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Abstract ─ Strategies to accelerate MIMO channel 

capacity optimization on GPUs are outlined. The 

optimization scheme is dealt with by properly facing the 

main computational issues. In particular, the propagation 

environment is described by ultrafast Geometrical 

Optics (GO), singular values are computed by a very fast 

scheme and the optimizer is a parallel version of the 

differential evolutionary algorithm. The unknowns are 

given proper representations to reduce the number of 

optimization parameters. 

 

Index Terms ─ CUDA, differential evolutionary, 

Geometrical Optics, GPU, MIMO channel, optimization, 

singular values. 

 

I. INTRODUCTION 

Multiple Input - Multiple Output (MIMO) [1, 2] is a 

wireless communication technology using multiple 

antennas in both transmission and reception modalities 

to increase the channel capacity (CC) over that of a 

conventional SISO (Single Input - Single Output). CC is 

a crucial parameter to assess the performance of a 

communication system, and the problem arises of how 

defining the most convenient configuration of transmitting 

(TX) and receiving (RX) antennas to maximize it for a 

given SNR (Signal to Noise Ratio) and propagation 

environment. 

Different approaches have been proposed to 

optimize the MIMO CC, see [3, 4] for two representative 

examples. As it appears from [3, 4], besides signal 

processing factors (e.g., modulation), two critical aspects 

emerge when optimizing the performance of a MIMO 

channel: one is the electromagnetic environment, since 

the electromagnetic propagation influences the properties 

of the channel matrix, and the other is the optimization 

scheme itself. Since both aspects pose a significant 

computational question, the issue thus arises of how 

computationally addressing the problem of optimizing  

a MIMO channel, by firstly determining the most 

convenient computational resources and algorithms to be 

exploited and that could make the challenge feasible. 

Then, how much a MIMO channel can be improved, how 

the CC depends on the accuracy of the employed 

electromagnetic model and what can be obtained by a 

modeling grasping only the essential aspects of the 

problem should be pointed out, giving general guidelines 

at the design stage. These points have been up to now 

overlooked throughout the literature. Our purpose is 

facing the first point, namely, how much accelerated 

analysis and optimization can make the goal viable. This 

entails understanding how to push the performance of 

both, the employed algorithms and computational 

resources. Several computational key points should be 

then considered, since each performance can degrade the 

problem to unfeasibility: 

1. Properly choosing and accelerating a global 

optimizer since a local optimizer is typically not 

enough to find the best solutions; 

2. Properly choosing and accelerating the approach to 

compute the MIMO channel matrix;  

3. Being the CC related to the singular values (SVs) of 

the channel matrix, accelerating their computation 

depending on the problem size (conventional - 4x4, 

6x6 - MIMO vs. massive MIMO [5]); 

4. Properly representing the unknowns, to manage only 

the essential optimization parameters; 

5. Properly exploiting massively parallel computing 

platforms as Graphics Processing Units (GPUs). 

The paper is organized as follows. The MIMO CC 

is briefly recalled in Section II, just to provide a formal 

introduction. Section III addresses points 1) and 4), 

Section IV point 2) and Section V points 3) and 5). 

Finally, Sections VI and VII present numerical results 

and conclusions, respectively.  
 

II. CHANNEL MODEL 
Let us consider a narrowband, flat-fading channel, 

whose CC depends on the distribution of the SVs of the 

channel scattering matrix [1, 2]. Indeed, given NTX 

transmitting and NRX receiving antennas embedded in a 

complex 3D deterministic electromagnetic scenario, the 

MIMO channel can be described by its complex, NTX x 

NRX matrix H  [1]. The generic element hij of H  can be 

expressed as: 
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where TX

ir  represents the position of the i-th transmitting 

antenna, RX

jr  represents the position of the j-th receiving 

antenna, M(i, j) is the number of relevant multi-paths 

between TX

ir  and RX

jr  and ),(
RX

j

TX

im rrG  is proportional to 

the voltage induced on the j-th receiving antenna by the 

m-th multipath originated at the i-th transmitting 

antenna. 

Under the hypothesis of narrowband, flat-fading 

channel, AWGN noise at the receivers and equally 

distributed power among the transmitters [1], the 

Shannon CC, say C, expressed in bit/s/Hz can be 

calculated by first normalizing H  to its Frobenius norm 

as [6]: 
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where r is the rank of H
~

 and 
2

k  is its k-th SV. 

The approach is illustrated in Fig. 1, where the flow-

chart boxes correspond to the titles of the Sections III-V. 
 

 
 

Fig. 1. Flow chart of the approach. 
 

