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Abstract: Purpose: The aim of the study was to estimate the diagnostic accuracy of textural, morpho-
logical and dynamic features, extracted by dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) images, by carrying out univariate and multivariate statistical analyses including artificial
intelligence approaches. Methods: In total, 85 patients with known breast lesion were enrolled in
this retrospective study according to regulations issued by the local Institutional Review Board. All
patients underwent DCE-MRI examination. The reference standard was pathology from a surgical
specimen for malignant lesions and pathology from a surgical specimen or fine needle aspiration
cytology, core or Tru-Cut needle biopsy for benign lesions. In total, 91 samples of 85 patients were ana-
lyzed. Furthermore, 48 textural metrics, 15 morphological and 81 dynamic parameters were extracted
by manually segmenting regions of interest. Statistical analyses including univariate and multivari-
ate approaches were performed: non-parametric Wilcoxon–Mann–Whitney test; receiver operating
characteristic (ROC), linear classifier (LDA), decision tree (DT), k-nearest neighbors (KNN), and
support vector machine (SVM) were utilized. A balancing approach and feature selection methods
were used. Results: The univariate analysis showed low accuracy and area under the curve (AUC) for
all considered features. Instead, in the multivariate textural analysis, the best performance (accuracy
(ACC) = 0.78; AUC = 0.78) was reached with all 48 metrics and an LDA trained with balanced data.
The best performance (ACC = 0.75; AUC = 0.80) using morphological features was reached with an
SVM trained with 10-fold cross-variation (CV) and balanced data (with adaptive synthetic (ADASYN)
function) and a subset of five robust morphological features (circularity, rectangularity, sphericity,
gleaning and surface). The best performance (ACC = 0.82; AUC = 0.83) using dynamic features was
reached with a trained SVM and balanced data (with ADASYN function). Conclusion: Multivariate
analyses using pattern recognition approaches, including all morphological, textural and dynamic
features, optimized by adaptive synthetic sampling and feature selection operations obtained the
best results and showed the best performance in the discrimination of benign and malignant lesions.
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1. Introduction

Breast cancer is the most common cancer among women in the world; about one in
eight women develop breast carcinoma during their lifetime. It is the main cause of tumor
mortality and the second leading cause of death, after cardiovascular diseases. In the
United States, it was estimated that 42,690 deaths (42,170 women and 520 men) from breast
cancer would occur in 2020. In Italy, thirty percent of all cancers in the female population
concern breasts, followed by colorectal (12%), lung (12%), thyroid (5%) and uterine body
(5%) cancers. Most women diagnosed with breast cancer are over 50 years of age, but
younger women can also present with cancer, with a probability of 2.4% up to 49 years
of age, 5.5% from 50 to 69 years and 4.7% between 70 and 84 years of age [1,2]. In recent
years, breast cancer survival rates have increased, and the number of deaths associated
with this disease is steadily declining, largely due to factors such as earlier detection and
personalized treatment approaches.

Screening for early diagnosis of breast cancer is of great interest, significantly increas-
ing the patient’s chances of survival. Clinical examination is the most readily available
mode of diagnosis. It is a simple form of early detection, capable of diagnosing tumors of
between 1 and 2 cm and bigger, depending on the location and breast size [3]. To this day,
it remains the most common way in which breast cancers are first detected, normally by
the affected women herself. An important role is played by mammography, introduced in
the 1960s, which remains the gold standard for breast cancer screening [4]. It has many
advantages: it is easy to perform, requires minimal technical set-up, is easy to standardize
and it is possible to review and make direct comparisons with previous exams. Contrast-
enhanced digital mammography (CEDM) is a quick, well-tolerated, relatively low-cost
breast imaging technique that combines standard full-field digital mammography (FFDM)
with an intravenous, low-osmolar, iodinated contrast medium. Nevertheless, the use of
ionizing radiation and the inadequacy toward young women with dense tissue represent
important drawbacks to this approach [5–10].

Ultrasound is an effective support examination to needle biopsy in the detection of
most already-known breast cancers, as well as additional lesions in high-density tissue,
and in the evaluation of tumor size and nodal status [11,12].

