
62 IEEE Instrumentation & Measurement Magazine December 2019
1094-6969/19/$25.00©2019IEEE

Remote Laboratory Design and
Implementation as a Measurement

and Automation Experiential
Learning Opportunity

Francesco Bonavolontà, Mauro D'Arco, Annalisa Liccardo and Oscar Tamburis

D esigning and implementing a remote laboratory
has long been a professional job, carried out by ex-
perts working in synergy with teachers. Nowadays,

thanks to the availability of advanced tools, the implementa-
tion can be assigned as a student project related to advanced
measurement and automation classes. The development of
the project happens to have an important educational valid-
ity, since it allows the student to get familiar with principles
and technologies that characterize intelligent manufactur-
ing and smart environments, as central elements of Industry
4.0. In particular, the student has the opportunity to increase
knowledge of Internet technologies that more and more often
are substituting for the proprietary solutions, previously ad-
opted in the industry for process monitoring and automation.

The primary focus of the work presented in this paper is the
educational validity of designing and implementing a remote
laboratory and only secondarily the possibilities related to its
use. The authors present a straightforward solution to guide
the students throughout the realization of a remote laboratory
that functions to accomplish several complementary goals of
courses dealing with remote process control and automation.

Remote Laboratories Assets
Remote laboratories represent nowadays a consolidated use-
ful educational tool in a wide range of secondary school and
university programs, especially concerned with physics and
engineering courses [1]. They allow users to perform experi-
ments and laboratory tasks through an interaction that takes
place at a distance with the assistance of the remote infrastruc-
ture [2].

Fruitful debates about web-based education have already
addressed a large variety of topics [3], [4]. Differences be-
tween a direct interaction with visual and/or audio feedback
and a remote one have been deeply analyzed. Benefits related
to convenience, cost-efficiency, and e-learning possibilities
of a remote laboratory, which is available 24 hours per day
from any Internet-connected location, have been discussed.
In particular, it has been highlighted that the laboratory de-
mand can be satisfied with less equipment, and that expensive

instruments can be shared and utilized more effectively. Re-
mote laboratories offer opportunities for students, unable to
attend classroom interactions, to not forsake laboratory activ-
ities. Nonetheless, remote laboratories grant superior security
and safety: experiments that involve risk hazards to personal
safety can be carried out with less concern, and equipment are
more preserved since hazardous areas can be interdicted to
public access [5].

The design and implementation of a remote laboratory
has long been a professional job, carried out by experts of
Internet and measurement-and-automation technologies
working in synergy with teachers [6]-[8]. The job requires,
in fact, a preliminary understanding of the educational
purposes, which are specified by the teacher, and follows
a thorough analysis of the suitability of the experiment
to the remote use, which is assessed by both teachers and
technology experts, and, finally, the engineering develop-
ment, which mainly commits the technology expert. More
specifically, a candidate experiment must be analyzed to
determine the ways in which the user interacts with appara-
tus to affect learning outcomes and ensure that these can be
conveyed effectively by the remote infrastructure. This im-
pacts the design of the user interface, which has to convey
the physical aspects of the experiment [9]. The expert tech-
nician has to evaluate Internet connection bandwidth and
client software/hardware prerequisites. If video and audio
monitoring are required, the user has to rely on a broadband
Internet connection. The software to be installed on the us-
er's system could require a given operating system and be
affected by operating system software obsolescence [10]. Be-
sides, the technician has to set up a fault tolerant solution
that prevents individual malfunctions that may shut down
the entire laboratory operation [11].

At present, thanks to the availability of advanced tools, set-
ting up a remote laboratory requires fewer efforts and can be
rapidly afforded. It can even be assigned as a student project
related to advanced measurement and automation courses,
as those typically taught in electrical engineering master de-
gree paths.

December 2019 IEEE Instrumentation & Measurement Magazine 63

Remote Laboratories Technology
Remote laboratory technologies are typically based on server/
client software applications. The server application runs on a
machine situated in the physical laboratory and directly in-
terfaced to the equipment. The client application is installed
on the user machine, which is required to have Internet ac-
cess, and lets the user specify a measurement and automation
process, eventually made up of several individual tasks to be
executed in a temporized sequence [12]-[14].

