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h i g h l i g h t s
� Graphene oxide functionalized with polyethyleneimine (GO-PEI) removed Hg from seawater.
� Low Hg accumulation in clams under remediated seawater, especially at 22 �C.
� Clams under Hg free treatments (CTL, GO-PEI, RSW) presented similar responses.
� Hg treatment was the most deleterious condition, regardless the temperature.
� Clams exposed to different temperatures showed a different behaviour.
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a b s t r a c t

Advanced investigations on the use of graphene based nanomaterials have highlighted the capacity of
these materials for wastewater treatment. Research on this topic revealed the efficiency of the nano-
composite synthetized by graphene oxide functionalized with polyethyleneimine (GO-PEI) to adsorb
mercury (Hg) from contaminated seawater. However, information on the environmental risks associated
with these approaches are still lacking. The focus of this study was to evaluate the effects of Hg in
contaminated seawater and seawater remediated by GO-PEI, using the species Ruditapes philippinarum,
maintained at two different warming scenarios: control (17 �C) and increased (22 �C) temperatures. The
results obtained showed that organisms exposed to non-contaminated and remediated seawaters at
control temperature presented similar biological patterns, with no considerable differences expressed in
terms of biochemical and histopathological alterations. Moreover, the present findings revealed
increased toxicological effects in clams under remediated seawater at 22 �C in comparison to those
subjected to the equivalent treatment at 17 �C. These results confirm the capability of GO-PEI to adsorb
Hg from water with no noticeable toxic effects, although temperature could alter the responses of
mussels to remediated seawater. These materials seem to be a promise eco-friendly approach to
remediate wastewater, with low toxicity evidenced by remediated seawater and high regenerative ca-
pacity of this nanomaterial, keeping its high removal performance after successive sorption-desorption
cycles.

© 2021 Elsevier Ltd. All rights reserved.
ia, Universidade de Aveiro
Portugal.
arch Institute, Chinese Acad-
PR China.
afreitas@ua.pt (R. Freitas).
1. Introduction

Coastal marine ecosystems have been influenced by a vast va-
riety of natural and anthropogenic substances such as metal(loid)s
(Izagirre et al., 2014; Lamborg et al., 2014; Maulvault et al., 2017;
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Klaver et al., 2014; Schaller et al., 2011). Increased concentrations of
these pollutants it is also associated with world population growth,
especially around coastal areas, mainly resulting from industrial
and agricultural activities (Fattorini et al., 2008; Marques et al.,
2017; Nardi et al., 2018; Randall and Chattopadhyay, 2013; Pereira
et al., 2008). Anthropogenic sources of these pollutants include
alloy and batteries production, coating, explosive manufacturing,
pesticides and phosphate fertilizers (Ayangbenro and Babalola,
2017). As a result, several studies already reported high metal(-
loid)s concentrations in marine and estuarine systems worldwide,
in water, sediments and inhabiting organisms (Bakary et al., 2015;
Randall and Chattopadhyay, 2013; Tchounwou et al., 2012).
Amongst the most toxic elements in aquatic systems, mercury (Hg)
has been recognized as one of the most highly dangerous sub-
stances (ATSDR, 2019), a situation that may continue due to its use
in electronic products and fluorescent lamps (among others,
Donnici et al., 2012; Briant et al., 2016).

The booming of nanotechnology and outstanding advances in
research concerning graphene-based nanomaterials have provided
great promise for wastewater treatment (Mokhtar et al., 2019;
Nupearachchi et al., 2017; Stobel et al., 2019; Zhang et al., 2010;
Zhou et al., 2015). Recently, several methods have been tested as an
attempt to remove metals, including Hg, from contaminated water,
such as chemical precipitation (Henke et al., 2001; Matlock et al.,
2001), ultra and nano-filtration as well reverse osmosis (Aroua
et al., 2007; Muthukrishnan and Guha, 2008; Pugazhenthi et al.,
2005) and the use nanomaterials as sorbents (Ali et al., 2012,
2019; Anjum et al., 2016; Babel and Kurniawan, 2003; Huang et al.,
2015; Li et al., 2010). Among these techniques, Bessa et al. (2020)
studied a low-cost nanocomposite, developed with graphene ox-
ide (GO) combined with polyethyleneimine (PEI) that efficiently
removed Hg from water (93% from contaminated seawater with
50 mg/L of Hg). Still, scarce information exists regarding the possible
toxicity associated with remediated water obtained from such ap-
proaches, especially considering predicted climate change sce-
narios (Coppola et al., 2019, (2020a,b); Falinski et al., 2020).

