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1.  Introduction

All the modern electronic devices are based on a clas-
sical paradigm of negative carriers—electrons—and 
positive charge carriers—holes. This leaves completely 
unused an additional degree-of-freedom carried by both 
carriers: the spin. Spintronics explores phenomena that 
interlink the spin and the charge degree-of-freedom. It is 
the field where traditional solid-state physics and mate-
rial research have created their strongest bond, with 
each taking alternate leading roles. From our perspec-
tive, spintronics can be mainly divided into two distinct 
subfields: metal and semiconductor spintronics [1, 2].

Metallic spintronic devices originate from the discovery of 
giant magnetoresistance (GMR) in 1988 [3, 4] and the subse-
quent development of the spin valve [5]. The GMR effect can 
be understood by assuming that any spin current is carried by 
two ‘types’ of carriers, spin-up and spin-down. The two-chan-
nel picture of spin transport proposed by Mott explains the 
behaviour of magnetoresistive devices [6], including GMR 
and tunnelling magnetoresistance (TMR) [7], as well as spin 
injection into metals [8].

In the GMR effect, two ferromagnetic layers sandwich a 
non-ferromagnetic metal layer of nanometer thickness. When 
the magnetisation of the two ferromagnetic layers is parallel, 
the valve is in a low resistance state (open). When the two are 
antiparallel, the valve is in a high resistance state (closed). The 
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TMR effect rather than the GMR one, takes place when a metal-
lic spacer is substituted by an insulating barrier. In TMR at room 
temperature, the spin-vale effect increases by a factor of ten with 
respect to GMR. This is the basic principle of hard disk read 
heads and magnetic random access memories. These are some 
of the most successful technologies of the past decades, with 
scaling trends outdoing even complementary metal-oxide-sem-
iconductor, the technology for constructing integrated circuits. 
Albert Fert and Peter Grünberg have been awarded the Physics 
Nobel Price in 2007 for their studies on the GMR effect.

Semiconductor spintronics, on the other hand, has the 
potential to be integrated seamlessly with nowadays’ semi-
conductor electronics. It is progressing along a similar path 
as metallic spintronics and has achieved a remarkable success 
in the past decade. The spin-field effect transistor (spin-FET) 
was proposed in 1990 [9] as a development to the GMR set-up 
where the two ferromagnets are left collinear and the ‘on’ and 
‘off’ status is achieved by rotating the injected spin when trav-
elling through the two contacts. This geometry does not require 
a magnetic field for switching the relative magnetisation of the 
two ferromagnets, thus reducing spurious magnetic fields into 
the electronic circuits. The spin-FET is an electronic analog 
of an electro-optical modulator for photons. A ferromagnet 
injects spin polarised carriers into a semiconductor channel. 
Here, due to the modulation of the spin-precession length, it is 
possible to vary the spin orientation. This modulated spin sig-
nal is then detected by a second ferromagnet. The spin preces-
sion length is varied via top- and back-gate voltages that tune 
the strength of the spin–orbit interaction (SOI) of Rashba (R) 
type [10, 11]. The RSOI originates from the lack of inversion 
symmetry along the growth direction of the semiconductor 
heterostructure that is hosting a two-dimensional electron gas 
(2DEG) [12, 13]. It can be tuned by changing the shape of the 
confining potential via the application of an external electric 
field [14–18]. However, the conductivity mismatch problem 
[8, 19] between a ferromagnet and a low-dimensional semi-
conductor has hindered, for a long time, an efficient injection 
of spin polarised currents. Progress for solving this problem 
came with the research on ferromagnetic semiconductors [20]. 
Nevertheless, only recently it has been possible to implement 
completely the functionality of the spin-FET first in [21], and 
after, with minor changes, in [22].