The emerging methodology of dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is an important complementary diagnostic exam that has demonstrated
great potential in the screening of high-risk women and dense breasts, in staging newly
diagnosed breast cancer patients and in assessing therapy effects thanks to its minimal
invasiveness and ability to visualize dynamic functional information, not available with
conventional X-ray imaging or ultrasound. Its major advantages over mammography and
ultrasound are the ability to image the entire breast as thin slices that comprise the entire
breast volume and to measure variations in contrast uptake that provide information about
the vascularity of the breast tissue [4,13,14].

Several studies proposed radiomic analysis for breast cancer detection and classifica-
tion based on DCE-MRI, using information about lesion heterogeneity (textural features),
morphological characteristics (round or irregular shape, smooth or irregular margins and
tumor size) or dynamic information to quantify tumor vascularity [15–53]. It has been
recognized that this problem can be addressed in a pattern recognition framework with the
use of opportune features and classifiers.

This work aims to estimate the diagnostic accuracy of textural, morphological and dy-
namic features extracted by DCE-MRI images by carrying out univariate and multivariate
statistical analyses, using artificial intelligence approaches in the classification of benign
and malignant breast lesions.

2. Methods
2.1. Patient Selection

From October 2017 to April 2018, 85 patients with known breast lesions (mean age
± standard deviation of 52 ± 11 years (range 26–78)) were enrolled in this retrospective
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study according to regulations issued by the local Institutional Review Board. All women
gave their written informed consent for research purposes. Inclusion criteria: patient with
known breast lesions, histologically proven, and patient underwent DCE-MRI examination.
Exclusion criteria were breast implants, presence of non-removable drilling at the nipple,
pacemakers, clips or other metal implants, pregnancy or possible pregnancy, inability to
keep upright immobility during the examination, a history of metal allergy, renal disease
or chemotherapy treatment at the time of imaging. In addition, women with severe
claustrophobia or extreme obesity were considered unable to undergo the exam. Overall,
91 suspected breast lesions of 85 enrolled patients were analyzed. The median size of
breast lesions was 4.5 cm (range 1.2–6 cm). Tumor stage was T1 or in situ in 24/56 (42.9%)
malignant lesions, T2 in 5/56 (8.9%) malignant lesions and T3 in 27/56 (48.2%) malignant
lesions. Grading was 2 in 20/56 (35.7%) malignant lesions and was 3 in 26/56 (64.3%)
malignant lesions.

2.2. Imaging Protocol

The patients underwent imaging with a 1.5-T scanner (Magnetom Symphony; Siemens
Medical System, Erlangen, Germany), equipped with a dedicated breast coil with 16
channels. Scan settings are reported in Table 1. Before the examination, each patient was
placed in a prone position with both breasts fully exposed and naturally suspended. Breast
MRI included turbo spin-echo T2-weighted axial images, turbo spin-echo T1-weighted fat-
suppressed axial images and T1-weighted fast low-angle shot 3D coronal images. Moreover,
one series before and nine series after intravenous injection of 0.1 mmol/kg body weight
of a positive paramagnetic contrast material (Gd-DOTA; Dotarem, Guerbet, Roissy CdG
CEDEX, France) were acquired with an interval between two successive scans of 56 s. An
automatic injection system was used (Spectris Solaris EP MR, MEDRAD, Inc., Indianola,
PA) and the injection flow rate was set to 2 mL/s, followed by a flush of 10 mL saline
solution at the same rate. After acquisition of the dynamic series, a process of subtraction
of the MR images between the post-contrast dynamic sequences and the pre-contrast one
was automatically performed to emphasize the lesions with enhancement [4,13,54,55].

Table 1. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scan settings.

Settings DCE-MRI Units

TR/TE/FA 5.08/2.39/15 ms/ms/deg
Pulse sequence T1-weighted 3D FLASH -

Plane Coronal -
FOV 500 × 500 mm2

Matrix size 384 × 384 pixel
Pixel spacing 0.885 × 0.885 mm2

Slice thickness 1.60 mm
Gap between slices 0 mm

No. of slices 128 -

2.3. Histopathological Analysis

The reference standard was pathology from a surgical specimen for malignant lesions
and pathology from a surgical specimen or fine needle aspiration cytology (FNAC), core or
Tru-Cut needle biopsy for benign lesions. Overall, 91 samples (35 benign and 56 malignant)
of 85 patients were analyzed histopathologically. Histopathology analysis was linked to
the regions identified by the radiologist upon MRI. Tumor stages were classified according
to the system implemented by the American Joint Committee on Cancer staging. Ductal
carcinoma in situ and invasive cancer tumors were counted as malignant lesions. All other
results, including lobular carcinoma in situ, fibroadenoma, ductal hyperplasia, dysplasia,
cysts, fibrosis and phyllodes tumor, were considered non-malignant lesions (Table 2).
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Table 2. Number and corresponding percentage of the total benign or malignant breast lesions.

