HO activity in vascular smooth muscle cell Durante et al., 1997; Hartsfield
et al., 1997
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the 3-mercaptopyruvate sulphurtransferase and the cysteine
aminotransferase. For more details, see review by Wang
(2012).

Physiological significance of H2S in
erectile function
In 2006, it was shown that intracavernosal injection of
sodium hydrogen sulphide (NaHS) resulted in a significant
increase in penile length and cavernous pressure in primates.
Administration of DL-propargylglycine (PAG, CSE inhibitor)
to rats resulted in a significant reduction in cavernous nerve
stimulation-evoked perfusion pressure. On the basis of these
results, a possible role for endogenous H2S in erectile function
has been suggested (Srilatha et al., 2006).

In 2009, d’Emmanuele and co-workers clearly demon-
strated that the L-Cys/H2S pathway is present in human CC
tissues. In particular, it was shown that both CBS and CSE are
present and are active in human CC since tissue homogenates
efficiently convert L-Cys to H2S. CBS and CSE are localized
within muscular trabeculae and the smooth-muscle compo-
nent of the penile artery. Conversely, CSE but not CBS is also
expressed in peripheral nerves. Moreover, both H2S and L-Cys
cause a concentration-dependent relaxation of human CC
strips. This relaxation effect was inhibited by the CBS inhibi-
tor, aminoxyacetic acid (AOAA), glibenclamide, a KATP (Kir6.1-
6.2) channel (see Alexander et al., 2013a) inhibitor, and was
only slightly reduced by L-NG-nitroarginine methyl ester
(L-NAME), a NOS inhibitor. EFS of human penile tissue,
under resting conditions, caused an increase in tension that
was significantly potentiated by either PAG or AOAA. The
role of this pathway in erectile function was also confirmed in
vivo, in fact, NaHS and L-Cys increased the ICP in rat, and the
response to L-Cys was blocked by PAG (d’Emmanuele di Villa
Bianca et al., 2009).

Pathophysiological significance and
treatments targeting H2S in ED
The altered expression of CSE and H2S levels are involved in
some acute inflammatory processes (Zanardo et al., 2006;
d’Emmanuele di Villa Bianca et al., 2010) in atherosclerosis
(Wang, 2009b; Wang et al., 2009), diabetes (Wu et al., 2009),
hypertension (Yang et al., 2008), hyper-homocysteinaemia
(d’Emmanuele di Villa Bianca et al., 2013) and obesity
(Elshorbagy et al., 2012), which are pathological conditions
associated with ED. A link between male sexual hormones
and H2S has been suggested by Bucci and co-authors, who
demonstrated that testosterone (T) causes an increase in the
H2S concentration acting on KATP channels. Thus, H2S contrib-
utes to the vasodilator effect of testosterone (Bucci et al.,
2009). Testosterone induces relaxation by activating smooth
muscle KATP channels in human CC strips (Yildiz et al., 2009)
and in horse penile resistance arteries (Ruiz Rubio et al.,
2004). It has been demonstrated that aging significantly
reduces NO and H2S levels both in plasma and CC and a
reduction of the ICP was countered by NaHS or sildenafil
treatment for 10 weeks. To confirm that there is a link
between T and H2S, Syrilatha and co-authors have shown a
marked increase in T or oestradiol after NaHS supplementa-
tion. These data support the idea that ED related to aging may
be also linked to a derangement in the H2S pathway accom-
panied by low T levels (Srilatha et al., 2012).

If T can modulate H2S production, the decline in T level
with aging or hypogonadism may also affect H2S biosynthe-
sis. All these data suggest the involvement of the L-cys/H2S
pathway in penile erection mechanisms of T (for details, see
review by d’Emmanuele di Villa Bianca et al., 2011). This very
interesting issue needs to be addressed more accurately to
translate this preclinical data to humans.

