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Abstract
A superconductor-semiconducting nanowire-superconductor heterostructure in the presence of
spin–orbit coupling and magnetic field can support a supercurrent even in the absence of phase
difference between the superconducting electrodes. We investigate this phenomenon—the
anomalous Josephson effect—employing a model capable of describing many bands in the
normal region. We discuss the geometrical and symmetry conditions required to have a finite
anomalous supercurrent, and in particular we show that this phenomenon is enhanced when
the Fermi level is located close to a band opening in the normal region.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Hybrid nanostructures, combining superconducting and semi-
conducting elements, hold promise for novel functionalities,
and their transport properties are attracting increased atten-
tion and intense experimental and theoretical effort. A two-
dimensional electron gas trapped in a semiconductor het-
erostructure, and contacted with superconductors, provides
an archetypical superconductor/normal metal/superconductor
(SNS) system [1]. Semiconducting quantum dots [2] or semi-
conducting nanowires [3–5] can be contacted with supercon-
ductors. These devices allow for the gating of the semicon-
ductor with increased control of its carrier density [6]. In
this respect, hybrid structures including ferromagnetic barri-
ers offer another exciting arena on its own [7, 8] and are of
the utmost relevance for spintronics [9, 10]. Recently, there
has been a burst of activity regarding hybrid heterostructures
involving semiconductors with strong spin–orbit (SO) interac-
tion, as SO can also be a tremendous tool for controlling spin
transport. It has been established that SO is at the origin of a
topological non-trivial order in topological insulator materials
respecting time reversal symmetry [11–14]. Semiconducting
nanowires, with SO interaction, Zeeman spin splitting induced

by a longitudinal magnetic field, and superconductivity, can be
described in terms of a chain of spinless fermions. It has been
shown that zero energy neutral excitations (Majorana bound
states) localize at the end of the nanowire, when the system is
driven to the topological non-trivial state [15–18]. As Majo-
rana bound states can become a valuable tool in future quantum
information devices [19], it is becoming more and more essen-
tial nowadays to characterize the superconducting proximity
in quasi one-dimensional SNS structures with SO and Zeeman
spin splitting both in the topologically trivial phase and in the
non-trivial one.

Here we consider a semiconductor nanowire with both
Rashba and Dresselhaus SO coupling, forming a quasi one-
dimensional wire, contacted with conventional s-wave singlet
pairing superconductors. We assume that the normal region
is much shorter than the superconducting coherence length ξ

(short junction limit), so that the superconducting coherence is
fully established across the SNS structure. In the short junction
limit, the Josephson current is carried by the Andreev bound
states, belonging to the discrete subgap energy spectrum [20].

The anomalous Josephson effect (AJE), consists of a non-
zero Josephson current Ia flowing with zero phase difference
between the superconducting order parameters of the contact
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superconductors, ϕ = 0. This implies that the zero current
ground state is located at a phase difference ϕ0 �= {0, π} (in
some of the literature these junctions are named ϕ0-junctions
[21]). The situation under consideration here is different
from the case of Josephson junctions with a strong negative
second harmonic [22]. For these junctions the ground state is
located at a phase difference determined by the minimum of
the Josephson energy, which depends on the relative strength
of the first and the second harmonic.

The AJE was initially predicted for unconventional
superconductors [23–28]. Several possibilities for the normal
region have been addressed: a magnetic normal metal [21, 29–
33], a one-dimensional quantum wire, a quantum dot [34, 35],
a multichannel system with a barrier or a quantum point
contact [36, 37], and a semiconducting nanowire [38, 39].
Anomalies of the Josephson current have also been predicted
in the presence of Coulomb interactions and SOI for a wire
[40, 41] or a quantum dot [35] contacted with conventional

s-wave superconductors.
We show that Ia is maximum when the system’s

parameters are away from highly symmetrical points (i.e. pure
Rashba, pure Dresselhaus, or equal strength of Rashba and
Dresselhaus SO interaction). Moreover, while studying the
dependence of Ia on the location of the chemical potential EF,
we find an enhancement of Ia when EF is close to the opening
of a new channel in the normal region. Similar threshold effects
are not new in scattering theory, even in the absence of spin
effects [42].

This paper is organized as follows: in section 2 we review
the relation between the Josephson current and the scattering
matrix of the normal region. In section 3 we show how to
compute the scattering matrix as a function of the chemical
potential, the spin–orbit coupling and the Zeeman field. In
section 4 we discuss our results, we summarize in section 5.