Besides pollutants, aquatic systems have been also subjected to
climate changes, with the intergovernmental panel on climate
change (IPCC, 2018) highlighting the increase of global temperature
as an imminent climatic problem derived from anthropogenic ac-
tivities. It was estimated that human activities resulted into a global
atmospheric warming close to 1.0 �C above pre-industrial levels,
which may reach 1.5 �C between 2030 and 2052 (IPCC, 2018; IPCC,
2019). Although at a slower rate, also seawater temperature is rising
in oceans and especially in marine coastal systems (Boyer et al.,
2005; Bindoff et al., 2007; Fogarty et al., 2008; Levitus et al.,
2009). However, differently from open ocean (with a thermal
inertia due to its high heat capacity of water and high total volume),
shallow water bodies like coastal areas, lagoons and estuaries are
more susceptible to air temperature’s influence because of their
restricted heat exchange with open waters (Lloret et al., 2008;
Newton et al., 2018; Pan andWang, 2011). Jakimavi�cius et al. (2018)
predicted a temperature rise up to 6 �C by the year 2100 in the
Curonian lagoon. Associated with warming of coastal areas several
authors have already demonstrated harmful effects in inhabiting
organisms (Rosa et al., 2012; P€ortner and Knust, 2007; Boukadida
et al., 2016, among others). As an example, Jiang et al. (2016)
highlighted the increase of seawater temperature from 15 to
20 �C could affect negatively the physiological as well as the
biochemical behaviour of the yesso scallop species, Patinopecten
yessoensis.

Based on their sessile nature, filter-feeding habit, high tolerance,
and tendency to bioconcentrate pollutants, high distribution and
economic importance in Europe as well as in the oriental continent
(namely China), Ruditapes philippinarum is considered a good
2

sentinel for monitoring marine pollution and climate changes
(Bebianno et al., 2004; Freitas et al., 2018; Ji et al., 2006; Jiang et al.,
2019; Yang et al., 2013; Velez et al., 2015). The present study aimed
to understand the possible impacts derived from Hg remediated
seawater using GO-PEI, under control temperature (17 �C) and
predicted warming scenario (22 �C), in the species R. philippinarum,
collected from the Red island, a non-contaminated area in the
Yellow Sea (Qingdao, China). Clams were subjected, during 28 days,
to five treatments: 1) non-contaminated seawater (CTL); 2)
seawater with nanocomposite (graphene oxide combined with
polyethyleneimine, GO-PEI); 3) seawater contaminated with mer-
cury (Hg); 4) seawater with mixture of nanocomposite and Hg (GO-
PEI þ Hg) and 5) remediate seawater (RSW). Each treatment was
tested under both temperatures. After exposure, clams Hg accu-
mulation levels, histopathological alterations and biochemical re-
sponses were evaluated.

2. Materials and methods

2.1. Laboratory conditions and experimental setup

Clams were collected in the Red island (Yellow Sea, Qingdao,
China), considered as a non-contaminated area (Yang et al., 2013;
Jiang et al., 2019), in October 2019. Specimens with similar size
were selected: length of 29.2 ± 1.9 mm, width of 21.2 ± 1.5 mm and
height of 13.8 ± 1.0 mm.

In the laboratory, clams were placed in a 100 L glass aquarium
with sand and seawater from the sampling site (salinity 30 ± 1; pH
8.0 ± 0.1; temperature 17.0 ± 1 �C; dissolved oxygen 7.7 ± 0.2 mg/L)
with constant aeration for two weeks. During the first week all
organisms were maintained under the same temperature 17 �C
(depuration period). In the second week (acclimation period), half
of the clams was kept at 17 ± 1 �C (control temperature) and
another half was subjected to a gradual temperature increase up to
22 ± 1 �C (warming scenario). During depuration and acclimation
periods both groups were fed with a solution of algae (1 g of
Algamac protein plus powder per 1.5 L of distilled water) every 3e4
days.

The control temperature (17 �C) was selected based on themean
values recorded along the year in the sampling area (Wang, 2014).
The warming scenario (22 �C) was selected considering predicted
increased temperatures in coastal systems (IPCC, 2019; Sun et al.,
2011; Zhu et al., 1991).

The exposure assay (28 days) was carried out for the two groups
(17 and 22 �C) at the same salinity and pH conditions (salinity 30
and pH 8.0). Organisms at the two temperatures were subjected to
five treatments as described in Table 1: control (CTL); GO-PEI; Hg;
GO-PEI þ Hg; RSW. Per treatment three glass aquaria of 3 L were
used, with 12 clams in each replicate.

The remediated seawater was obtained after a treatment of 24 h
where the seawater was previously contaminated with 50 mg/L of
Hg stock solution (Hg 1000 mg/L in 1 mol/L HNO3, 99.9999% trace
metals basis) and remediated with GO-PEI as referred in (Coppola
et al. (2020a,b)). The Hg concentration of 50 mg/L used in this
study was selected taking into consideration that this is the
maximum allowable limit in wastewater discharges from industry,
in the European Union (Directive, 2013/39/EU, 2013). The GO-PEI
concentration (10 mg/L) was selected according to the capacity of
this material to remove Hg (Bessa et al., 2020).

During the experiment clams’ mortality was checked and one
day per week seawater from each aquariumwas renewed with the
re-establishment of all initial conditions. To feed the animals a
commercial Algamac protein plus solution was prepared and 1 mL/
L was added to each aquarium three times per week.

Before spiking, water samples were collected from all aquaria to



Table 1
Treatments evaluated (conditions in aquariums).