The efficacy of PDE-5i, the mainstay in the treatment of
ED, seems to be tightly associated with the integrity of nerves
and endothelium in CC and in several pathologies such as
CVD, diabetes, obesity and post-prostatectomy state, this
integrity is severely compromised leading to lack of the
NO/cGMP pathway. Thus, there is a pressing need to discover
new therapies for targeting other pathways not totally
dependent on endothelium integrity. In this regard, the H2S
pathway could offer one opportunity since CBS and CSE are
mainly localized within muscular trabeculae and in human
penile tissues and the H2S-induced relaxation is only partially
reduced by L-NAME treatment. A tentative move towards
developing a drug working on H2S and cGMP pathways (i.e.
not totally dependent on endothelium integrity) was per-
formed by Shukla and co-workers who synthesized and char-
acterized an H2S-donating derivative of sildenafil (ACS6;
Shukla et al., 2009). Surprisingly, ACS6 had a similar efficacy
to sildenafil and this result can be explained by the fact that
H2S and PDE-5i share the same target (e.g. PDE-5). Most
probably, the development of drugs that either deliver H2S
directly or stimulate the enzyme activity responsible for its
synthesis might be more efficacious.

While the inorganic forms of H2S-releasing molecules,
NaHS or Na2S, are basic tools used to understand the H2S role
in the body, they are not eligible for treatments due to the
rapid H2S donation because of high solubility. For instance,
we need the H2S long-term releasing molecule. The best way
to obtain a controlled gas release is to induce its synthesis
endogenously by using L-Cys and/or N-acetylcysteine, but
this approach could not work in a condition where a down-
regulation of the enzyme CBS and CSE occurs. Until now, no
studies have addressed the potential effect of L-Cys on
human ED.

Concerning natural plant-derived compounds, the S-allyl
cysteine, a bioactive component derived from garlic, can
restore erectile function in diabetic rats by preventing ROS
formation through modulation of NADPH oxidase subunit
expression (Yang et al., 2013b). However, whether it plays a
role as a H2S precursor or a modulator of H2S-related enzymes
is controversial (Jacob et al., 2008). Other garlic-derived
molecules, generally considered as precursors of H2S metabo-
lized in blood, have been studied for their potential anti-
inflammatory and anti-cancer effects such as diallyl
trisulphide, diallyl sulphide, diallyl disulphide and diallyl
tetrasulphide but no data concerning their efficacy on CC are
available.

In contrast, the synthetic H2S donor that is attracting
most interest is GYY4137. It inhibits lipid accumulation
exhibiting anti-atherosclerotic activity both in vitro and in
vivo (Yang et al., 2013b). However, there is no data available
on the effect of GYY4137 in ED.

Recently, it has been shown that H2S can elicit vasopro-
tection by both scavenging O2

− and by reducing vascular
NADPH oxidase-derived O2

− production in vascular tissues
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(Vacek et al., 2010; Hamar et al., 2012; Al-Magableh et al.,
2014), Since ROS is the common cause of the ED and when
eNOS is uncoupled it can produce ROS, the beneficial effects
of drugs targeting H2S in ED is not surprising.

The three gases – is there a
convergence point?

The three gasotransmitters share similarities as modulators of
physiological processes (Wang, 2002). CO, NO and H2S are all

able to induce SM relaxation contributing to penile erection.
The common mechanism of these gases to cause erectile
function is ‘increasing the cGMP level’ (Figure 1). The
enzyme sGC is accepted as the most important target for NO
to increase cGMP, which contributes to penile erection.
Besides NO, CO can also bind to the enzyme sGC for its
activation. However, sGC is not always associated as the
target molecule for the three of them. H2S increases the cGMP
level without stimulating sGC. In this section, we will discuss
the relationship between he gasotransmitters (NO, CO and
H2S) and their molecular mechanism in erectile function.