2. Andreev states and current calculation

We consider a quasi 1D nanowire between two conventional
s-wave superconductors. In our model the nanowire is in the
region |x| < L, while the left (right) superconductor is in the
region x < −L (x > L). We assume that the SO interaction
and the magnetic field are only present in the nanowire region.
Recent advances in the fabrication of nanowires of InAs and
InSb have made materials with a large g-factor and a strong
spin–orbit (SO) interaction available. A topological phase
with Majorana fermions as boundary excitations could appear
when the SO interaction was present in the leads [43]. By
contrast, we assume no SO interaction in the leads as we want
to focus on the non-topological phase, which has been poorly
addressed in the literature. Moreover, due to a large g factor in
the semiconducting region, a strong Zeeman spin splitting can
be recovered, even for weak values of the magnetic field which,
in turn, does not affect the superconductors and is accordingly
neglected in the leads. Moreover, we disregard the orbital
effect of the magnetic field, which we take perpendicular to
the plane containing the nanowire and the top surface of the
leads.

We look for solutions of the Bogoliubov–de Gennes
equations:

(
H − EF �

�† −(H ∗ − EF)

) (
u(x, y)

v(x, y)

)
= ε

(
u(x, y)

v(x, y)

)
, (1)

where ε measures the energy with respect to the Fermi level
EF, while u(x, y) and v(x, y) are, respectively, the electron
and hole spinors in the Nambu representation. Notice that
the spin structure is not explicit at this level. The even parity
pairing potential is taken to be:

�̂ = �(x)

(
0 −1
1 0

)
, (2)

with

�(x) = �0
[
�(−x − L)e−iϕ/2 + �(x − L)eiϕ/2

]
, (3)

and we take a symmetric phase difference ϕ between the two
superconductors. �(x) is the Heaviside step function.

For the sake of generality we assume that both Rashba
and Dresselhaus SO interactions are present5. We notice that
in conventional InAs/InSb nanowires the Rashba term is in
general much larger than the Dresselhaus one. However,
in our calculation we also explore a region of parameters
where the two interactions have comparable strength, which
is achievable in (In,Ga)As quantum wells [44]. We assume
a harmonic confining potential in the y directions, so that
electrons propagate along the the x direction. The choice of a
harmonic confining potential is particularly convenient when
expressing the matrix elements of the SO interaction [45, 46]6.
The Hamiltonian reads:

H = p2
x

2m
+

p2
y

2m
+

1

2
mω2y2 +

α(x)

h̄
(σxpy − σypx)

+
β(x)

h̄
(σxpx − σypy) + gµBBσz + δaδ(x + L)

+ δbδ(x − L) +
i

2
(∂xα(x)σy − ∂yβ(x)σx), (4)

where α(x) = α[�(x + L) − �(x − L)] and β(x) =
β[�(x + L) − �(x − L)] are, respectively, the strength of
the Rashba and Dresselhaus component of the SO interaction.
An important ingredient in equation (4) is given by the δ-
like scattering centers, with strength δa and δb different from
each other. This point is crucial, here, as such an asymmetry
between left and right contact is fundamental in determining
the anomalous Josephson effect, as we will discuss in the
following. Finally, B is the applied magnetic field, while the
last term in equation (4) is necessary to preserve the hermicity
of the Hamiltonian operator in case of a position-dependent
SO interaction strength. Due to the presence of the transverse
confinement potential, it is natural to employ a scattering
approach to the problem. Indeed, in the superconducting leads

5 The same system can be addressed with pure Rashba SO or Dresselhaus
SO, but allowing for a magnetic field with an in-plane component.
6 Another possible choice would be using a hard wall confinement [46]. There
are, of course, quantitative changes, in particular for the excited states, however
we are interested in the low energy physics, where the splitting of the lateral
sub-bands are almost comparable within the two models.
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one can define transverse modes, so that the electron wave
functions in the x-direction are characterized by a band and a
spin index.