Server and client applications can be easily programmed
using different advanced software tools that include functions
to communicate via Transmission Control Protocol/ Inter-
net Protocol (TCP/IP) protocol to remote machines. These
functions are nowadays available as portable executables in a
variety of software environments.

The server application essentially has to get from clients
directives related to the control of local instruments and actua-
tors. These directives can be represented in terms of structured
data. For instance, in the proposed approach, the server gets
an array of elements, each one consisting of a data structure
detailing a task. The presence of more elements in the array
means that the client is requesting a sequence of tasks to be
executed in the received order. The server then executes the di-
rectives by locally controlling instruments and actuators.

The client application allows the user to specify the se-
quence of tasks by configuring the array of data structures and
collect some results at the completion of the tasks.

Server Application
The server application creates a listener for a Transmission
Control Protocol (TCP) network connection on a given port in-
put; to this end, suitable library functions are exploited. These
functions allow the programmer to select which network to
listen to, i.e., which one of the Ethernet cards, if there are more
than one, and the port number on which to listen for a connec-
tion. The port number should be chosen among valid values,
which are in the range between 49152 and 65535, as specified
by the Internet Assigned Numbers Authority (IANA). Unfor-
tunately, not all operating systems follow the IANA standard;
for example, Windows allows the use of ports between 1024
and 5000, which are a portion of registered port numbers,
ranging from 1024 up to 49151, and the programmer should be
aware that such a choice could lead to resource conflicts. The
functions typically return a network connection identifier for
the listener and an error message containing error informa-
tion, if any.

The creation of a TCP network connection is related to the
configuration of the resources but has to be followed by an ex-
plicit instruction to definitely set the server to wait for a TCP
connection. This instruction relies on the execution of an-
other function that, according to the input parameters, gets
the server to operate either indefinitely or for a limited time
interval and eventually exit with a timeout message if no con-
nections occur. At any connection, the function acquires the
IP address and the port number used by the remote client. It
also produces a single identifier for that TCP connection, to

uniquely refer to it afterward. In common paradigms related to
server applications programming, the function is configured
to wait indefinitely for a client connection, and it is inserted
into a repeating structure, in order to set again the server to
wait for a subsequent connection after any reception.

For active connections, data exchange between clients and
server are controlled by means of TCP read and TCP write li-
brary functions.

The server uses the TCP read function configured to wait
until all requested bytes arrive, unless the time specified in
timeout runs out. At any TCP connection it expects to receive
a short binary string, made up of 8 bytes, that is interpreted
as two consecutive 4-byte integers. The first integer is used to
implement an authentication scheme, according to which the
server utilization can be either granted to authorized users or
denied to those who are unauthorized. The second integer pro-
vides the size, in terms of number of bytes, of the message to
come immediately after, referred to as payload.

It is opportune to agree on an upper bound for the size of
the payload to avoid errors in data exchange caused by limited
memory buffer availability. The payload contains all directives
to the instrument and an actuator controller to perform a pro-
cess as a sequence of tasks. The TCP read function first acquires
from the connecting client the 8-byte header and distinguishes
the two integers, namely the authentication key and the size of
the payload.

If authentication fails, the unauthorized TCP connection
is straightforwardly closed. It is worth noticing that, differ-
ent from a client application of an authorized user, which is
programmed to send a string containing data related to the
sequence of tasks immediately after a connection acknowl-
edgement, an unauthorized user could make the server stuck
by not sending any other byte. This is the reason why the TCP
read function operates on a timeout basis; if no byte is received
after a reasonable limited time, the TCP connection is closed.
Nonetheless, the use of the header to declare the length of the
payload allows the server to configure the TCP read function
and escape from waiting on absent bytes.

If authentication succeeds, the server uses again the TCP
read function to acquire the payload, which is a string that can
represent a highly-structured data type. The string, in fact, is
produced at the client side through conversion operations and
in its final form contains header descriptors before each com-
ponent of the data structure: descriptors declare size and data
type for forefront and nested elements and allow the data to re-
convert to their native structure.

The payload, introduced as an array of structured data de-
scribing a sequence of tasks, is then passed as a parameter to
a subroutine that plays the role of instrument and actuator
controller. The subroutine returns the results obtained by exe-
cuting all of the tasks.