TREATMENTS DESCRIPTION

CTL Hg 0 mg/L þ GO-PEI 0 mg/L
GO-PEI GO-PEI 10 mg/L
Hg Hg 50 mg/L
GO-PEI þ Hg GO-PEI 10 mg/L þ Hg 50 mg/L
Remediated seawater (RSW) Seawater remediated with GO-PEI (10 mg/L) for 24 h after Hg contamination (50 mg/L)
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assess Hg background levels in seawater medium. To determine the
real concentrations of Hg in water medium, every week water
samples were collected (from control and contaminated treat-
ments) immediately after water renewal and spiking.

At the 28th day, organisms from each aquarium were sacrificed
thought the separation of the shell from soft tissue. Three clams per
treatment were used for the histological measurements (one from
each aquarium); gills and digestive tubules were vivisected and
immediately fixed in Davidson’s fluid for 24 h at room temperature.
The remaining clams were frozen with liquid nitrogen and main-
tained at �80 �C. From each clam, soft tissues were manually ho-
mogenized (using pestle andmortar) and separated in five different
microtubes with aliquots of 0.3 g fresh weight (FW). Four of them
were used for biochemical analyses and the remaining one was
lyophilized during 1 week for the Hg quantification.

2.2. Mercury quantification

The Hg cquantification inwater samples and clams’ tissues were
conducted by the Societe Generale de Surveillance e China Stan-
dard Technology Development Corporation, SGS e CSTC Standards
Technical Services CO., Ltd. (Qingdao, Shandong, China). The con-
centration of Hg in seawater and organisims were expressed in mg/L
and mg/g, respectively, as reported by Coppola et al. (2020b) and
Jiang et al. (2019). For each aquarium three replicates were
measured. The quantification limits of Hg in seawater and tissue
were 5.0 mg/L and 0.005 mg/g, respectively.

2.3. Quality assurance and quality control

All samples were evaluated in duplicates to obtain parallel re-
sults and reduce uncertainties. The average data obtained from
tests under the same conditions were used to obtain the final result.
All samples including blanks and standard calibration curve were
assessed by using the same procedures at the same conditions. The
recovery of Hg was 97% in relation to the standard (0,0 -2.0 mg/L)
and the relative percentage differences were all within 10%.

2.4. Biochemical markers

The electron transport system (ETS) activity is a proxy of the
metabolic capacity of an organisms and determined as reported by
Andrade et al. (2018) and Coppola et al. (2019). It was read in a
microplate at 490 nm and expressed in nmol/min/g FW. All the
Table 2
Mercury concentration [Hg] in clams’ soft tissues (mg/g) at the end of the experiment. R
represented with different letters: uppercase letters for 17 �C and lowercase letters for 22
an asterisk.

[Hg] mg/g CTL GO-PEI

17 �C 0.021 ± 0.001A 0.024 ± 0.001A

22 �C 0.019 ± 0.002a 0.023 ± 0.003a

Mean values were obtained considering three true replicates per treatment (three differ

3

remaining parameters were determined using commercial kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China)
already used in previous studies with the same species or other
bivalves (Jiang et al, 2016, 2019), including: i) energy reserves,
namely glycogen (GLY) content (CAS A045-2-2), and protein total
(PROT) content (CAS A043-1-1); ii) enzymatic scavengers as total
superoxide dismutase (T-SOD) activity (CAS A001-1-2), catalase
(CAT) activity (CAS A007-1-1), and glutathione peroxidase (GSH-
PX) activity (CAS A005-1-2); iii) cellular damage as malondialde-
hyde (MDA) levels (CAS A003-1-2); iv) neurotoxicity as true choline
esterase (T-CHE) activity (CAS A024-1-1). All biomarkers were
carried out in duplicate and measured using a microplate reader
(Multiskan FC, Thermo Fisher Scientific, China).

2.5. Histopathological measurements

After 24 h in Davidson fluid, the clams’ gills (G) and digestive
tubules (D.T.) were placed in ethanol 70%. Afterwards, organisms
were sent to the Service bio-Technology Co., Ltd. Laboratory
(Wuhan, Hubei, China) for histopathological analyses. Tissue sec-
tions were acquired following the method reported by Coppola
et al. (2018). The histopathological index (ih) was evaluated as
described in Leite et al. (2020) where for each slide (6 per tissue) 6
pictures at 50� and 100� magnification were taken for a total of
n ¼ 36 per organ. The ih values were calculated based on biological
differences of each surveyed alteration with a value ranging be-
tween minimum and maximum severity (1e3) and its degree of
disseminationwith the score ranging between 0 (feature/alteration
not observed in any of the 6 pictures made) and 6 (maximal
diffusion where the alteration was detectable in each picture) as
reported by Coppola et al. (2020a,b) and Costa et al. (2013).