Benign (35 Lesions) Number Percentage Value (%)

Fibrosis 5 14.29
Ductal hyperplasia 14 40.00

Fibroadenoma 10 28.57
Dysplasia 2 5.71
Adenosis 3 8.57

Other 1 2.86

Malignant (56 Lesions) Number Percentage Value (%)

Infiltrating lobular carcinoma 14 25.00
Infiltrating ductal carcinoma 13 23.21

Ductal carcinoma in situ 24 42.86
Intraductal papilloma 2 3.57

Tubular carcinoma 1 1.79
Papillary carcinoma 2 3.57

2.4. Image Processing

Regions of interest (ROIs) were manually drawn slice-by-slice by two expert radiol-
ogists with 22 and 15 years of breast imaging experience, respectively; the segmentation
was performed by the two radiologists first separately and then together and in accordance
with each other, annotating all slices of the lesions. The margins of the breast lesions were
defined on the third T1-weighted subtracted series of DCE-MRI, where contrast uptake
was emphasized. Then, the mask obtained by the segmentation was used to obtain the
volume of interest for each of the 9 series of DCE-MRI examination. An example is shown
in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 
Figure 1. Segmentation (in red) on a single image of the third T1-weighted subtracted series: infil-
trating ductal carcinoma in a 39-year-old woman. 

The Texture Toolbox of MATLAB®, which includes 48 parameters and performs tex-
ture analysis from a 2D or 3D input, was considered [57]; the textural features of this 
Toolbox were calculated according to the Image Biomarker Standardization Initiative [58]. 
The textural features include both first-order features and second-order ones. The Texture 
Toolbox package implements wavelet band-pass filtering, isotropic resampling, discreti-
zation length corrections and different quantization tools. The toolbox can be downloaded 
at https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics (accessed on 15 
April 2019). A detailed description for each extracted textural feature has been provided 
in Appendix A (Supplementary Materials). 

Morphological features describe and quantify the shape and structure of segmented 
volumes of interest. Malignant lesions may have very particular patterns of shape and 
specific irregularities on the borders. We considered a feature set including 15 morpho-
logical features including radial length average, entropy of radial length, irregularity, di-
ameter, circularity, compactness, smoothness, roughness, sphericity, volume, rectangu-
larity, surface, convexity, gleaning and curvature. A detailed description of the morpho-
logical features has been provided in Appendix B (Supplementary Material). 

Dynamic features measured by a time–intensity curve (TIC) describe the signal in-
tensity, reflect tumor micro-vascularity characteristics and, in general, will tend to in-
crease more in malignant cancer tissues than in healthy ones or less aggressive types of 
tumors [59,60]. Several features belonging to the dynamic category have been proposed 
so far in the literature [59,60] among them, 9 features were extracted voxel-by-voxel from 
volumes of interest using a semi-quantitative approach. For each of the 9 dynamic fea-
tures, nine statistics were calculated: mean, mode, median, STD, median absolute devia-
tion (MAD), range, kurtosis, IQR and skewness, for a total of 81 dynamic features. In Table 
3, a description of the extracted dynamic features is provided. 

Table 3. Description of the dynamic features. 

Commented [M1]: Please add accesed date. 

Commented [RF2R1]: done 

Commented [M3]: If the appendixes are present 
in the supplementary materials, please upload 
them. 

Commented [RF4R3]: I upload it 

Figure 1. Segmentation (in red) on a single image of the third T1-weighted subtracted series: infiltrat-
ing ductal carcinoma in a 39-year-old woman.

For each volume of interest, textural, morphological and dynamic features were ex-
tracted by the volumes of interest obtained by the consensus of two radiologists. Radiomic
textural, morphological and dynamic features were also extracted considering the volumes
of interest obtained separately by the two radiologists.