The spectrum of equation (1) consists of a finite set of
bound states (Andreev levels) with energy |ε| < �0, and a
continuum of states with |ε| > �0. The current can be obtained
from the ground state energy Egs(ϕ) at zero temperature by the
thermodynamic relation

I (ϕ) = 2e

h̄

dEgs

dϕ
. (5)

In the short junction limit only the subgap Andreev states
contribute to the Josephson current (in the long-junction limit,
one can use the technique developed in [47, 48] to exactly
account for contributions from all the states, to leading order
in the inverse junction length). Thus, one obtains

I (ϕ) = e

h̄

∑
n

′ ∂En(ϕ)

∂ϕ
. (6)

In equation (6) ‘n’ labels the Andreev states, the primed sum
means that only negative energy (occupied) Andreev states are
considered. Notice that a factor of 2 differences with the usual
relation is found in the literature because the spin degeneracy
is lifted here. Before we move further in our analysis it is
useful to note, as put forward in [38, 49], how the symmetry
of equations (1) can rule out the anomalous Josephson effect.
Denoting with HBdG the matrix in equation (1), in the absence
of a magnetic field, the time reversal operator T = iσyK

(with K the complex conjugation operator) induces a self-
duality T HBdG(ϕ)T −1 = HBdG(−ϕ), so that, if HBdG(ϕ) has
an allowed energy eigenvalue En, HBdG(−ϕ) will have the
same eigenvalue. In this case the anomalous Josephson effect
is ruled out. Similarly, when there is no SO interaction, one
obtains KHBdG(ϕ)K−1 = HBdG(−ϕ), which again implies
no anomalous Josephson effect. The previous considerations
are general, not depending on the details of the Hamiltonian
describing the nanowire (explicit form of the confinement
potential, presence of disorder, etc). We notice that for our
specific model, even in the presence of SO interaction and
magnetic field along the z direction, when δa = δb the
operator O = iσz (with  the parity operator) also gives
OHBdG(ϕ)O−1 = HBdG(−ϕ); for this reason, in order to
recover the anomalous Josephson effect, in this article we
always assume asymmetric delta potentials at the interfaces
between normal and superconducting regions.

The calculation of the Andreev states in a quasi one-
dimensional system can be conveniently done using a
scattering matrix approach [20]. We assume that for energies
below the superconducting gap �0 at the interface between
the normal and the superconducting regions only intra-channel
Andreev scattering takes place where a hole (electron) with
spin σ is reflected as an electron (hole) with spin −σ .
Accordingly, these processes are encoded in the relations




aeL

aeR

ahL

ahR


 = SA




beL

beR

bhL

bhR


 (7)

and the Andreev scattering matrix is defined as:

SA =
(

0 r̂eh

r̂he 0

)
(8)

with

r̂eh = i e−iγ

(
1̂ ⊗ σ̂ye−iϕ/2 0

0 1̂ ⊗ σ̂ye+iϕ/2

)
, (9)

and

r̂he = −i e−iγ

(
1̂ ⊗ σ̂ye+iϕ/2 0

0 1̂ ⊗ σ̂ye−iϕ/2

)
. (10)

In equation (10) 1̂ is the identity matrix in the channel space,
the σ̂y Pauli matrix acts in the spin space and γ = arccos(ε/�).
In the normal region Andreev scattering processes are not
allowed, which allows us to write




beL

beR

bhL

bhR


 =

(
Se(ε) 0

0 Sh(ε)

)



aeL

aeR

ahL

ahR


 . (11)

The energy of the Andreev bound states is determined by the
following equation [50]:

det
[
1̂ − r̂ehŜh(−ε)r̂heŜe(ε)

]
= 0. (12)

In the short-junction limit one can disregard the energy
dependence of the scattering matrix and take Ŝ∗

h(−ε) =
Ŝe(ε) � Ŝe(0). Therefore, in order to solve equation (12),
one has to calculate the scattering matrix of the normal region
at the Fermi energy. We carry on this task in the next
section.

3. Model and calculation of the scattering matrix S

In this section we evaluate the scattering matrix S of the
normal region as a function of the Fermi energy. We address
the case of one open channel (with two spin orientations).
However, our method is easily generalized to two or more open
channels.

As a first step, we solve the Schroedinger equation within
the L-lead (x < −L) and the R-lead (x > L) (assuming
no superconductivity), as well as in the central region SO
with spin–orbit interaction (x < |L|) (see figures 1 and 2).
Therefore, we derive the scattering matrix by matching the
solutions at the interfaces between the three regions. In figure 2
we plot the band structure in these three regions (parameters in
the caption). One can notice that the band structure is strongly
influenced by the presence of the spin–orbit coupling and,
interestingly enough, depending on the position of the Fermi
level, the number of open channels of the leads and the central
region can be different.