2.6. Statistical analyses

The statistical permutational analysis of variancewas conducted
for all the obtained results (Hg concentration in clam’s tissues,
histological alterations and biomarkers) using the software
PERMANOVA þ add-on in PRIMER v6 (Anderson et al., 2008).
Pairwise comparisons were performed and the significant differ-
ences were accepted when p < 0.05. The null hypotheses tested
were: a) for each response (Hg concentration, histological and
biochemical markers), no significant differences were detected
among treatments (CTL, GO-PEI, Hg, GO-PEIþHg and RSW) at 17 �C
(uppercase letters in Tables 2 and 3, Figs. 1) and 22 �C (lowercase
esults are mean ± standard deviation. Significant differences among treatments are
�C. Differences between both temperatures for each treatment are represented with

Hg GO-PEI þ Hg RSW

3.2 ± 0.8B 3.9 ± 1.2B

*
1.8 ± 0.18C

*
3.0 ± 0.04b 1.2 ± 0.08c 0.19 ± 0.009d

ent aquaria per treatment; n ¼ 3), and from each aquarium one replicate was used.
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letters in Tables 2 and 3, Fig. 1); b) for each response and for each
treatment, no significant differences existed between temperatures
(17 and 22 �C), highlighted with asterisks in Tables 2 and 3, Fig. 1.

Using the same software (PRIMER v6), Principal Coordinates
Analysis (PCoA) was calculated by the Euclidean distance similarity
matrix considering Hg concentrations, histopathological and
biochemical markers for each treatment and temperature. On top of
the PCoA graph, tissues Hg concentration, histopathological and
biochemical descriptors were provided as Pearson correlation
vectors.

3. Results

3.1. Mortality

During the experimental exposure, the highest mortality (50%)
was recorded in clams submitted to Hg and GO-PEI þ Hg at 22 �C.
Moreover, high mortality was also detected in organisms under Hg
and GO-PEI þ Hg at 17 �C (47 and 39%, respectively). Mortality was
also observed at 22 �C in non-contaminated (CTL) and GO-PEI
exposed clams (both 36%) as well as in clams subjected to reme-
diated seawater (RSW) (33%). The organisms under CTL, GO-PEI and
RSW at 17 �C presented the mortality lower than 19%.

3.2. Mercury quantification

The background concentration of Hg in seawater was below the
quantification limit (5.0 mg/L). Moreover, the Hg concentration in
water samples collected from all aquaria after spiking showed the
mean ± standard values close to the nominal concentration (64.1±
8.6 mg/L compared with 50 mg/L). The treatments CTL, GO-PEI and
RSW at both temperatures presented a Hg level below the quan-
tification limit (5.0 mg/L).

The Hg quantification in clams’ tissues from CTL and GO-PEI
treatments at 17 �C showed significantly lower Hg concentrations
in comparison to the remaining treatments (Hg, GO-PEI þ Hg,
RSW), with significantly higher levels in organisms exposed to Hg
and GO-PEI þ Hg (Table 2). At 22 �C significantly lower Hg values
were observed at CTL and GO-PEI treatments, while significantly
higher Hg concentration was found in clams subjected to Hg
(Table 2). Between temperatures, significant differences were
observed in GO-PEI þ Hg and RSW treatments, with higher values
at 17 �C (Table 2).

3.3. Biochemical markers

All biochemical results are showed in Table 3.

3.3.1. Metabolic capacity
At 17 �C significantly lower ETS activity was identified in or-

ganisms from RSW compared to the remaining treatments. At 22 �C
the lowest values were observed at Hg treatment, with significant
differences to the remaining treatments. Between temperatures,
significantly higher values were found at 22 �C except for Hg
treatment.

3.3.2. Energy reserves
At 17 �C significantly higher GLY content was detected in clams

under GO-PEI, Hg and GO-PEIþHg treatments in comparison to the
remaining ones, with the highest value at Hg treatment and no
significant differences between CTL and RSW. At 22 �C the highest
GLY content was found in clams exposed to Hg, followed by clams
under GO-PEI þ Hg, with significant differences to the remaining
treatments. Between temperatures, significantly higher values
were found at 17 �C for GO-PEI treatment, while an opposite
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response was observed at Hg and RSW treatments.
At 17 �C significantly higher PROTcontent was obtained in clams

subjected to GO-PEIþHg and RSW treatments in comparison to the
remaining ones. At 22 �C significantly lower PROT values were
observed in clams exposed to Hg and GO-PEI þ Hg with significant
differences to control. Between temperatures, significantly higher
values were found at 22 �C for CTL and GO-PEI treatments, while an
opposite response was observed at GO-PEI þ Hg and RSW
treatments.

3.3.3. Enzymatic scavengers
At 17 and 22 �C significantly higher T-SOD activity was detected

at GO-PEI þ Hg and RSW treatments in comparison to organisms
exposed to CTL and GO-PEI. Between temperatures, significant
differences were observed at all treatments, with higher T-SOD
activity at 22 �C.

At 17 �C significantly lower CAT activity was observed in or-
ganisms subjected to Hg, GO-PEI þ Hg and RSW in comparison to
CTL and GO-PEI treatments. The lowest values were found in clams
under RSW, and no significant differences between CTL and GO-PEI
as well as between Hg and GO-PEIþHg. At 22 �C significantly lower
values were observed at GO-PEIþ Hg and RSW treatments, with no
significant differences between CTL, GO-PEI and Hg treatments.
Comparing both temperatures, significantly higher CATactivity was
recorded at 17 �C regardless the treatment tested.