Semiconductor spintronics is also relevant because it has 
permitted to observe other coherent phenomena, such as the 
Aharonov–Casher (AC) effect [23] in ring-type and other loop 
structures [24] so as proposed by many groups [25–29]. The 
Aharonov–Casher effect is the analog of the Aharonov-Bohm 
(AB) effect [30] for particles with an angular momentum in 
an external electrical field [31]. In the case of carriers in a 
semiconductor 2DEG, the RSOI permits the coupling of the 
electron spin with the external electric field. Other phenom-
ena, e.g. the spin-Hall effect [32–35], have been predicted 
and observed in semiconductors [36–38, 38, 39] before their 
observation in metals [40]. A key role in the success of semi-
conductor spintronics is the tunability of the RSOI via exter-
nal gating.

The material in this review article is presented in the follow-
ing form: in section 2 we present a summary of the materials 

with sizable RSOI effects, these range from the standard semi-
conductor heterostructures, carbon-based materials, topologi-
cal insulators (TIs) to Weyl semimetals (WSs). In section 3, 
in order to introduce some basic transport property of carri-
ers in systems with RSOI, we revise the spectral properties of 
2DEGs and graphene with RSOI, in addition we spend some 
effort to underline the basic difference in the presence of a 
further lateral confinement, thus moving from the two-dimen-
sional (2D) to the quasi-one-dimensional-case (quasi-1D). 
After, we introduce the concept of spin-double refraction that 
is a phenomenon taking place in a hybrid structure composed 
of region with RSOI sandwiched between two regions with-
out RSOI. In section 4 we give a definition of pure spin cur-
rents and propose a derivation of a formula for a spin current 
in the standard Landauer–Büttiker approach, furthermore we 
introduce two proposals for generating pure spin currents—
based on the ratchet and the pumping effect. Next, we give 
an in-depth analysis of the spin-FET by Datta and Das and an 
explanation of its working principle, finally we present a recent 
experiment showing a possible realisation of such a transis-
tor. In section 5 we give a complementary look at the effects 
induced by RSOI, specifically we will analyse its effects as 
non-Abelian gauge field. Particularly, we look at non-Abelian 
effects in quantum networks and quantum rings. In section 6 
we give a very brief and general overview over other aspects of 
the physics associated to the RSOI, specifically we look at the 
spin-Hall effect (SHE) in section 6.1, than, in section 6.2, we 
will see how RSOI can modify the weak localisation (WL) into 
weak anti-localisation (WAL) in a disordered system. Finally 
in section 6.3 we will quickly review the vibrant field of the 
quest of Majorana quasi particles in quantum wires with RSOI, 
magnetic field and superconductivity. In section 7 we present 
our outlook for this growing field of condensed matter physics.

2.  Materials with Rashba spin–orbit interaction

On a very general basis, SOI routes down to the relativistic 
correction to hydrogen-like atoms [41, 42]. It reads

H = − ℏ
( )

⋅ ( ( ) × )

= ( ) ⋅ ( × )

s E r p

s r p

mc

r

V r

r

2

2
1 d

d

SO 2

� (1)

where ℏ is the Plack constant divided by π2 , m is the elec-
tron mass, p is the momentum operator and = ( )s s s s, ,x y z  is 

a vector of Pauli matrices describing the spin = ℏS s
2

 opera-

tor. In this espression ∇( ) = ( )r V rE  is the electric field felt 

by the electrons. By considering a Coulomb electrostatic 

potential ( ) = −V r Ze

r

2

 we have that the strength of this rela-

tivistic correction goes as Ze

r

2

3 , thus proportional to the atomic 

number Z [41, 42]. From the relativistic correction expressed 

in Hamiltonian (1) we learn that materials characterised by a 
higher atomic number will present in general a stronger SOI, 
this will be the case for TIs and Weyl- and Dirac-semimetals.
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2.1.  Semiconductors heterostructures

In this review we shall mostly discuss the physics of low-
dimensional semiconductor heterostructures. The simplest 
example is a 2DEG. This is commonly realised in III–V semi-
conductor heterostructures by modulating the doping density 
along the growth direction—usually ( )0 0 1  [43, 44]. In solids, 
SOI can have different nature depending on the crystal sym-
metries [45], however in this review article we shall mostly 
deal with the two main independent sources of SOI in III–V 
semiconductors, namely the RSOI, due to the lack of struc-
tural inversion symmetry (SIA) [12, 13] and a Dresselhaus 
(D) term due to a lack of bulk inversion symmetry (BIA) [46]. 
The three-dimensional (3D) SOI correction to the free elec-
tronic Hamiltonian due to BIA reads:

H ∝ ( − ) + ( − ) + ( − )p p p s p p p s p p p s ,x y z x y z x y z x y zDSOI
3D 2 2 2 2 2 2

� (2)

where pi with ∈ { }i x y z, ,  is the momentum operator. In order 
to achieve the effective Hamiltonian acting on the electrons 
confined in the 2DEG we have to integrate along the growth 

direction with the constraint that 〈 〉 =p 0z , while 〈 〉 ≠p 0z
2  is a 

sample dependent constant. Therefore we have

H β γ= ( − )+ ( − )p s p s p p s p p sy y x x x y x y x yDSOI
2 2

� (3)

where γ is a material dependent constant, and β depends on 

〈 〉pz
2 . The first term contains the so called linear DSOI whereas 

the second one describes the cubic one [47]. Usually the latter 

can be disregarded as 〈 〉 ≪p p p,z x y
2  in a 2DEG.

Due to charging effects, the quantum well confining elec-
trons in two dimensions is never perfectly flat, therefore at the 
interface between the two differently doped semiconductors, 
a potential gradient arises ∇ = EV . This effective electric field 
couples with the electrons motion as

H ∝ ( × ) ⋅E p s.RSOI� (4)

Considering a quantum well along the ( )0 0 1  growth direc-
tion =E zEz , the RSOI is rephrased as:

H
α α=
ℏ

( × ) ⋅ =
ℏ

( − )s p z p s p s ,y x x yRSOI� (5)

where α depends on the material and on the confining 
potential. By simple inspection one can notice that Rashba 
Hamiltonian (5) and linear Dresselhaus SOI (3) are equivalent 
under the unitary transformation rotating the spin Pauli matri-
ces →s sx y, →s sy x and → −s sz z therefore the spectral proper-
ties of electrons subject to RSOI or linear DSOI are exactly 
the same [48]. It is important to notice that through a simple 
mathematical manipulation we can recast RSOI in the form 

⋅ ( )s B peff  where ∝ ( × )B z peff  is an effective magnetic field 
rotating the carrier spin in the plane of the 2DEG.

Despite this formal equivalence, the role to RSOI has 
been investigated with much more attention in the last 
decades for two main reasons. First, in conventional III–V 
2DEGs α β> . Second, more interestingly, from few decades 
α can be easily tuned by gating the heterostructure [12, 13] 
to some hundreds of meV Å. The spin precession length can 
be expressed as

πℓ =
k

,SO
SO

in III–V quantum wells it ranges from hundreds of nm to few 
μm, thus comparable with typical dimensions achievable in 
the fabrication of modern mesoscopic devices. Here we have 
introduces the SOI in units of momenta α= * ℏk m /SO

2. The 
RSOI was first predicted in bulk semiconductors by Rashba 
[10]. Later Bychkov and Rashba [11] proposed to use the 
Hamiltonian (5) in order to explain some magnetic proper-
ties of semiconductor heterostructures [49, 50]. In figure 1(b) 
we show the shape of the quantum well and of the electron 
density profile showing the position of the 2DEG. The lack 
of inversion symmetry in semiconducting 2DEG heterostruc-
tures is at the origin of the RSOI. Therefore a change in the 
asymmetry can also lead to a change in the strength of the 
RSOI. For example, by applying a gate voltage is possible to 
modify the profile of the potential confining the 2DEG with a 
secondary effect of changing the strength of the RSOI. Thus, 
in a first approximation the coupling constant α depends on 
the gate voltage α α→ ( )V .