Results are less structured data, typically consisting of an
array of strings. Each string is related to the results of a task
specified by the client, in the corresponding order.

The server converts the array of strings to a unique string
by introducing header descriptors, and it is sent by means of

64 IEEE Instrumentation & Measurement Magazine December 2019

a TCP write function as payload to the client. To this end, the
server uses the identifier for that TCP connection, produced
at the very beginning of the client connection. Nonetheless,
it also measures the length of the payload in terms of num-
ber of bytes and conveys this information with a 4-byte integer
header added to the string sent to the client. Notice that the
protocol adopted in client-to-server data transfer is asymmet-
rical with respect to the server-to-client one, since the latter
does not require an authentication procedure.

Finally, the server uses for the last time the identifier of the
TCP network connection to close it. The main operations per-
formed by the server application are summarized in Fig. 1.

Instrument and Actuator Controller
The instrument and actuator controller uses one or more
interfaces to send configuration commands and acquire mea-
surement results from peripheral instruments. As for TCP
communication, software environments contain suitable li-
brary functions to exploit the capabilities of several standard
interfaces; nonetheless, they can be integrated with additional
portable executables to cope with interfaces not included in
the standard list.

Commands can be related both to the interface and pe-
ripheral-dependent functionalities. They consist of messages,
typically represented by short byte sequences, and their effect
is explained in the documentation of the equipment, namely
the interface and peripherals programmer manuals.

The controller of the proposed remote laboratory scans the
input array, singling out its elements in the given order. Each
element contains a data structure describing a task to be per-
formed, and each task concerns the configuration of a single
peripheral. The data structure utilized to describe the task
contains four mandatory fields: ID identifying the peripheral,
code to select between two basic operations, message to spec-
ify commands to be sent or bytes to be collected, and a timing
directive to control the execution of the task operation.

Depending on the adopted interface, the ID received by the
controller can be an abstract ID, linked to a local ID and man-
aged by the controller.

The basic operations consist of: byte transfer from con-
troller to peripheral for configuration purposes (writing

operation) or byte transfer from peripheral to controller for
measurement results acquisition or status verification pur-
poses (reading operation). The code identifying the basic
operations allows the controller to invoke the right interface
function; the message in the structure is just an input parame-
ter for the interface function.

The timing directive allows the user to delay the execu-
tion of an operation: it is useful anytime there is a need in the
process to wait for settling phenomena before measuring a
quantity or maneuvering an actuator.

As an example, an instance of a sequence of tasks specified
by a remote user in a simple application, aimed at verifying
the linearity of a device under test (DUT) in terms of third or-
der intercept (TOI), is given in Fig. 2. In this application the
input port of the DUT is connected to an arbitrary waveform
generator (AWG) and the output port to a digital storage oscil-
loscope (DSO).

The first task in the sequence configures the AWG to output
a dual-tone test signal. To this end, the signal is synthesized in
digital form by the user, formatted as a binary block, and in-
cluded as a parameter in a command string to be downloaded
in the volatile waveform memory of the AWG. The reproduc-
tion in analog form of the test signal is then activated with
additional configuration commands appended to the same
task instance. Also, additional commands are required to con-
trol the burst reproduction rate and amplitude features.

The second task in the sequence configures the DSO to ac-
quire the output of the DUT. The samples stored into the DSO
acquisition memory are retrieved with the execution of the
third task, where the controller is asked to read 15000 bytes
through the interface from the addressed DSO.

The controller executes all of the tasks in the given order
and collects, at the completion of each of them, the data pro-
duced by the query. The first and third tasks are executed
immediately, i.e., with 0 delay from the reception of the mes-
sage, whereas the second one is executed with a delay of 100

Fig. 2. Instance of a sequence of tasks specified by a remote user in a simple
application aimed at verifying the linearity of a DUT.

Fig. 1. Conceptual diagram highlighting the main operations of the server
application.

December 2019 IEEE Instrumentation & Measurement Magazine 65

ms, to wait for the expiration of settling effects characterizing
the AWG operation. At the completion of each task, the con-
troller inserts a string in an array; empty strings are inserted
for those tasks that do not query for instrument outputs. The
array returned to the server by the controller contains as many
strings as the tasks required by the client.