At 17 �C GSH-PX activity showed no significant difference
among all treatments. At 22 �C significantly lower values were
obtained at CTL treatment compared to the other ones, with no
significant differences among GO-PEI, Hg, GO-PEI þ Hg and RSW
treatments. Between temperatures, significantly higher GSH-PX
activity was recorded at 22 �C regardless the treatment tested,
with exception for clams exposed to CTL.

3.3.4. Cellular damage
At 17 �C significantly higher MDA levels were detected in or-

ganisms exposed to GO-PEI compared to the remaining treatments.
At 22 �C significantly higher values were observed in clams exposed
to GO-PEI þ Hg and RSW treatments. Between temperatures,
significantly higher values were observed at GO-PEI for 17 �C, while
higher values were detected at 22 �C in clams subjected to GO-
PEI þ Hg and RSW treatments.

3.3.5. Neurotoxicity
At 17 �C significantly higher T-CHE activity was observed under

Hg, GO-PEI þ Hg and RSW compared to other treatments, with no
significant differences between CTL and GO-PEI as well as between
Hg, GO-PEI þ Hg and RSW treatments. At 22 �C significantly higher
activity was found in R. philippinarum under RSW in comparison to
the remaining treatments, while significantly lower values were
found in clams subjected to GO-PEI and Hg compared to the
remaining treatments. Between temperatures, significant differ-
ences were observed at Hg and GO-PEI þ Hg treatments, with
higher T-CHE activity at 17 �C.

3.4. Histopathological measurements

3.4.1. Digestive tubules
At 17 and 22 �C the highest digestive tubules histopathological

index (ih) was observed in organisms exposed to Hg, with signifi-
cant differences to the rest of treatments (except with RSW at 22
�C) and no significant differences were detected between CTL and
GO-PEI treatments (Fig. 1A). Between temperatures, significantly
higher values were found at 22 �C for CTL and RSW treatments
(Fig. 1A).

Fig. 2 shows the haemocytes infiltration (arrows), high evidence
5

of lipofuscin aggregates (*) and atrophied (a) in digestive tubules
for each treatment at 17 and 22 �C.

3.4.2. Gills
At 17 �C significantly higher ih values were found in gills of

clams subjected to Hg and GO-PEI þ Hg as compared to the rest of
treatments, with no significant differences between CTL and GO-
PEI as well as between CTL and remediated seawater treatments
(Fig. 1B). At 22 �C the highest ih values were observed at GO-
PEI þ Hg treatment, with no significant differences among GO-PEI,
Hg and RSW (Fig. 1B). Between the temperatures, significantly
higher values were detected at 22 �C for all treatments except for
CTL and Hg (Fig. 1B).

The haemocytes infiltration (arrows), huge enlargement of the
central vessel (long arrows), high evidence of lipofuscin aggregates
(*) in gills for each treatment under both temperatures were
showed in Fig. 2.

3.5. Multivariate analysis

The Principal Coordinates Analysis (PCoA) calculated for Hg
concentration in clams’ soft tissue ([Hg]clams), histopathological
index in gills (G (ih)) and digestive tubules (D.T. (ih)) as well as all
biochemical markers (ETS, PROT, GLY, T-SOD, GSH-PX, CAT, MDA, T-
CHE) is shown in Fig. 3. The PCoA axis 1 explained 42.1% of the total
variation, separating organisms under treatments at 17 �C in the
positive side from others at 22 �C in the negative side. The PCoA2,
with 27.9% of the total variation, separating organisms under CTL,
GO-PEI and RSWunder both temperatures in the positive side form
the remaining treatments in the negative side. PCoA1 positive side
was highly correlated with CAT (p > 0.89), while PCoA1 negative
side was highly correlated with T-SOD (p > 0.95). PCoA2 negative
side was correlated with Hg concentration in tissues, D.T. (ih) and
GLY (p > 0.71).

4. Discussion

Several studies have been assessing the use, efficiency and
ecological safety of different synthetic materials for remediation of
contaminated waters (namely from metal(loid)s) (Coppola et al.,
2019; Mohmood et al., 2016; Nupearachchi et al., 2017; Zhang
et al., 2010). Up today, limited information exists on the use of
these materials and their potential effects towards organisms (in
particular marine species), especially when under predicted
climate changes (Andrade et al., 2019; Chen et al., 2016; Morosetti
et al., 2020). Also, scarce information is available regarding the
possible environmental risks of remediated seawater (Coppola
et al., 2019, 2020a,b). Therefore, this study aimed to evaluate the
impacts on clams Ruditapes philippinarum after chronic exposure to
remediated seawater from mercury (Hg), using graphene oxide
functionalized with polyethyleneimine (GO-PEI) nanocomposite as
adsorbent, under actual and predict temperature increase.