To obtain a reliable approximation for the eigenfunctions
and eigenvectors in the SO region, we exactly diagonalize the
Hamiltonian on the basis of the wave functions {eiκxχm(y)φσ },
with {χm(y)} being the eigenfunctions of the harmonic

3
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SL SR
NW

aeL
beL

ahL
bhL

aeR
beR

ahR
bhR

-
Figure 1. Electron and hole incoming states in the (ai) are scattered
into outgoing states (bi) by a nanowire region described by the
scattering matrix Se/h. Andreev scattering at NS interfaces where
electron (hole) states are scattered into hole (electron) states is
described by the Andreev scattering matrix SA.

-2 0 2
k

x
 lω
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 lω
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d

Figure 2. Here we show the band structure obtained by numerically
diagonalizing the Hamiltonian of Equation (4), we define
Eω = h̄ω/2 and lω = √

h̄/mω. In this figure we use the following
paramenters: mζlω/h̄2 = 0.9, θ = π/8, gµBB/Eω = 0.6 and the
number of transverse bands l = 5.

oscillator and φσ the eigenfunctions of σz, by considering a
finite number l of transverse modes {χm(y)}, m ∈ {1, ..., l}.
The above basis functions are eigenfunctions in the right-hand
(left) region R (L).

Such an approximation is indeed expected to provide a
good description of the scattering dynamics of the system at
energies small compared to the energy of the last transverse
mode considered. In our calculation we find that the low-
energy properties of our system are well described if we
truncate the basis at l = 5.

Therefore, the problem is now reduced to finding the
eigenvalues and the eigenfunction of the corresponding 2l×2l-
dimensional Hamiltonian matrix H(κ)m,σ ;m′,σ ′ . For a given
energy E the allowed κi are the solution of

det [H(κi) − E] = 0. (13)

For each value of the energy we have κi (i = 1, .., 4l) solutions,
and the generic eigenfunction is:

ψso(x, y; E) =
4l∑

i=1

bso
i eiκix

∑
mσ

c(i)
m,σ χm(y)φσ (14)

where the coefficients c(i)
m,σ have to be determined numerically

(the coefficients bso
i are determined by imposing the matching

conditions listed below). We note, with reference to figure 2,
that the number of real {κi} in the SO region may vary
according to the value of the Fermi energy. As we will show
later, changing the number of real {κi} without affecting the
number of propagating channels in the leads, greatly affects the
conductance of the system when it is in the normal state, and in
turn the Josephson current when the leads are superconducting.

As we consider one open transport channel in the leads
with two spin orientations, the scattering matrix Se introduced
in the previous section is given by:

Se =
(

rL tRL

tLR rR

)
, (15)

with

rL =
(

rL
1↑,1↑ rL

1↑,1↓
rL

1↓,1↑ rL
1↓,1↓

)
, (16)

and similarly for rR, tRL and tLR.
In order to obtain the total S-matrix, one has to compute

all the reflection and transmission coefficients, by matching
the wave function in equation (14) with the one in the leads
for any possible choice of scattering boundary conditions.
For instance, let us consider explicitly the case of a spin-up
particle incoming from the left-hand side. In this case the
wave functions within L and R are respectively given by:

ψL(x, y; E) = eik1xχ1(y)φ↑ + rL
1↑,1↑e−ik1xχ1(y)φ↑

+rL
1↓,1↑e−ik1xχ1(y)φ↓ +

∑
σ=↑,↓;i=2,..,n

dL
i,σ ekixχi(y)φσ (17)

ψR(x, y; E) = tRL
1↑,1↑eik1xχ1(y)φ↑ + tRL

1↓,1↑eik1xχ1(y)φ↓

+
∑

σ=↑,↓;i=2,..,n

dR
i,σ e−kixχi(y)φσ (18)

with k1 = [2m(E − h̄ω/2)]1/2/h̄ and ki = [2m(h̄ω(i + 1/2)−
E)]1/2/h̄ for {i = 2, ..., l}.

The wave function at x = ±L must be continuous, its
derivative with respect to x must be, in general, discontinuous
to account for the non-perfect transparency at the interfaces and
the SO interaction (see equation (4)). Projecting the equations
corresponding to the matching conditions onto the basis states
χm(y)φσ (m = 1, ..., l; σ =↑, ↓) we obtain the following set
of equations:∫ +∞

−∞
χ∗

m(y)φ†
σ [ψL(−L, y) − ψso(−L, y)] dy = 0, (19)

∫ +∞

−∞
χ∗

m(y)φ†
σ [ψR(L, y) − ψso(L, y)] dy = 0. (20)
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Figure 3. Here we show the band structure of the nanowire for several values of the angle θ . We take the strength of the SO interaction
mζlω/h̄2 = 0.9 and the transverse magnetic field gµBB/Eω = 0.6.