Figure 1
Synthesis and mechanisms of gaseous neurotransmitters in the relaxation of penile or other vascular tissues. Unbold fonts indicate evidence
obtained in other vascular tissues rather than the penis. Dashed red lines indicate inhibition, whereas straight lines indicate activation. Endothelial
cells (EC) are shown as pink boxes and smooth muscle cells (SMC) are shown as grey boxes. 1: CBS, CSE and MPST synthesize H2S from L-cysteine.
(CBS, CSE and MPST are expressed in smooth muscle cells in the penis. MPST can be also expressed in the endothelium of some vascular tissues).
2: eNOS synthesizes NO from L-arginine. 3: CO is synthesized from hemine by constitutive (HO-2 and HO-3) and inducible (HO-1) haem
oxygenases. 4: Caveolin interacts and inactivates both eNOS and HO-1. 5: Hsp90 (HSP90) activates eNOS. 6: ROS decreases the availability of NO
to act on sGC. 7: NO induces relaxation via inhibition of Rho-kinase (ROCK) signalling in the penile tissue. 8: H2S-induced relaxations are increased
in CC precontracted with endothelin, indicating a possible involvement of the RhoA/ROCK pathway in H2S-induced erectile function. 9: Both NO
and CO activate sGC to produce cGMP. CO-induced activation of sGC is lower than NO-induced activation of sGC. However, CO favours
YC-1-induced haem-independent activation of sGC. 10: H2S inhibits cGMP breakdown by PDE-5. 11: H2S activates KATP and leads to membrane
hyperpolarization, which decreases intracellular calcium level via KCa channels and consequently causes relaxation. 12: Testosterone induces
relaxation by activating smooth muscle KATP channels in human CC strips. 13: NaHS treatment increases testosterone level in aging rats. 14:
Testosterone causes an increase in H2S level. 15: NO activates large conductance KCa (KCa1.1 also known as BKCa) in horse penile resistance arteries.
16: PKG can cause relaxation through activation of MLCP and reduce Ca2+ sensitivity in the penis.
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sGC
sGC is a heterodimer and it is similar to other nucleotide-
converting enzymes. Two different subunits with two iso-
forms of each have been identified: α1, α2, β1 and β2. The
most abundant form of the heterodimer sGC is α1/β1 in
CC (Behrends et al., 1995). Both show sensitivity towards
NO-releasing substances and to sGC activators. CC from
sGCα1-/- mice showed significantly less or no relaxation in
response to bradykinin (BK) and ACh, respectively, empha-
sizing the requirement of sGCα1 subunit for the erectile func-
tion of endothelium-derived NO (Nimmegeers et al., 2008).
The absence of EFS-induced relaxation in these mice indicates
sGCα1β1 as the predominant target for neuronal NO. The
minor contribution of sGCα2β1 isoform in erectile function
has been suggested in this study since some responsiveness to
exogenous NO (SNP and NO-gas) and sGC stimulator (BAY
41-2272) remains in the sGCα1-/- mice CC (Nimmegeers
et al., 2008).

Activation of sGC by NO involves binding to the
enzyme’s prosthetic haem group since its removal abolishes
NO-induced activation (Stone and Marletta, 1995). After
binding to the sGC haem, NO increases sGC activity by
several hundred-fold (Derbyshire and Marletta, 2009) pro-
moting the conversion of GTP to cGMP. In contrast, CO
causes only a few fold increases in sGC activity, whereas
this enzyme is unlikely to be activated by H2S (Zhao and
Wang, 2002). Despite the lower ability of CO to activate
sGC compared with NO, it was reported that the vasodilator
and erectile effects of CO are mediated by sGC activation
(Friebe et al., 1996; Nakane et al., 2002; Decaluwe et al.,
2012a).

Besides the well-established NO/haem-mediated stimula-
tion, other mechanisms for sGC activation have been
identified. The activation induced by 3-(5′-hydroxymethyl-
2′-furyl)-1-benzylindazole (YC-1) and 5-cyclopropyl-2-[1-
(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]pyrimidin-4-
ylamine (BAY 41-2272) involves binding to a site different
from the haem group (Stone and Marletta, 1995; Friebe
et al., 1998). In vascular SM cells, YC-1 sensitizes sGC to NO
and CO (Liu et al., 2009). These compounds together with
the amino dicarboxylic acid substance, BAY 58-2667 can
evoke erectile responses, enhance cGMP formation and/or
CC relaxation synergistically with NO (Mizusawa et al.,
2002; Nakane et al., 2002; Stasch et al., 2002; Baracat
et al., 2003; Hsieh et al., 2003; Teixeira et al., 2007; Frey et al.,
2012).