The client will finally retrieve through the server the DUT
output acquired by the DSO and exploit a digital signal pro-
cessing approach to perform spectral analysis and estimate the
selected figure of merit (TOI).

Client Application
The client application has to open a TCP network connection
with the remote server identified by the IP address and port
number on which the laboratory service is made available. To
this end, software environments offer library functions with an
IP address, remote port number, time out, and local port num-
ber as configurable input parameters. The time out parameter
is to complete the function and return an error if the connec-
tion is not established in a specified time, as could occur in case
of server unavailability. The local port number parameter dif-
fers from the remote port number of the server application and
allows the user to explicitly choose the port number utilized
by the client in the TCP connection. The programmer can of-
ten rely on the operating system to allocate an unused port to
the purpose, but if the server only allows connections to cli-
ents that use local port numbers within a specific range, it is
necessary to have control of this parameter. Opening a TCP
connection returns a single identifier for the TCP connection as
well as an error message when failing to connect.

A successful TCP connection permits the client to exploit
the remote server and hence, to direct the instrument and ac-
tuator controller.

Directives are included in the message the client transfers
to the server. The message has to comply with the protocol
defined by the programmer. In the proposed approach, the
message has to contain an 8-byte header for both authentica-
tion (4 bytes) and declaration of the length of the payload of
the message (4 bytes) expressed in terms of number of bytes.
The original payload consists of an array that typically con-
tains structured data elements to represent the demanded
tasks. In order to be transferred through the TCP connection,
it is converted to a string: the use of header descriptors will
let the server application re-convert the payload to its native
data type.

The client concatenates the header and the payload strings
and uses a TCP write function to transfer the resulting string
message to the remote server. The function requires two input
parameters: the single identifier for the TCP connection and
the message. It operates on a timeout basis, so that if it does not
complete after a reasonable limited time, it returns an error. In
the presence of a timeout error, the client application closes the
TCP connection, popping up a dialog message to the user and
encouraging retrying later.

If the TCP write function completes with no errors, the cli-
ent can pause for a while to let the remote server execute the

demanded tasks: the duration of the pause has to be calibrated
according to the sequence of tasks.

After the pause the client uses a TCP read function, con-
figured to wait until all requested bytes arrive, to collect the
results. To this end, it first invokes the function to read a short
string made up of 4 bytes representing an integer number
and get acquainted with the length of the payload. Then, it
invokes the function again to read the remaining part of the
message, i.e., the payload. In both cases, it provides two in-
put parameters to the TCP read function: the identifier of the
TCP connection and the number of bytes to read. Remember
that the protocol adopted in server-to-client data transfer is
asymmetrical with respect to the client-to-server one, since the
former does not require an authentication procedure.

Finally, the client uses for the last time the identifier of the
TCP network connection to close it. The main operations per-
formed by the client application are summarized in Fig. 3.

The client application cannot jeopardize the user interface,
which according to the goals of the remote laboratory can be
characterized by different degrees of abstraction. Namely, if
the final users of the laboratory are neophytes, such as stu-
dents of secondary schools or bachelor degree courses, it is
convenient not to worry them with issues related to the syntax
of the commands of programmable devices. To this end, the
user panel can be designed to include controls and indicators
that ease the configuration and results inspection tasks. In this
case, the educational goal could require complementary real-
time video and audio monitoring. Differently, for advanced
courses, the issues related to the use of standard commands
for programmable instrumentation (SCPI), adopted by several
standard interfaces such as IEEE-488, RS-232, RS-422, Ether-
net, USB, VXIbus, or HiSLIP, are significant. The user interface
should be designed to allow more visibility of the available in-
terfaces, in order to teach the student to arrange the command
list of each task of the process and use the alternative data
transfer options in remote controller-device communication.

Supplementary Design Issues
In the previous sections, some important aspects related to
error condition and multiple connections handling have not
been discussed. These aspects impact the complexity of the

Fig. 3. Conceptual diagram highlighting the main operations of the client
application.

66 IEEE Instrumentation & Measurement Magazine December 2019

design and implementation of the remote laboratory. They
represent more advanced issues to be highlighted in the edu-
cational path, as in the following.