∫ +∞

−∞
χ∗

m(y)φ†
σ

{
∂xψso(−L, y) − ∂xψL(−L, y)

−
[

im

h̄2 (ασy − βσx) +
2mδa

h̄2

]
ψso(−L, y)

}
dy = 0, (21)

∫ +∞

−∞
χ∗

m(y)φ†
σ

{
∂xψR(L, y) − ∂xψso(L, y)

+

[
im

h̄2 (ασy − βσx) − 2mδb

h̄2

]
ψso(L, y)

}
dy = 0. (22)

Therefore, we have a set of 8l equations which we solve
numerically to determine the corresponding S matrix elements
elements. Repeating the calculation for each possible
incoming channel we construct the complete scattering matrix
Se as a function of the energy E, which we set to EF in
the following as we are interested only in on-shell scattering
matrices.

4. Results and discussion

In this section we use the scattering matrix of the normal region
to derive the Andreev spectrum using equation (12), from
which we eventually derive the Josephson current as a function
of the phase difference between the two superconductors. We
study the Josephson current at ϕ = 0, i.e. the anomalous
Josephson current Ia , as a function of the Fermi energy. To
gain more information, we also show the normal conductance
G = G0Tr t†t (with G0 = e2/h) of the corresponding normal
system in the same range of values of the Fermi energy. As we
will show in detail below, the AJE is accompanied by a change
in the normal conductance in correspondence of the opening
of a new transport channel in the nanowire region.

In figure 3 the band structure is reported, with an
increasing ratio between the strength α of the Rashba and the
strength β of the Dresselhaus term. We parametrize them
as α = ζ cos(θ) and β = ζ sin(θ). Energies are plotted
in units of Eω = h̄ω/2. We notice that the Hamiltonian
(4) satisfies the relation UH(θ)U−1 = H(π/2 − θ) with
U = exp{iπσz/4}K; this implies that the normal conductance
satisfies G(θ) = G(π/2 − θ), and explains the band structure
illustrated in figure 3. In figure 4 in the top and bottom panel
we plot the normal conductance and the anomalous Josephson
current, respectively, for different values of the angle θ from
0 to π/4. The operator U acting on the Bogoliubov–de
Gennes Hamiltonian induces the relation UHBdG(θ, ϕ)U−1 =
HBdG(π/2−θ, −ϕ), thus the Josephson current must obey the
following constraint I (θ, ϕ) = −I (π/2 − θ, −ϕ). We have
Ia(θ) = −Ia(π/2−θ), in particular the anomalous Josephson
current is zero for θ = π/4. Besides, for θ = π/4 we find that
the anomalous Josephson current is also zero for θ = 0 (pure
Rashba) and θ = π (pure Dresselhaus).

For θ = 0 the above statement can be understood as
follows: even in the presence of delta barriers which breaks
inversion symmetry in the x direction the operator O1 =
RyK acting on the Bogoliubov–de Gennes Hamiltonian gives
O1HBdG(ϕ)O−1

1 = H(−ϕ), hence Ia = 0. For the θ = π/2
case, the operator O2 = RyKσz acting on the Bogoliubov-de
Gennes Hamiltonian gives O2HBdG(ϕ)O−1

2 = H(−ϕ), and
again Ia = 0.

For intermediate values of θ (θ �= {0, π/4, π/2}) we do
find an anomalous Josephson effect. Let us consider as an
example θ = π/8 (see figure 4). As the chemical potential
makes the band c accessible the conductance decreases
but, most importantly, the anomalous Josephson current is
maximum. The latter effect is independent of the particular
choice of θ .
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Figure 4. In panel (a) we show the total normal conductance in the
absence of superconductivity as a function of the chemical potential
for several values of θ . The arrows indicate the position of the
bottom of the band in the nanowire region. In panel (b) we show the
Josephson current at ϕ = 0 also as function of the chemical
potential for several values of θ . Note that for θ = 0, π/4, π/2 the
Josephson current at ϕ = 0 is always zero (see main text). The
Hamiltonian parameters are the same as in figure 2. The length of
the junction is L = 2.3lω, and the strength of the delta-barriers are
2mlωδa/h̄

2 = 0.2, 2mlωδb/h̄
2 = −0.8
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Figure 5. In this figure we show the maximum anomalous
Josephson current Imax (see main text) obtained spanning the energy
range EF = 1.5Eω to EF = 2.5Eω as a function of the angle θ for
several values of the magnetic field in units of Eω/gµB.