Although CO stimulates purified sGC very poorly, only
3–4-fold (Schmidt et al., 2001), in the presence of sGC acti-
vators such as YC-1, sGC activation by CO is drastically
enhanced, near to that stimulated by NO (Friebe et al., 1996;
Lee et al., 2000; Ma et al., 2007). CO relaxes CC through
activation of sGC, indicated by the inhibiting effect of (1H-
[1,2,4] oxadiazolo[4,3,-a]quinoxalin-1-one) and potentiating
effect of YC-1 on the CO-induced responses in mice CC
(Decaluwe et al., 2012a).

The findings that (i) CO activates sGC in a similar way to
NO, and (ii) it can activate sGC in nNOS-deficient mice
(Zakhary et al., 1997), suggest that endogenous CO might
serve as a backup system when constitutive enzymes for NO
are not functional or available.

Hsp90
We have previously observed that the relaxation mediated by
sGC is regulated by the molecular chaperone 90-kDa heat
shock protein hsp90 (Yetik-Anacak et al., 2006). Inherent
ATPase activity of hsp90 helps to protect cells against stress-
ors through the control of maturation, trafficking, stability
and activity of client proteins, such as the enzymes NOS and
sGC (Garcia-Cardena et al., 1998; Venema et al., 2003;
Yetik-Anacak et al., 2006). Hsp90 is important to drive haem
insertion and maturation of sGC (Ghosh and Stuehr, 2012).
We demonstrated hsp90 and eNOS interaction and func-
tional significance in mice CC (Yetik-Anacak et al., 2013).
Musicki et al. also showed the decreased complex formation
of hsp90-eNOS in sickle cell anaemia-induced ED (Musicki
et al., 2011). There is evidence that it also regulates CO and
H2S activities in myocardial cells and astrocytes (Choi et al.,
2010; Yang et al., 2011). Whether hsp90 interacts with CO
and H2S in the CC and contributes to penile erection remain
to be elucidated.

cGMP
The product formed following sGC activation from GTP is the
second messenger cGMP, that modulates the activity of
several effector proteins leading to vasorelaxation (Schmidt
et al., 1993). NO and CO induce an increase in cGMP levels in
CC (Priviero and Webb, 2010; Decaluwe et al., 2012b). H2S is
also able to induce an increase in cGMP levels; however, it
does not seem to directly activate sGC as mentioned above
(Coletta et al., 2012). As sildenafil, H2S has been implicated as
an inhibitor of PDE-5 delaying cGMP degradation (Bucci
et al., 2010; Coletta et al., 2012). Furthermore, although it has
been suggested that cGMP or cAMP analogues cause an
increase in H2S production in human bladder (Fusco et al.,
2012), this issue has to be confirmed in penile tissue.

PKG
Once formed, the principal intracellular mediator of the
cGMP is the PK dependent on cGMP, PKG, which is a key step
in the signal cascade leading to penile erection (Hedlund
et al., 2000a). PKG plays a role in mediating NO-, CO- and
H2S-dependent signalling in vascular tissue and BP control
(Lohmann et al., 1997; Lincoln et al., 2001; Schlossmann
et al., 2003; Leffler et al., 2005; Bucci et al., 2012; Burgoyne
et al., 2012).

PKG can cause vascular relaxation through activation of
myosin light chain phosphatase (MLCP) and reduce Ca2+

sensitivity in the penis (Mills et al., 2002). Additionally, it has
been shown that PKG phosphorylates and inhibits RhoA in
the aorta (Sauzeau et al., 2000).