All T1-weighted sequences of each patient were processed in MATLAB (The Math-
Works, Inc., Natik, MA, USA) [56].
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The Texture Toolbox of MATLAB®, which includes 48 parameters and performs tex-
ture analysis from a 2D or 3D input, was considered [57]; the textural features of this
Toolbox were calculated according to the Image Biomarker Standardization Initiative [58].
The textural features include both first-order features and second-order ones. The Texture
Toolbox package implements wavelet band-pass filtering, isotropic resampling, discretiza-
tion length corrections and different quantization tools. The toolbox can be downloaded
at https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics (accessed on
15 April 2019). A detailed description for each extracted textural feature has been provided
in Supplementary Materials.

Morphological features describe and quantify the shape and structure of segmented
volumes of interest. Malignant lesions may have very particular patterns of shape and spe-
cific irregularities on the borders. We considered a feature set including 15 morphological
features including radial length average, entropy of radial length, irregularity, diameter, cir-
cularity, compactness, smoothness, roughness, sphericity, volume, rectangularity, surface,
convexity, gleaning and curvature. A detailed description of the morphological features
has been provided in Supplementary Materials.

Dynamic features measured by a time–intensity curve (TIC) describe the signal inten-
sity, reflect tumor micro-vascularity characteristics and, in general, will tend to increase
more in malignant cancer tissues than in healthy ones or less aggressive types of tu-
mors [59,60]. Several features belonging to the dynamic category have been proposed so
far in the literature [59,60] among them, 9 features were extracted voxel-by-voxel from
volumes of interest using a semi-quantitative approach. For each of the 9 dynamic features,
nine statistics were calculated: mean, mode, median, STD, median absolute deviation
(MAD), range, kurtosis, IQR and skewness, for a total of 81 dynamic features. In Table 3, a
description of the extracted dynamic features is provided.

Table 3. Description of the dynamic features.

Acronym Description

AUC Area under curve: total amount of contrast agent absorbed, computed with the trapezoidal approximation

AUCWIN Area under wash-in phase

AUCWOUT Area under wash-out phase

MSD Maximum signal difference

ME Maximum enhancement; it is determined by the ratio between the MSD and the signal intensity at the basal
level—pre-contrast injection

WIN Angular coefficient of linearized approximation of time–intensity curve (TIC) from time 0 to time to peak
(TTP)—time elapsed since contrast injection to ME

WOUT Angular coefficient of linearized approximation of TIC from time TPP to last time

q2 Wash-in intercept

q3 Wash-out intercept

2.5. Statistical Analysis

The statistical analyses included univariate and multivariate approaches.

2.5.1. Univariate Analysis

To assess the robustness of manual segmentation, we calculated the intra-class correla-
tion coefficient (ICC) for the radiomic features obtained considering the two volumes of
interest segmented separately by two expert radiologists.

For two-group comparisons, we used the non-parametric Wilcoxon–Mann–Whitney test
for continuous variables. Receiver operating characteristic (ROC) analysis was performed. To
individuate the optimal cut-off value for each feature, the Youden index was calculated. Area
under the ROC curve (AUC), sensitivity (SENS), specificity (SPEC), positive predictive value

https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics
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(PPV), negative predictive value (NPV) and accuracy (ACC) were obtained considering the
optimal cut-off values identified by maximizing the Youden index.

2.5.2. Multivariate Analysis

Multivariate analysis was carried out using linear classifier (linear discrimination analysis—
LDA), decision tree (DT), k-nearest neighbor (KNN) and support vector machine (SVM) to assess
the diagnostic accuracy using all extracted metrics of textural, morphological and dynamic
parameters. Configuration settings for each classifier are provided in Table 4.

Table 4. Configuration settings for each classifier.

Classifier Configuration Settings

LDA Covariance structure: full; optimizer options: hyperparameter
options disabled

Decision tree
Fine Tree; maximum number of splits: 100; split criterion: Gini’s
diversity index; surrogate decision splits: off; optimizer options:
hyperparameter options disabled

K-nearest neighbors
Fine KNN; number of neighbors: 100; distance metric: Euclidean;
distance weight: equal; standardize data: true; optimizer options:
hyperparameter options disabled

Support vector machine
Linear SVM; kernel function: linear; kernel scale: automatic; box
constraint level: 1; multiclass method: one-vs-one; standardize data:
true; optimizer options; hyperparameter options disabled

A brief informal description of pattern recognition approaches and of each classifier
has already been discussed in a previous article [61]. The theoretical details of these
classifiers can be found elsewhere [18–20,25,27–30,62–64]. Each classifier received the same
set or subset of features. The analysis was made before and after a feature selection method:
the robust features were selected by the least absolute shrinkage and selection operator
(LASSO) method [65,66]. In the LASSO method, 10-fold cross-validation was used to select
the optimal regularization parameter alpha, as the average of mean square error of each
patient was the smallest. With the optimal alpha, features with a non-zero coefficient in
LASSO were reserved. Note that the shrinkage requires the selection of a tuning parameter
(lambda) that determines the amount of penalization. Feature selection was carried out
considering the λ value with the minimum mean squared error (minMSE) [67,68].