In general, the present findings emphasized the efficiency of
GO-PEI in removing Hg from seawater, with low Hg accumulation
in clams subjected to remediated seawater, especially at 22 �C.
R. philippinarum exposed to Hg free treatments (CTL, GO-PEI, RSW)
presented similar responses, with clams exposed to Hg treatment
presenting greater alterations, regardless the temperature tested.
Furthermore, clams exposed to different temperatures showed a
different behaviour.

The results of this study showed higher mortality in
R. philippinarum clams maintained at 22 �C in comparison to clams
under control temperature (17 �C), in particular when exposed to
Hg treatment. Previous studies already proved that temperature
can influence marine organisms’ metabolic capacity and oxidative



Fig. 1. A: Histopathological index in digestive tubule; B: Histopathological index in gills, in Ruditapes philippinarum after 28 days-exposure. At each temperature (17 and 22 �C) the
tested treatments were: CTL, GO-PEI, Hg, GO-PEI þ Hg and Remediated seawater (RSW). Results are mean þ standard deviation. Significant differences among treatments are
represented with different letters: uppercase letters for 17 �C and lowercase letters for 22 �C. Differences between both temperatures at each treatment are represented with an
asterisk.
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status (Han et al., 2008; Le Moullac et al., 2007; Velez et al., 2017).
Furthermore, it was already demonstrated that warming was
responsible for higher sensitivity of organisms to other environ-
mental factors, such as pollutants (Attig et al., 2014; Bat et al., 2000;
Coppola et al., 2017, Coppola et al., 2018; Khan et al., 2007; Lannig
et al., 2006; Mubiana and Blust, 2007; Sokolova and Lannig, 2008).
The present findings further revealed high mortality rate in clams
exposed to Hg at control temperature (17 �C), which is in agree-
ment with other works that demonstrated the high toxicity of Hg in
marine organisms (Amachree et al., 2014; Chen et al., 2014; Coppola
et al., 2018; Pan and Wang, 2011).

Higher mortality rate found in clams exposed to Hg and GO-
PEI þ Hg at 22 �C in comparison to organisms exposed to the same
6

treatments but at control temperature were not explained by Hg
accumulation in clams’ tissues since higher metal concentration
was observed in clams under 17 �C. This response may thus
corroborate the hypothesis that warming greatly alter the sensi-
tivity of organisms to pollutants, affecting their biochemical per-
formance and, thus, influencing organisms’ general health status.
Our findings also revealed that lower Hg levels in organisms at
22 �C was not associated with strategies to avoid accumulation,
namely filtration and respiration depression, since higher meta-
bolic capacity (assessed by ETS activity) was observed in clams
under warming conditions. Therefore, it seems that lower Hg
accumulation did not result from clams’ decreased filtration ca-
pacity associatedwith lowermetabolic capacity butmay thus result



Fig. 2. Micrographs of different tissues in Ruditapes philippinarum after 28 days-exposure. At each temperature (17 and 22 �C) the tested treatments were: CTL, GO-PEI, Hg, GO-
PEI þ Hg and Remediated seawater (RSW). Digestive tubule (D.T.): haemocytes infiltration (arrows), atrophied (a) and necrose (n). Gills: haemocytes infiltration (arrows), evident
enlargement of the central vessel (long arrows), abundance of lipofuscin aggregates (*). Scale bar ¼ 50 and 100 mm.

F. Coppola, W. Jiang, A.M.V.M. Soares et al. Chemosphere 277 (2021) 130160
from clams’ higher detoxification capacity, which was not evalu-
ated in the present study. Nevertheless, several researches
demonstrated that bivalves (clams and mussels) exposed to metals
(Hg and Pb) reduce the bioaccumulation by decreasing their
metabolic capacity (Freitas et al., 2017b; Casas and Bacher, 2006;
Coppola et al., 2018; Velez et al., 2016; Verlecar et al., 2007).