RhoA/Rho-kinase pathway
Rho-kinase (ROCK) phosphorylates and inhibits MLCP thus
promoting the binding of actin and myosin for contraction
of CC (Chitaley et al., 2002a; Wang et al., 2002; Jin and
Burnett, 2006) Chitaley and colleagues (2001) were the first
to demonstrate the involvement of RhoA/Rho-kinase signal-
ling in erectile response (Chitaley et al., 2001). This signalling
pathway is increased in the CCSM of several models of ED
in rats, such as those associated with hypertension, diabetes
and aging (Bakircioglu et al., 2001; Chitaley et al., 2001;
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Bivalacqua et al., 2004c). There is evidence that NO induces
relaxation via inhibition of ROCK signalling in the penis
(Mills et al., 2002) and CO in aorta (Awede et al., 2010).
Furthermore, co-localization of eNOS and Rho-kinase was
found in sinusoidal endothelium of CC (Mills et al., 2002;
Bivalacqua et al., 2004a) CO inhibits the production of the
potent vasoconstrictor, endothelin-1, which has been shown
to activate RhoA (Morita and Kourembanas, 1995). H2S may
also interfere with the contractile mechanism mediated by
the RhoA/ROCK pathway. In fact, in human CC strips pre-
contracted with either U46619 or h-ET1, there was a marked
increase in the H2S vasorelaxant effect compared with
that observed in strips pre-contracted with 1-agonist
(d’Emmanuele di Villa Bianca et al., 2009).

Caveolin-1
The enzyme sGC that was believed to be present only at the
cytosol has been also detected in association with the plasma
membrane (Zabel et al., 2002; Venema et al., 2003). sGC
translocates to caveolar domain to be sensitized by NO (Zabel
et al., 2002; Venema et al., 2003). In the CC of caveolin-1
knockout mice, the relaxation induced by EFS and by the NO
donor is impaired compared with wild-type mice (Shakirova
et al., 2009), supporting a role for caveolae and caveolin-1 in
erection. Previously, we observed that the relaxation induced
by the sGC activator YC-1 is impaired in both the
endothelium-intact aortic rings and CC after treatment with
methyl-β-cyclodextrin, a compound that depletes plasma
membrane cholesterol and disassembles caveolae (Linder
et al., 2005; 2006). In the aortic and sinusoidal endothelium,
we observed colocalization of sGC and the major coat protein
of caveolae, caveolin-1 (Linder et al., 2005; 2006). These find-
ings establish the association of sGC to caveolae in the
endothelium introducing a potential therapeutic strategy for
CVDs related to endothelial dysfunction, such as ED.

The well-established association of the enzyme eNOS with
the plasma membrane protein, caveolin-1, maintains the
enzyme in an inactive state (Feron et al., 1996) and an
increase in intracellular calcium concentration in the
endothelial cell is a key step for the dissociation of these
proteins and, consequently eNOS activation (Gratton et al.,
2000).

Similar to eNOS, HO-1 also appears in caveolae and physi-
cally interacts with caveolin-1 (Jung et al., 2003; Kim et al.,
2004). HO enzyme activity increases in the absence of
caveolin-1. In contrast, caveolin-1 causes inhibition of HO
induction (Taira et al., 2011). The negative regulation of both
eNOS and HO-1 activity by caveolin-1 give rise to the hypoth-
esis that caveolin-1 may serve as a molecular brake on signal-
ling mechanisms involving small gaseous second messengers.
H2S-producing enzymes are also expressed in endothelium
(Chertok and Kotsyuba, 2012; Baragatti et al., 2013). Recent
studies showed that H2S is produced in adipose tissue, which
is enriched by caveolin-1, but it is not known yet if H2S-
producing enzymes are located at caveolae and if H2S inter-
acts with caveolin-1. The only study addressing H2S-caveolin
relation demonstrated the lack of effect of H2S donor (NaHS)
on caveolin-1 expression in the CC (Meng et al., 2013) but it
remains to be investigated whether caveolin-1 regulates H2S
producing enzymes or H2S-induced relaxations in penile
tissue.