The remote laboratory should be programmed to have fault
tolerance, so that an error related to a single user will not pre-
vent the laboratory from being used by other clients. To this
end, the server application should be capable of skipping op-
erations and take forward client connection closure in case
of fatal errors. This can be achieved by programming critical
functions such that they:

 ◗ accept as an input parameter a list of errors related to the
operations executed before by the same client;

 ◗ recognize errors occurred during their own run; and
 ◗ provide as an additional output parameter the updated
list of errors.

The described mechanism allows keeping memory of
the errors of the whole critical functions chain related to the
laboratory session of a client. At any moment of the labora-
tory session, it is possible for the current function to judge,
on the base of the errors description, if the current opera-
tion is meaningful or not; in the latter case, the function is
programmed to skip any operations and propagate the er-
ror information. The client application gains in efficiency by
implementing this error handling strategy, rather than re-
lying uniquely on timeout mechanisms to get rid of stuck
conditions.

As for concurrent client connections, these can be managed
in different ways, according to the number of users and the
probability of concurrence. The simplest way consists of queu-
ing clients according to their order of arrival. A large timeout
value, given as input to the TCP open connection function by a
client, is often enough to wait for a sufficient amount of time to
be admitted to the server utilization soon after the completion
of the tasks invoked by the preceding client. Thus, clients can
get access to the remote resources without incurring in a fail-
to-connect event, only occasionally experiencing a longer wait
at connection opening.

Alternatively, the remote equipment in the laboratory must
be replicated to allow contemporaneous operation to more
clients. For the server to accept more clients at one time, it is
necessary that the server application be able to run with some
execution parallelism. To this end, the server application has
to be realized using a multi-thread programming paradigm.
At present, several software environments bring users the ad-
vantages of powerful multithreading technology in a simple
straightforward way.

In the proposed approach, a viable scheme to assure paral-
lelism consists in framing the server operations with different
threads, which can respectively involve acceptance, process-
ing, and disposal of the client request, as schematized in Fig. 4.

In particular, the acceptance thread returns an identifier
for the client connection to refer to it afterward, acquires the
payload of the message, and invokes a processing thread, pro-
viding it with the client ID and related message. After that, the
thread can enter a sleep mode, waking up only at a new client
connection request.

The processing thread can be carried out with the subrou-
tine that implements the controller actions, interfacing with
instruments and actuators. The processing thread needs to be
cloned in order to have one subroutine for each client active
on the remote laboratory and implement parallel operations.
Cloning can be prepared statically or even attained dynami-
cally; static cloning is preferable since dynamical creation of
clones slows down server operations.

Finally, a disposal thread has to send the message received
by a processing thread to the client and perform the close con-
nection. The message received by any processing threads
contains both a client identifier and an array of strings with
the outcomes of the tasks. As for the acceptance thread, this is
a unique thread that interacts with the processing thread and
the remote clients via TCP connection.

Conclusions
An educational approach to the implementation of a remote
laboratory has been presented. Addressing this theme should
get the student familiar with Internet technologies that more
and more often are substituting for proprietary solutions, pre-
viously adopted in the industry for process monitoring and
automation as well as, more in general, with the exigencies of
Industry 4.0 program framework. The subject has been devel-
oped to provide straightforward guidelines to set-up a remote
laboratory, to meet the goals of a course dealing with remote
process control and automation. More advanced issues con-
cerning error handling and operation parallelism have also
been presented. Finally, a viable scheme to frame the server
application in multiple parallel threads has been highlighted.

References
[1] G. Andria et al., “Remote didactic laboratory ‘G. Savastano,' the

Italian experience for e-learning at the technical universities in the

field of electrical and electronic measurement: architecture and

optimization of the communication performance based on thin

client technology,” IEEE Trans. Instrum. Meas., vol. 56, no. 4, pp.

1124-1134, 2007.

[2] A. Baccigalupi, U. Cesaro, M. D'Arco, and A. Liccardo, “Web-

based networking protocol for expanding IEEE-488 ATE

Fig. 4. Server application allowing execution parallelism of more individual
threads.