Regardless the accumulation levels, the present findings clearly
demonstrated that temperature was the main factor differentiating
treatments, with clams’ responses clearly distinct between 22 and
17 �C (see Fig. 3). Different studies demonstrated that when bi-
valves are subjected to temperatures exceeding their thermal
tolerance they can experience physiological disturbances (Baek
et al., 2014; Han et al., 2008; Marig�omez et al., 2017; Moreira
et al., 2017; Paillard et al., 2004) and biochemical alterations
including cellular damage (Maulvault et al., 2018; Matozzo et al.,
2013), increase of oxidative stress (Velez et al., 2017; Greco et al.,
2011) as well as metabolic alterations associated with respiratory
capacities (Tamayo et al., 2013; P€ortner, 2010; Velez et al., 2017).
The results here presented showed that among the most noticeable
differences is the metabolic activity, with organisms exposed to
warming conditions presenting the highest ETS activity in com-
parison to clams under control temperature. Results reported by
Velez et al. (2017) also showed higher ETS activity in
R. philippinarum exposed to rise of temperature. Coppola et al.
(2018) showed that Mytilus galloprovincialis subjected to the com-
bination of temperature rise and Hg presented higher accumulation
of this metal in their tissues, with a close relationship with an in-
crease on mussels ETS activity. In the present study, higher meta-
bolic capacity observed in clams under 22 �C was not associated
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with higher energy reserves expenditure, namely in terms of GLY,
especially noticed at Hg, GO-PEI þ Hg and RSW treatments. These
results may indicate that in the presence of the pollutants, even at
lower concentration levels, clams were able to prevent the loss of
their energy reserves. Previous studies also demonstrated that in
the presence of high temperature bivalves (clam Macoma balthica
and mussels M. galloprovincialis) were also able to preserve their
energy reserves content under Cd contamination (Della Torre et al.,
2015; Duquesne et al., 2004; Nardi et al., 2017). Nevertheless, the
present results revealed that higher metabolism in clams exposed
to 22 �C was associated with a general higher antioxidant capacity.
In particular, the results here presented revealed that clams under
warming conditions presented, in general, higher enzymatic ac-
tivity (T-SOD and GSH-PX) than clams exposed to 17 �C, a defence
strategy already demonstrated by Freitas et al. (2017) who observed
the increase of enzymatic scavengers activities (CAT and SOD) in
M. galloprovincialis under a warming scenario compared to mussels
under control temperature. Although higher antioxidant capacity
was observed in clams exposed to 22 �C, higher MDA content was
generally observed under warming conditions, evidencing that the
defence mechanisms were not sufficient to avoid cellular damage.
These results agreed with several works that showed an increase of
cellular damage in bivalves under warming scenario and/or metals
contamination (Coppola et al., 2018; Freitas et al., 2018; Velez et al.,
2016), even after increase in antioxidant enzymes activity (Attig
et al., 2014; Nardi et al., 2017; Pirone et al., 2019). As an example,
Matozzo et al. (2013) showed that in the clam Chamelea gallina and
in the mussel M. galloprovincialis antioxidant enzymes were acti-
vated but still MDA levels increased after one week of exposure to



Fig. 3. Principal Coordinated Analyses (PCoA) based on Hg quantification, biochemical parameters and histological alteration measured in Ruditapes philippinarum after 28 days-
exposure. At each temperature (17 and 22 �C) the tested treatments were: CTL, GO-PEI, Hg, GO-PEI þ Hg and Remediated seawater (RSW). Pearson correlation vectors are
superimposed as supplementary variables (r > 0.75): ETS, GLY, PROT, MDA, T-SOD, CAT, GSH-PX, T-CHE, [Hg]clams, G (ih) and D.T. (ih).
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warming scenario (28 �C).
In terms of neurotoxicity, the results here presented showed

that increased temperaturewas responsible for neurotoxic impacts,
namely in Hg treatments. Due to the thermo-modulatory function
of this enzyme, the thermal stress can be correlated to T-CHE in-
hibition (Kim et al., 2019), which was already demonstrated by
previous researches reporting a significant inhibition of T-CHE ac-
tivity after exposing the organisms Pangasianodon hypophthalmus
andM. galloprovincialis to metals (zinc (Zn) and Hg) alone and with
a simultaneous increase of temperature (Kumar et al., 2020;
Morosetti et al., 2020). The obtained results are also in agreement
with a study by Costa et al. (2020) which showed increased
neurotoxicity in two species of clams (R. decussadus and philip-
pinarum) in response to increased temperature.

In terms of histopathological alterations, differences between
temperatures were also observed in clams under warming scenario
and at control treatment temperature, with histopathological im-
pairments including atrophied, haemocytes infiltration and ne-
crose in digestive glands evident at 22 �C. The study conducted by
Leite et al. (2020) also showed that temperature rise caused his-
topathological alterations in gills as increase of haemocytes infil-
tration, enlargement of the central vessel and abundant lipofuscin
aggregates in M. galloprovincialis mussels.

Regardless of the temperature tested, the present findings also
demonstrated that clams’ responses were closely associated with
the presence of Hg (Hg and GO-PEI þ Hg treatments), with greater
alterations in clams exposed to Hg alone than in the presence of
GO-PEI. In particular, the results here presented evidence the low
toxicity of remediated seawater, with biological responses observed
in clams exposed to this treatment similar to the ones observed in
clams exposed to CTL and GO-PEI acting alone, regardless the tested
temperature (see PCoA graph). Under higher stressful conditions,
namely the presence of Hg (Hg and GO-PEI þ Hg treatments), the
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results obtained showed that Hg contaminated clams were not able
to present significantly higher antioxidant capacity in comparison
to CTL, remediated seawater or GO-PEI exposed clams. Such results
may explain high cellular damages in clams exposed to Hg (espe-
cially GO-PEI þ Hg) at 22 �C, while lower LPO levels in clams sub-
jected to Hg at 17 �C may result from lower ETS activity at this
temperature, a mechanism that generates reactive oxygen species.
A recent study conducted by Coppola et al. (2019) observed lower
oxidative stress and cellular damage in mussels M. galloprovincialis
when exposed to seawater with low arsenic (As) concentration due
to the decontamination of the water by manganese-ferrite
(MnFe2O4) nanoparticles. However, recent literature has demon-
strated an increase of non- and enzymatic defences (e.g. lipid
peroxidation; superoxidase dismutase; catalase) in clams
R. philippinarum exposed to different pollutants, mainly metal(loid)
s (in specific 100 mg/L of As, 200 mg/L of cadmium (Cd), 1000 mg/L of
lead (Pb) and 50 mg/L of Hg) and nanomaterials (Freitas et al., 2018;
Marques et al., 2017; Velez et al., 2015). Jiang et al. (2019) showed a
rise of antioxidant activity and cellular damage in the same species
exposed at low Hg concentration (10 mg/L).