III. THE OPTIMIZATION APPROACH 
To enable a satisfactory exploration of the objective 

functional landscape, the global optimization approach 

should be chosen to exhibit good convergence properties 

and to profit of the massive parallelization. In this sense, 

a less “complex”, but massively parallelizable algorithm 

should be preferred to a more “involved”, but “more 

sequential” scheme. The “genetic-like” differential 

evolutionary approach has been then chosen as the global 

optimization scheme due to its main features matching  

both the above mentioned requirements [7].  

The approach exploits a population of Np members, 

each member being represented by an array of D values, 

where D coincides with the number of optimization 

unknowns. At the g-th iteration (generation), the k-th 

member of the population is denoted by the D-

dimensional array ),...,,(
)()2()1( D

gkgkgkgk
pppp  . The initial 

population is randomly generated, accounting for some 

physical constraints enforced by the problem. Starting 

from the initial population, the algorithm generates a 

new one by first defining new arrays as (mutation): 
 )(

32
11 gkgkgkgk ppFpm  , (4) 

where k1, k2 and k3 belong to 1, 2, …, Np and three 

indices mutually different and different also from k, and 

F[0,2] is a user defined real and constant factor 

representing a scale factor of the differential variation 

gkgk
pp
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Following mutation, new trial arrays 
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(crossover): 

 

















randD(k)j or CRjrand if   p

randD(k)j or CRjrand if   m
t

i

gk

i

gki

gk

)(,

)(,

)(

)(

1)(

1
, (5) 

where rand(j)[0,1], j=1,2,…,D, is the j-th evaluation of 

a random uniform generator, CR[0,1] is a user defined 

crossover constant and randD(k)1,2,…,D is a 

randomly chosen integer to ensure that the trial array 

contains at least a mutated element. Following the 

crossover, the cost values of 
gk

p  and 
1gkt  are compared 

and the one with the largest cost becomes the new 

population member at generation g+1 (selection).  

The operations involved in mutation, crossover and 

selection and the random number generations are 

inherently parallel. An issue of the crossover stage is the 

“random” global memory access, so that particular care 

has been given to improve memory coalescence. 

 

Unknowns representation 

The problem concerns the optimization of the TX and 

RX antenna locations to maximize the MIMO CC. To 

profit from a reduction of the number of unknowns, both 

the TX and RX antennas are assumed to be located on 

lines and their positions are indirectly searched for by 

representing them by Legendre polynomials [8] as: 
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In Eq. (6), xn is the generic antenna coordinate on the 

optimization line, K is the number of polynomials, k is 

the k-th Legendre polynomial, the n's are uniformly 

spaced points in [-1,1] and the ck's become the actual 

unknowns to be sought for. If K is less than the involved 

antennas, the number of problem parameters is reduced. 
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Notice that the representation in Eq. (6) is also amenable 

to enforcement of constraints on minimum and maximum 

antenna spacings [9]. 

IV. CHANNEL MATRIX CALCULATION

The method exploited to calculate H
~

 should trade 

off computational accuracy and speed to execute in an 

iterative optimization. Calculating at each generation the 

matrix H
~

 for a large number of antenna configurations by 

a full wave method would be unfeasible, especially for 

large scenarios. Opposite to that, Geometrical Optics 

(GO) is very appealing to quickly provide an approximate 

solution to Maxwell’s equations. 

Nevertheless, for electrically large scenarios GO must 

be properly accelerated by adequate algorithmic structures 

capable to properly handle the intersections of the rays 

with the scene objects. Indeed, ray tracing involves two 

main steps: the search for the intersection between a ray 

and the geometric primitives (e.g., triangles), and the 

electromagnetic field transport. The first step can be 

definitely the most time consuming one, if not properly 

managed. A brute force approach would be indeed 

unfeasible due to the large number of intersection tests to 

be performed. Fortunately, the problem can be faced by 

tree-like structures which, if properly setup, managed and 

explored, can significantly reduce the computational 

complexity. Data structures like KD-tree and BVH 

(Bounding Volume Hierarchy) [10] can be effectively 

applied to this purpose and may profit from a high degree 

of parallelization. Here, the Split BVH (SBVH) scheme 

set up in [10] has been exploited. 

V. GPU-BASED SVs CALCULATION
Computing the SVs of small or large matrices

should be dealt with different approaches. Accordingly, 

the computational scheme to be employed differs if 

considering conventional or massive MIMOs. In this 

paper, we address the former case. Furthermore, the 

number of involved matrices is related to the number of 

population members of the differential optimizer. Then, 

at each generation, the SVs of a large number of small 

sized matrices have to be computed. This task can be 

efficiently and effectively performed on a GPU as in 

[11]. 