The classification analysis was cross-validated using the 10-fold cross-validation
approach, and median values of AUC, accuracy, sensitivity and specificity were obtained.

Starting with existing less-represented class samples, two techniques were used to
synthesize feasible and likely data and, therefore, to help balance the classes as well as
to boost the performance in terms of confusion matrix as well as overall [69,70]: the
self-adaptive synthetic over-sampling (SASYNO) approach and the adaptive synthetic sam-
pling (ADASYN) approach. The key idea of the SASYNO approach is to select neighboring
minority class (benign lesions) samples based on their mutual distances and create both
interpolations and extrapolations around neighboring samples for synthetic data genera-
tion. Specifically, SASYNO first identifies a population of pairwise neighboring samples
from a minority class. Then, it imposes Gaussian disturbance on these identified neighbor-
ing samples to create extrapolations and, finally, generates synthetic samples by creating
linear interpolations between these extrapolations [69]. The adaptive synthetic sampling
(ADASYN) approach is one of the most successful advanced over-sampling approaches; it
is an extension of the synthetic minority over-sampling technique (SMOTE) [70,71]. Specif-
ically, the SMOTE [71] tackles the class imbalance problem by creating linear interpolations
between randomly selected minority class samples and their neighbors of the same class.
The essential idea of ADASYN is to prioritize samples near decision boundaries and to
focus on these hard-to-learn minority class samples by assigning weights calculated per
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sample, according to their level of difficulty in learning, as the ratio of neighbors belonging
to the majority class [70,72]

The best model was chosen considering the highest area under the ROC curve and
highest accuracy.

A p value < 0.05 was considered as significant for the univariate analysis. However,
false discovery rate (FDR) adjustment according to Benjamini and Hochberg for multiple
testing was considered. Statistical analyses were performed with the RStudio software [73].

3. Results

The ICC for radiomic textural, morphological and dynamic features was excellent
(median value 0.86, range 0.78–0.92), demonstrating the robustness of extracted features by
DCE-MRI.

Table 5 reports the diagnostic accuracy of textural, morphological and dynamic pa-
rameters in terms of AUC and p-value.

Table 5. List of significant textural and dynamic features with the corresponding area under curve (AUC) and p-values.

Textural Parameters Symbol AUC Values p-Value

First-order gray-level statistics

MODE - 0.7 0.001

STANDARD
DEVIATION STD 0.7 0.001

RANGE - 0.73 0.000

Gray-Level Run Length Matrix
(GLRLM)

Gray-Level
Non-Uniformity GLN_GLRLM 0.7 0.001

Dynamic Parameters Symbol AUC Values p-Value

MAD of wash-in WIN_MAD 0.70 0.001

IQR of wash-in WIN_IQR 0.70 0.002

Figure 2 shows ROC curve trends of significant features: mode, median, STD, range
and GLN_GLRLM (Gray-Level Non-Uniformity, extracted by Gray-Level Run Length
Matrix) among textural features, q2_MAD and q2_IQR (MAD and IQR calculated on
q2), and WIN_MAD and WIN_IQR (MAD and IQR calculated on WIN) among dynamic
ones. There are no significant morphological results (max AUC value of 0.61). Figure 3
shows the boxplots related to the above-mentioned parameters, to separate benign from
malignant lesions.

As regards multivariate analysis, only the most useful results for the purposes of this
work will be reported. Table 6 reports the performance achieved by the best classifiers to
discriminate benign from malignant lesions.

Table 6. Performance of the best classifiers using textural, morphological and dynamic features alone and then together.