To characterize the dependence of the anomalous
Josephson current on the magnetic field and on the angle θ ,
we introduce the quantity Imax as the maximum anomalous
current Ia in the interval from EF = 1.5 Eω to EF = 2.5 Eω

(see figure 5). Such a range is sufficient to explore the opening
of the band c for all the values of θ and B considered here.
We find that for a fixed value of θ the absolute value of Imax

is enhanced by the magnetic field and that for a fixed value of
the magnetic field the largest value of Imax (in absolute value)
is found for θ � π/8.

Our study is limited to the case N = 1 so that only
one band (twice spin degenerate) is open in the leads. In

0.20.10
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|

-3 -2 -1 0 1 2 3
k

x
lω

0 0.5 1 1.5 2
G/G
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2
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eV
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/E
ω

a

b

c

d

e

Figure 6. In this figure the Fermi energy is set to EF = 2Eω and we
consider a rigid shift of the bands of the nanowire region by
applying a gate potential Vg . θ = π/8 and the remaining parameters
are the same as in figure 2. We plot the normal conductance and the
Josephson current at ϕ = 0.

order to address the effect of the nanowire’s higher bands,
keeping the Fermi energy constant, we introduce a gate in the
normal region. We modify the Hamiltonian of equation (4)
as H → H + eVg . In figure 6 we set the value of the Fermi
energy to EF = 2Eω and study the normal conductance and the
anomalous Josephson current as a function of the gate potential
Vg . We find that the anomalous Josephson current exhibits a
similar behavior as found before for the case of band c (see
figure 4); indeed, it is maximum when the bottom of band e

is energetically accessible (see figure 6). One might speculate
that no anomalous Josephson is found at the opening of bands b

and d because both spin polarizations are fully contributing to
the transport; unforunately, such a simple picture is not correct
as either spin polarization (and helicity) are not good quantum
numbers in the nanowire region. Note that this approach, albeit
instructive, is not equivalent to changing the Fermi energy in
the leads.

As a last remark we would like to stress that in our setup
the magnetic field is perpendicular to the plane containing the
nanowire. If one would change the orientation of the magnetic
field with respect to the nanowire plane one may find the
angle θ which maximizes the anomalous Josephson effect to
be different from π/4. Note that with an in-plane magnetic
field (not considered here) we should observe AJE even with
pure Rashba or pure Dresselhaus spin–orbit interaction.

5. Conclusions

We have studied the dc Josephson effect in a superconduc-
tor/nanowire/superconductor junction. The nanowire has a
strong spin–orbit interaction of Rashba and Dresselhaus type;
moreover, a perpendicular Zeeman field is applied. We in-
clude a finite number of channels in the calculation. Although
our approach can be extended to a generic number N of open
channels in the leads, we have discussed in detail the case of
a N = 1, but allowing the number of open channels in the
normal region region to be larger than 1. We have found that a
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necessary condition for the anomalous Josephson effect (in our
specific setup: i.e. with a perpendicular magnetic field) is the
simultaneous presence of Rashba and Dresselhaus spin–orbit
interaction, together with an asymmetric choice of the bar-
riers at the interfaces between normal and superconductiong
regions. This condition may seem to be restrictive, but it is
completely satisfied in actual experiments. Indeed, for a small
number of impurities in the system we expect these to mimic
the role of the delta potentials in our model, hence giving rise
to the AJE. On the other hand, as this number increases we
should move towards a self-averaging regime where the re-
flection symmetry is restored and the AJE suppressed.

Most important for our results, we observe that, because
of the spin–orbit interaction the electronic band structure of the
nanowire region being lowered with respect to the one in the
leads, by carefully tuning the Fermi level, so as to remain in
the N = 1 case, we find that the anomalous Josephson effect is
maximum in correspondence with the opening of a new band
in the nanowire region. We do expect this phenomenology to
also be found in the case N > 1; this will be object of further
investigation. It is important to stress that the condition found
here for the anomalous Josephson effect, namely the opening
of a new band in the normal region, is different to that found for
instance in [39, 40], where it can be ascribed to the asymmetry
of the 1D electronic spectrum due to the coupling of transverse
bands by the spin–orbit interaction.
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