December 2019 IEEE Instrumentation & Measurement Magazine 67

capabilities,” in Proc. IEEE Int. Workshop Measurements and

Networking (M&N), pp.100-104, 2011.

[3] J. M. G. Palop and J. M. A. Teruel, “Virtual work bench for

electronic instrumentation teaching,” IEEE Trans. Educ., vol. 43,

no. 1, pp. 15-18, 2000.

[4] P. Arpaia, A. Baccigalupi, F. Cennamo, and P. Daponte, “A

measurement laboratory on geographic network for remote test

experiments,” IEEE Trans. Instrum. Meas., vol. 49, no. 5, pp. 992-

997, 2000.

[5] L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M.

Parvis, and V. Piuri, “A web based, distributed virtual educational

laboratory,” IEEE Trans. Instrum. Meas., vol. 49, no. 2, pp. 349-356,

2000.

[6] P. Arpaia, F. Cennamo, P. Daponte, and M. Savastano, “A

distributed laboratory based on object-oriented measurement

systems,” Measurement, vol. 19, issues 3-4, pp. 207-215, 1996.

[7] P. Arpaia, A. Baccigalupi, F. Cennamo, and P. Daponte, “A

remote measurement laboratory for educational experiments,”

Measurement, vol. 21, no. 4, pp. 157-169, 1997.

[8] D. Grimaldi and S. Rapuano, “Hardware and software to

design virtual laboratory for education in instrumentation and

measurement,” Measurement, vol. 42, no. 4, pp. 485-493, 2009.

[9] M. Corrado, L. De Vito, H. Ramos, and J. Saliga, “Hardware

and software platform for ADCWAN remote laboratory,”

Measurement, vol. 45, no. 4, pp. 795-807, 2012.

[10] U. Hernandez-Jayo and J. Garcia-Zubia, “Remote measurement

and instrumentation laboratory for training in real analog

electronic experiments,” Measurement, vol. 82, pp. 123-134, Mar.

2016.

[11] N. Wang, X. Chen, Q. Lan, G. Song, H. R. Parsaei and S. C. Ho,

“A novel wiki-based remote laboratory platform for engineering

education,” IEEE Trans. Learning Technologies, vol. 10, no. 3, pp.

331-341, 2017.

[12] M. Kalúz, J. García-Zubía, M. Fikar and L. Čirka, “A flexible

and configurable architecture for automatic control remote

laboratories,” IEEE Trans. Learning Technologies, vol. 8, no. 3, pp.

299-310, 2015.

[13] A. Chevalier, C. Copot, C. Ionescu and R. De Keyser, “A three-

year feedback study of a remote laboratory used in control

engineering studies,” IEEE Trans. Education, vol. 60, no. 2, pp.

127-133, May 2017.

[14] U. Lichtenthaler, “Open innovation in practice. an analysis of

strategic approaches to technology transactions,” IEEE Trans., vol.

55, no. 1, pp. 148-157, 2008.

Francesco Bonavolontà, Ph.D., is a Research Fellow in the
Department of Electrical and Information Technologies at
University of Naples Federico II, Italy. His research activity is
centered in the area of instrumentation and measurement and
is mainly focused on developing of innovative DAS systems
based on compressive sampling techniques, also including In-
ternet of Things devices for smart applications.

Mauro D'Arco, (mauro.darco@unina.it), Ph.D., is Associate
Professor with the University of Naples Federico II, Italy. His
current research interests include remote measurement and
automation, data acquisition systems characterized by high
bandwidth and high sample rates, arbitrary waveform gener-
ators, and digital signal processing themes.

Annalisa Liccardo is Associate Professor with the Depart-
ment of Electrical Engineering and Information Technology of
the University of Naples Federico II, Italy after being a tenure
track Researcher from 2013 to 2016. Her current research inter-
ests involve the measurements for monitoring and protection
of electrical power systems, IoT sensors for electrical measure-
ments, and distributed measurement networks.

Oscar Tamburis, Ph.D., is Assistant Professor of processing in-
formation systems in the Department of Veterinary Medicine
and Animal Production at University of Naples Federico II, It-
aly. His research interests include innovation in the eHealth
sector, process modeling (UML), DES simulation in health, and
implementation of advanced analytics for data-mining.