The present study further demonstrated that Hg strongly
induced the increase of the T-CHE enzyme at 17 �C. Acetylcholin-
esterase degrades acetylcholine, a neural transmitter, in choline in
cholinergic synapses and neuromuscular junctions (Matozzo et al.,
2005). For this reason, the activity of acetylcholinesterase has been
used as a biomarker of neurotoxicity. Among metals, Hg is known
as a neurotoxic substance, namely to bivalves, by interrupting the
nervous transmission. In fact, previous studies demonstrated the
inhibition of acetylcholinesterase in bivalves, including in mussels
and in clams, can occur due to the presence of metals (Attig et al.,
2010; Cajaraville et al., 2000; Chalkiadaki et al., 2014; Matozzo
et al., 2005). Nevertheless, since the inhibition of acetylcholines-
terase is followed by accumulation of acetylcholine, the elevation of
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this compound can also indicate neurotoxicity. This was previously
demonstrated by Liu et al. (2011) exposing the clams R. philip-
pinarum to Hg. Such findings may explain the results obtained in
the present study.

Regarding histopathological impacts, our finding clearly
demonstrated greater alterations in clams in the presence of Hg,
especially when acting alone, with increase of haemocytes infil-
tration, atrophied and necrose in digestive tubule tissue. These
results are in according with previous studies conducted by Leite
et al. (2020) and Cuevas et al. (2015), which showed atrophy in
digestive tubules, following a reduction in the thickness of epithelia
followed by the expansion of lumen in mussels M. galloprovincialis
exposed to metals (copper (Cu), Hg, Pb, Zn and titanium (Ti)). Other
works also demonstrated that the presence of metals lead to his-
topathological alterations (haemocytes infiltration and necrose) in
gills and digestive tubules of bivalves exposed to Pb (Hariharan
et al., 2014) and Cu (Sabatini et al., 2011).

Overall, the present findings demonstrated low impact of
remediated seawater towards R. philippinarum clams. Such findings
are related with the capacity of GO which allows the removal of Hg,
highlighting the potential use of this nanomaterial to obtain water
quality intended for human consume (Abraham et al., 2017; Kovtun
et al., 2019; Tung et al., 2017). Bessa et al. (2020) had already
demonstrated the efficiency of GO-PEI (10 mg/L) to remove Hg
(50 mg/L) from different water type. While evidencing the capacity
to remove Hg from seawater, the present study also demonstrated
the low toxicity of the nanomaterial used, with sub-cellular alter-
ations observed in clams exposed to CTL, GO-PEI and remediated
seawater being similar, and differing from clams exposed to GO-
PEI þ Hg and especially Hg. Recent studies conducted with bivalves
(oysters, Crassostrea virginica; mussels, M. galloprovincialis; clams,
R. philippinarum) exposed to different concentrations of GO (from 1
to 25 mg/L) evaluated possible toxic effects of this nanomaterial
(Britto et al., 2020, 2021; Meng et al., 2020; Katsumiti et al., 2017;
Khan et al., 2019a,b), showing limited toxic effects of the nano-
material towards the exposed bivalves. Similarly, the present
findings evidence that GO-PEI could be implemented as environ-
ment friendly sorbent in industries effluents for water purification
before being discharged in aquatic systems. Bessa et al. (2020)
further demonstrated the ability of GO-PEI to be regenerated,
keeping its high removal performance after successive sorption-
desorption cycles allowing its reuse, therefore reducing the envi-
ronmental impact of its utilization. Although previous studies with
graphene nanomaterials always evidenced low toxicity, further
studies may be relevant to evaluate the potential use of GO-PEI to
remove other pollutants from seawater and the toxicity of resulting
remediated water. Recovery of pollutants, although not addressed
in this study, should be advised towards a circular and sustainable
economy. Commonly, residuals contaminated with Hg are explored
by specific industries, that successfully recover Hg from different
waste sources (including GO-PEI nanomaterials). However, the re-
covery of elements from remediatedwater is still scarcely explored.
5. Conclusion

In general, less biochemical physiological and histopathological
alterations were detected in R. philippinarum exposed to reme-
diated seawater in comparison to clams subjected to Hg and/or GO-
PEI treatments, at control temperature. Furthermore, higher alter-
ations were observed at 22 �C compared to control temperature.
This study emphasizes the capability of GO-PEI nanocomposite as a
new technology to remove the metal Hg from seawater with low
toxic effects in R. philippinarum species, although temperature may
increase the sensitivity of clams.
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