Alterations in caveolin-1 expression were reported in dif-
ferent animal models such as decreased caveolin-1 expression
in diabetic, aged and nerve injured rats penis (Becher et al.,
2009) or increased caveolin-1 mRNA expression in SHR
and protein expression in hypercholesterolaemic rat penis
(Bakircioglu et al., 2000; Yono et al., 2009). Investigating the
role of caveolar domains in erectile function of these gas-
otransmitters may bring new targets for ED treatment.

ATP-sensitive potassium channels:
KATP channels
Activation of KATP channels leads to subsequent membrane
hyperpolarization, which causes closure of voltage-
dependent calcium channels resulting in smooth muscle
relaxation. With respect to the physiology of erection, K
channels in corporeal smooth muscle cells are accepted to
represent a critical modulator of the flow of blood to and
from the penis and, thus, an important determinant of erec-
tile capacity (Spektor et al., 2002). NO activates KATP channels
via a cGMP-dependent mechanism in vascular smooth
muscle cells (Kubo et al., 1994) but not in horse penile resist-
ance arteries (Simonsen et al., 1995) or horse corpus caverno-
sum (Recio et al., 1998). Glibenclamide inhibits CO-induced
relaxation in vascular tissue (Foresti et al., 2004) but not in
mice CC suggesting that CO-induced erectile function does
not involve KATP channels (Friebe et al., 1996; Nakane et al.,
2002; Decaluwe et al., 2012a). It has been proposed that H2S
causes opening of KATP channels by a protein S-sulphydration
(Mustafa et al., 2009; Jiang et al., 2010). The role of these
channels in H2S-induced relaxation of human CC has also
been confirmed (d’Emmanuele di Villa Bianca et al., 2009).
These studies show that both NO- and CO-induced relaxation
mechanisms in the penis are different from those in other
vascular tissues.

Calcium-activated potassium channels KCa
The endothelium-dependent vasodilatation evoked by ACh is
resistant to blockade of NOS in penile small arteries (Prieto,
2008). The relaxant effect of NO is due in part to activation
of large-conductance KCa (KCa1.1 also known as BKCa, see
Alexander et al., 2013a) in horse penile resistance arteries,
(Simonsen et al., 1995) but not in horse CC (Recio et al.,
1998) suggesting the diameter of the vessel may determine
the involvement of KCa in the relaxation. ACh is the
most common agonist that causes relaxation mediated by
endothelial-derived hyperpolarizing factor (EDHF). Mus-
carinic cholinergic receptor activation causes CSE activation
and in turn H2S production and there are data supporting H2S
as an EDHF (Wang, 2003; 2009a). The exact nature of EDHF is
still unknown but many hypotheses have been proposed.
(Feletou and Vanhoutte, 2009). It is believed that KCa chan-
nels are the main mediator for vasodilator effects of the
EDHF. The combination of KCa blockers, charybdotoxin and
apamine significantly reduces the H2S-induced endothelial-
dependent relaxation, underlining that KCa channels are
targets for H2S and as it is well known, these channels are also
the targets of EDHF (d’Emmanuele di Villa Bianca et al., 2011;
Mustafa et al., 2011).

CO also leads to stimulation of KCa channels in several
vascular tissues (Dubuis et al., 2005; Decaluwe et al., 2012a);
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however, CO-induced relaxation in mice CC does not involve
KCa channels (Decaluwe et al., 2012b).

The interactions among the three
sister gases

The interactions among these gases are mostly shown in
other vascular tissues rather than the penis. The traffic
between these gasotransmitters and downstream molecules
and their implication in erectile function/dysfunction repre-
sent a very complicated but intriguing issue. There is evi-

dence that the effects induced by CO and H2S are partially
mediated by NO/cGMP (Wegiel et al., 2010; Coletta et al.,
2012; Fusco et al., 2012; Meng et al., 2013). In other words,
H2S and CO potentiate the stimulating action of endog-
enously synthesized NO. Additionally, Meng and colleagues
have shown that H2S enhances NOS expression in endothelial
cells of CC leading to NO production (Meng et al., 2013). The
crosstalk among the gases was summarized in a representative
figure (Figure 2).