Classifier ACC SENS SPEC PPV NPV AUC

Performance for classifiers trained with balanced data (with ADASYN function) and all 48 textural features

LDA 0.78 0.68 0.88 0.84 0.74 0.78

Performance for classifiers trained with balanced data (with ADASYN function) and a subset of five robust morphological features

SVM 0.75 0.80 0.72 0.74 0.79 0.80

Performance for classifiers trained with balanced data (with ADASYN function) and a set of 21 robust dynamic features

SVM 0.77 0.77 0.75 0.75 0.77 0.85

Performance for classifiers trained with balanced data (with ADASYN function) and a set of 37 robust features

SVM 0.88 0.86 0.89 0.89 0.86 0.93

Note. ACC = accuracy; SENS= sensitivity; SPEC= specificity; PPV= positive predictive value; NPV = negative predictive value.
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The best performance (ACC = 0.78; SENS = 0.68; SPEC = 0.88; PPV = 0.84; NPV = 0.74;
AUC = 0.78) using textural features was reached with all 48 metrics and an LDA trained
with balanced data (with ADASYN function).

The best performance (ACC = 0.75; SENS = 0.80; SPEC = 0.72; PPV = 0.74; NPV = 0.79;
AUC = 0.80) using morphological features was reached with an SVM trained with balanced
data (with ADASYN function) and a subset of five robust morphological features. The
subset of five robust morphological features included circularity (similarity of the lesion
shape to a sphere), rectangularity (similarity of the lesion shape to a rectangle), sphericity
(ratio between the average radial length and the standard deviation of the rays), gleaning
(standard deviation of the radial lengths with respect to the radial length average) and
surface (number of voxels belonging to the lesion boundary).
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The best performance (ACC = 0.82; SENS = 077; SPEC = 0.88; PPV = 0.86; NPV = 0.79;
AUC=0.83) using dynamic features was reached with all 81 metrics and an SVM trained
with balanced data (with ADASYN function).

However, the best results overall (ACC = 0.88; SENS = 086; SPEC = 0.89; PPV = 0.89;
NPV = 0.86; AUC = 0.93) were obtained considering all the features at the same time with
an SVM trained with balanced data (with ADASYN function) and a subset of 37 robust
radiomic features.

The subset of 37 robust radiomic features includes range, skewness, sum average, auto-
correlation, GLN_GLRLM, GLV_GLRLM, LZHGE, GLV_GLSZM, convexity (ratio between
the smallest volume with convex curvature that contains the lesion and its volume), irregu-
larity (deviation of the lesion surface from the surface of a sphere), roughness (distance of
each point of the center than the radial length average), gleaning, surface, MSD_KURTOSIS,
MSD_SKEWNESS, MSD_IQR, ME_STD, ME_RANGE, AUC_MODE, AUC_KURTOSIS,
q2_MODE, q2_MEDIAN, q2_KURTOSIS, q2_SKEWNESS, q3_SKEWNESS. WIN_MEDIAN,
WIN_KURTOSIS, WIN_SKEWNESS, WOUT_MODE, WOUT_KURTOSIS, WOUT_SKEWN
ESS, WOUT_IQR, AUC_WIN_MODE, AUC_WIN_KURTOSIS, AUC_WIN_STD, AUC_W
OUT_MODE and AUC_WOUT_KURTOSIS.

Figure 4 shows the ROC curves of the best classifiers.
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4. Discussion and Conclusions

Breast MRI is the most sensitive imaging technique for breast cancer detection and
the most accurate for assessment of disease extent. In recent years, many studies have
addressed the problem of breast lesion classification by using several feature categories such
as textural, morphological and textural features, in combination with different machine
learning approaches, based on DCE-MRI images analysis [15–53]. In fact, Juntu et al. [46]
reported an accuracy of 0.93 (SENS = 0.94; SPEC = 0.91) using textural features and an
SVM classifier for soft tissue tumors. Mayerhoefer et al. [15] achieved an accuracy of 0.75
(SENS = 0.71; SPEC = 0.78) with an artificial neural network (ANN) classifier and using
texture information from short tau inversion recovery (STIR) images for distinguishing
between benign and malignant soft tissue masses. Sathya et al. [30] reported an accuracy
of 0.86 (SENS = 0.88; SPEC = 0.78) using textural features and an SVM classifier to predict
histologically proven malignant breast lesions. Tzacheva et al. [20] achieved an accuracy
of 0.91 (SENS = 0.90; SPEC = 0.91) using static region descriptors and a neural network
classifier on 14 patients to detect breast lesions. Lee et al. [48] reported a sensitivity of
0.82 and a specificity of 0.88 with dynamic features and a multilevel analysis strategy on
a database of 171 breast lesions. Levman et al. [51] demonstrated statistical robustness
of an SVM method that involves a reformulation of the classification/prediction process
with dynamic information. In addition, Newell et al. [18] reported an accuracy of 0.93
(SPEC = 0.80; SENS = 0.97) by combining morphological and dynamic features and using
an ANN classifier on a group of 216 patients. Zheng et al. [24] reported a sensitivity of
0.95 through a combination of dynamic and spatial parameters and using a linear classifier
in an leave one out cross validation setting. Lastly, Agner et al. [43] yielded an accuracy
of 0.90 (SENS = 0.95; SPEC = 0.82) and an AUC of 0.92 by combining texture, kinetic and
morphological features on a dataset of 41 breast lesions.