The problem of computing the SVs can be recast to 

the computation of the SVs of a real-valued matrix A . To 

this end, the approach in [7] consists of three steps. The 

first step amounts at reducing A  to a bidiagonal matrix, 

say B , as: 

T
Q B PA  , (7) 

where B  is a NTX x NRX upper bidiagonal matrix, and 

P and Q  are NTX x NTX and NRX x NRX orthogonal 

Householder matrices, respectively. The bidiagonalization 

step consist of applying a sequence of Householder 

transformations [12] to the matrix A , which zero the 

elements below the diagonal and to the right of the first 

superdiagonal. In the second step, B  is transformed to a 

tridiagonal matrix BBT
T

 . Finally, in the third step, the

symmetric tridiagonal eigenvalue problem is solved by a 

bisection method based on the use of Sturm sequences by 

restricting the search range using the Gershgoring circle 

theorem [11]. 

The motivation for computing the tridiagonal matrix 

T  as above is due to the fact that the explicit formation 

of T  should be avoided for numerical reasons since it 

may introduce non-negligible relative errors, especially 

in the computation of the smallest SVs [12]. However, 

the exploited approach is meant for those applications, 

as the one at hand, in which the smallest SVs have very 

low relative weight and may be considered irrelevant. 

In summary, the problem of computing the SVs is 

recast as a “guided” bisection, which is amenable to 

parallelization. 

VI. NUMERICAL RESULTS
The optimizer, the ray tracer and the SVs calculation 

have been implemented in parallel GPU (CUDA) and 

multi-core CPU (C++ with OpenMP directives) languages. 

For the CPU case, the SVs have been achieved using the 

third party Eigen library. 

We consider a circular cylinder with radius 10 

centered at the origin of the Oxyz reference system and a 

plate of width 50, parallel to the yz plane and located at 

x=30. The cylinder and the plate are perfectly conducting 

and have a height of 15. The scene has been discretized 

with 95458 triangles. This example points out how much 

computation time can be saved by the approach and 

provides an answer to the points raised in Section I and 

a perspective to design tools. 

The optimizer can position an arbitrary number of 

transmitting and receiving antennas on lines with 

arbitrary spatial orientations. Here, NTX = 4 and NRX = 4. 

The TX and RX antennas have been located on lines 

lying on the xy plane, parallel to the x-axis and passing 

by (15, -40, 0) for the TX and by (15, 40, 0) for 

the RX antenna. The antenna positions have been 

represented using K=3 and minimum and maximum 

spacing of /4 and 2, respectively, have been enforced 

to control the maximum array size and mutual coupling. 

The SNR has been fixed to 20 dB. 

For computational convenience, the optimization 

has been run with a population of 1000 elements, 

grouped in 10 subgroups including those configurations 

sharing the same positions of the TX antennas and 

different positions of the RX ones. The optimization has 

been run for a number of 50 generations, with CR=0.4 

and F=0.7. 
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The code has been run on a workstation equipped 

with two Intel Xeon E5-2650 2.00GHz, Eight core 

processors each and four NVIDIA Kepler K20c cards, 

but with multi-GPU disabled. Figure 2 displays an 

OpenGL rendering of the MIMO channel with the 

optimized antenna locations. The figure also depicts the 

GO rays connecting the TX antennas (the pink dots) with 

the RX ones (not appearing in the image). As it can be 

seen, multiple interactions have been accounted for as 

well as diffraction from the plate border. Diffraction 

from the plate corners and the cylinder ends have  

been neglected for simplicity. The optimized antenna 

positions are reported in Table 1. As it can be seen, the 

TX and RX antennas occupy almost symmetric locations 

due to the problem symmetry. The GPU code has run in 

about 4.5 hours, gaining a speedup of about 5 as 

compared to the CPU execution obtained by running 32 

CPU threads. The optimized channel capacity has been 

22.3 bps/Hz, a value which well agrees with the statistical 

distribution of channel capacities for random channels 

with 4 transmitting and 4 receiving antennas reported in 

[2, Fig. 7].  

 

 
 

Fig. 2. OpenGL rendering of the MIMO channel with 

optimized antenna locations. 

 

Table 1: Optimized TX and RX antenna positions 

Antenna x-coord. Antenna x-coord. 

TX 1  RX 1  

TX 2 12.6 RX 2  

TX 3 18.0 RX 3  

TX 4 20.9 RX 4  

 

VII. CONCLUSIONS 
A GPU-based approach to accelerate MIMO CC 

optimization has been presented using ultrafast 

Geometrical Optics (GO), a very fast SV calculation 

scheme and a parallel version of the differential 

evolutionary algorithm. A speedup of 5 has been achieved 

against a multi-core CPU implementation.  
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