H2S–CO interaction
Recently, the data showing inhibition of H2S producing
enzyme CBS by constitutive CO suggests an H2S-HO-2/CO

Figure 2
Crosstalk among NO/CO/H2S/sGC pathways in vascular tissues including the penis. Bold fonts indicate the evidence obtainded in the penis. 1:
CO inhibits eNOS in the presence of higher amounts of NO. However, CO activates eNOS when there is a low amount of NO (renal arteries; Botros
and Navar, 2006). 2: High levels of CO inhibit NOS activity and NO generation, lower concentrations of CO induce release of NO (Thorup et al.,
1999). 3: NO donors activate HO-1 (Foresti and Motterlini, 1999). 4: NO donors up-regulate the expression and activity of CSE in vascular tissues
and cultured aortic smooth muscle cells (Leffler et al., 2005 and Zhao et al., 2001). 5: H2S cause eNOS activation in aorta through Akt. Coletta
et al., 2012, and directly increase the expression of eNOS in CC (Meng et al., 2013). 6: CO inhibits CBS sensor (Taoka and Banerjee, 2001). 7:
CO modulates NO-stimulated sGC activation dependent on NO concentration. In that, in the presence of low concentrations of NO, CO
stimulates, otherwise CO inhibit sGC activation (Kajimura et al., 2003). 8: cGMP causes an increase in H2S production in vasculature (Bucci et al.,
2012). 9: H2S acts as an endogenous inhibitor of PDE activity (Bucci et al., 2010).
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interaction to coordinate cerebral vasodilatation (Morikawa
et al., 2012). Whereas, it has been shown that H2S up-
regulates HO-1 expression in HUVEC (Pan et al., 2011).
However, the interactions between these gasotransmitters
have not been studied in the penis yet.

NO–CO interaction
The NO–CO crosstalk seems dependent on the concentration
of gasotransmitters; such that low concentrations of CO
induce release of NO and, therefore, may mimic the vascular
effects of NO. (Thorup et al., 1999). In contrast, supra-
physiological high levels of CO or HO-1 gene over-expression
inhibit NOS activity and NO generation (Abdel Aziz et al.,
2009c). Supporting this, it has been found that elevated levels
of endogenous CO contribute to arteriolar NO dysfunction
in Dahl salt-sensitive rats (Johnson et al., 2003). This
CO-induced preconditioning conforms with a defence
mechanism to inhibit iNOS-induced higher concentration of
NO in pathological conditions.

In the same way, CO inhibits the NO-cGMP pathway
under high NO concentrations, but compensates for NO to
prevent excess vasoconstriction when insufficient NO is
available (Botros and Navar, 2006). This study also suggests
that the effect of CO on modulating sGC activity is also not
static but dynamic. Supporting this low tissue availability of
NO makes CO a stimulating modulator of sGC, while high
tissue availability of NO causes the opposite (Kajimura et al.,
2003). Thus, it is believed that CO regulates NOS and sGC
activity in a way that the HO/CO pathway is compensatory
for NOS.

In contrast, NO donors cause HO-1 induction (Durante
et al., 1997; Foresti and Motterlini, 1999). Since CO inhibits
NOS, under high concentrations of NO as in the case of
exogenous NO administration, NO-induced HO-1 induction
controls itself later by inhibiting NOS, representing a nega-
tive feedback mechanism. For further information on how
the two systems are interrelated, readers are referred to the
review by Foresti (Foresti and Motterlini, 1999).