In this study, we aimed to evaluate radiomic analysis with texture, morphological
and dynamic features extracted by DCE-MRI images in the classification of malignant and
benign breast lesions. We performed the evaluation considering both a univariate analysis
and a multivariate analysis using pattern recognition approaches.

The univariate textural analysis showed statistically positive results for MODE (AUC
= 0.7), STD (AUC = 0.7) and RANGE (AUC = 0.73) among first-order gray-level statistics,
in addition to GLN as regards both the Gray-Level Run-Length Matrix and the Gray-Level
Size Zone Matrix (AUC values of 0.70 and 0.69, respectively). As regards multivariate
texture analysis, using the unbalanced dataset showed no significant results; in particular,
specificity assumed very low values. After a first balancing operation (with ADASYN
function), higher values of accuracy, specificity and AUC, but lower ones of sensitivity,
were measured. An LDA trained with balanced data achieved the best performance with
an accuracy of 0.78 and an AUC of 0.78. Using the robust textural predictors obtained by
LASSO approach, no improvements were reached.

With the univariate morphological analysis, there were no significant results. With the
multivariate morphology analysis, the best performance (accuracy of 0.75 and AUC of 0.80)
was obtained using morphological features with an SVM trained with balanced data (with
ADASYN function) and a subset of five robust morphological features including circularity,
rectangularity, sphericity, gleaning and surface.

As regards the univariate dynamic analysis, higher AUC values occurred in corre-
spondence with q2, WIN and TIC-AUC—specifically for q2_MAD (AUC = 0.68), q2_IQR
(AUC = 0.68), WIN_STD (AUC = 0.68), WIN_MAD (AUC = 0.70), WIN_IQR (AUC = 0.70)
and TIC-AUC_STD (AUC = 0.68). Furthermore, ME and WOUT were the least significant
descriptors, with AUC values lower than 0.6.

As for the multivariate dynamic analysis, the best performance (accuracy of 0.82 and
AUC of 0.83) using dynamic features was reached with an SVM trained with balanced data
(with ADASYN function).

The small cohort of studied patients represents an initial finding to validate by increas-
ing the sample size of the study in the future. The segmentation of the ROIs slice by slice
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was manual, and this can be time-consuming; in fact, to analyze DCE-MRI images for each
patient, the radiologists should segment them manually, spending about 2 min annotating
all the slices of lesion. The future endpoint is to include in the analysis an automatic
segmentation of the lesions. The radiomic analysis did not consider tumor histological
differences, while the integration of texture, morphological and dynamic metrics combined
with histopathology results may provide other important prognostic information for the
classification of malignant breast lesions both in early and late phase. This could improve
the performance in the classification problem and allow to classify breast lesions according
grading and histotype. A future endpoint could be to correlate imaging metrics with clini-
cal features such as the age of patient that could influence breast tissue with consequent
radiomic effects and that could be used to classify the breast lesions according to density
and BIRADS.

In conclusion, multivariate analyses using pattern recognition approaches optimized
by adaptive synthetic sampling and feature selection operations obtained the best results
to separate benign and malignant lesions. Among different classifiers, the SVM has proven
to be the best-performing in terms of accuracy, specificity, sensitivity and ROC curve trend.

Overall, dynamic features (as a group) extracted directly from the time–intensity
curve, showed the best performance. However, the best results (ACC = 0.88; AUC = 0.93)
were reached by considering all characteristics of lesions (heterogeneity using textural
metrics; shape and morphology features and vascularization using dynamic features),
using an SVM trained with balanced data (with ADASYN function) and a subset of
37 robust features obtained with the LASSO approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/4/1880/s1, Definition of textural features. Table S1: Texture features list.
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