H2S–NO interaction
In 1997, a physiological role for H2S in the vasculature and a
link between NO and H2S (Hosoki et al., 1997) were sug-
gested. Studies showing that H2S enhances cGMP levels in
isolated aortic rings, and inhibits both cGMP and cAMP
breakdown in a cell-free system provide direct evidence that
H2S acts as an endogenous inhibitor of PDE activity (Bucci
et al., 2010). In line with this evidence, it has been demon-
strated that exposure of endothelial cells to H2S increases
intracellular cGMP in a NO-dependent manner; H2S activates
PI3K/Akt and increases eNOS phosphorylation, demonstrat-
ing the requirement of NO in vascular H2S signalling. NO and
H2S are mutually required for the physiological control of
smooth muscle tone and function in the aorta (Coletta et al.,
2012). A contribution of NO/cGMP pathway in NaHS-
induced human CC relaxation has also been addressed
(d’Emmanuele di Villa Bianca et al., 2009). NO donors
up-regulate the expression and activity of CSE in vascular
tissues and cultured aortic smooth muscle cells (Zhao et al.,
2001; Leffler et al., 2005). Recently, it has been shown that
H2S promotes NO production in CC by enhancing he expres-

sion of eNOS (Meng et al., 2013). However, NO–H2S interac-
tions have not been investigated in-depth in penile tissue.

Future directions

The evidence showing beneficial effects of CO-producing
approaches in diabetes, hypertension or aging-induced ED as
well as H2S donors in aging-induced ED are encouraging the
development of drugs that target H2S or CO pathways and
clinical studies. In addition, NO donors have been shown to
increase both the H2S level and HO-1 activity in vascular
tissues, thus drugs acting on the NO pathway may also be
further beneficial in ED treatment because of their pleiotropic
effects on other gasotransmitters. As a consequence when the
endothelium is disrupted, a compound that supplies NO and
increases both HO/CO and the H2S pathways could be ben-
eficial in ED. Interestingly, PDE-5i have been shown to
increase the activity of the HO/CO pathway in penile tissues
(Abdel Aziz et al., 2007a) and H2S production in human
bladder (Fusco et al., 2012) as well as limiting myocardial
infarction through H2S signalling (Salloum et al., 2009).
Moreover, our preliminary study suggests that H2S signalling
may represent a new mechanism involved in the effect of
sildenafil on erectile function (Dikmen et al., 2013). Thus, a
specific study needs to be performed to clarify the H2S-related
mechanisms of PDE-5 inhibitors in CC as well. Furthermore,
an in-depth investigation into the close relationship among
the testosterone, H2S and cGMP pathways will help urologists
to decide the best therapeutic approach to counteract or
prevent ED. More importantly, the trafficking among these
gasotransmitters and downstream molecules and their impli-
cation in erectile function/dysfunction represent a very com-
plicated but intriguing issue.

Conclusion

Although the role of the NOS/NO pathway in erectile func-
tion and dysfunction is fundamental, the clinical studies
targeting the NOS pathway in ED have not been successful to
reach full erectile response recovery. Besides NO, the role of
both CO and H2S in erectile function has been well estab-
lished in preclinical studies. The finding that CO can activate
sGC in nNOS-deficient mice (Zakhary et al., 1997), and can
compensate for NO to relax the vessel, when the NO level is
low, may be important from bench to bedside translation to
find a compensatory alternative therapy for ED. On the con-
trary, since H2S is mainly produced by smooth muscle in
human CC, this pathway may complement NO signalling in
ED especially in conditions associated with endothelial dys-
function. Moreover, since ROS is the main cause of ED and
when eNOS is uncoupled it can be converted to ROS-
producing enzyme, the antioxidant effects of H2S and the
HO/CO pathway, as well as haem-independent activation of
sGC by CO or endothelium-independent erectile effects of
H2S, may have additional benefits in ED when NO-dependent
cGMP formation is impaired because of either decreased
synthesis/bioavailability, ROS-induced disruption of NO or
the inability of haem-dependent activation of sGC in
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vasculogenic ED. Thus, targeting the other sister gases, H2S
and CO, may represent new therapeutic potentials in ED.
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