A change in the strength of the α, thus, can produce a change 
in the beating pattern of the Schubnikov–de Haas oscillations 
[12, 13] (see figure 1(a)). This effect was first observed by the 
group of Nitta [14] and after by other groups [15, 16]. Another 
method for probing the variation of the coupling constant is to 
observe the transition from WL to weak WAL [17, 51]6, see 
for instance figures 1(c)–(e).

2.2.  Quantum wires

By applying a further confinement to a 2DEG it is possible to 
confine the electrons in a quasi-1D structure—a quantum wire. 
A detailed investigation of the RSOI in InGaAs/InP quantum 
wires of different width has been put forward by Schäpers  
et al [52, 53]. Quantum wires can also be made out of InAs, 
GaAs, InSb or other materials [54–56]. Recently, quantum 
wires with sizable RSOI are attracting a lot of interest as they 
are the fundamental building block for many proposals aiming 
at the observation of Majorana quasi particles in condensed 
matter physics. In these setups the interplay between RSOI, 
superconductivity and magnetic fields [57, 58] is pivotal7.

2.3.  Carbon–based materials

The RSOI has been predicted also for single layer graphene 
(SLG), using simple symmetry arguments [60, 61]. A more 
rigorous calculation has been proposed by Huertas-Hernando 
et al [62], where a modulation via atomic Stark effect and 
curvature effects were considered. However, due to the small 
atomic number of the carbon atoms (see equation  (1)) the 
strength of the coupling α is very small in the SLG structure. 
There are proposal for overcoming this obstacle and increas-
ing the strength of the SOI, by coating the graphene surface 
with ad-atoms thus inducing a spin-dependent hopping medi-
ated by the surface impurities. This is the case, for example, 

6  More details about this phenomenon will be given in section 6.2. 
7  Some more analysis of Majorana physics is reported in section 6.3. 
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of SLG deposited on a Ni substrate and intercalated with Au 
atoms. Spin-resolved angle resolved photoemission spectros-
copy measurements have shown a sizable RSOI of the order of 
some meV [59, 63–65], and also with Pb island [66]. Similar 
proposal have been advanced also for hydrogen impurities 
[67]. The modification to the energy spectrum of SLG due to 

RSOI are shown in figure 2. Large RSOI has been also pro-
posed by using rotating magnetic fields [68].

The RSOI in SLG is described by a Hamiltonian very simi-
lar to (5), the main difference is that it depends only on the 
pseudo-spin and not on the momentum operators. To the low-
est order in the momentum expansion:

Figure 1.  (a) Schubnikov–de Haas oscillations as function of the gate voltages [14]; (b) Calculated conduction band diagram and electron 
distribution. Panels (a) and (b) courtesy of [14]; (c) Experimental magneto-conductance, σ σ σΔ = ( ) − ( )b 0  (circles), offset for clarity, 
along with three-parameter fits (solid line) for several gate voltages. Inset: Experimental magneto-conductance data for the most negative 
gate voltage, showing pure weak localization. (d) Density and mobility as function of Vg, extracted from longitudinal and Hall voltage 
measurements; (e) Experimental conductivity, showing strong dependence on Vg. Panels (c)–(e) courtesy of [17].

Figure 2.  Spin-resolved photoemission spectra along ΓK in the vicinity of the Fermi energy. (a) Overview spectra and (b) π states at 
arbitrary offset. Courtesy of [59].

Rep. Prog. Phys. 78 (2015) 106001
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H σλ= ( × )s
2

,zSO
SLG� (6)

where s are the Pauli matrices describing the electron spin 
and σ its pseudo-spin and λ is the RSOI coupling constant in 
SLG.. Here the pseudo-spin is the internal degree of freedom 
describing the presence of two inequivalent carbon atoms in 
the honeycomb lattice of SLG [69].

The RSOI has been predicted also in bi-layer graphene, 
due to the interaction with a substrate of and an external elec-
tric field [70–73], however so far it is has not been measured.

In order to conclude this overview of carbon-based materi-
als with RSOI, relevant effects are predicted also for carbon 
nanotubes (CNTs) [74–76]. In [77, 78] the RSOI interaction 
strength is measured in CNT quantum dots.

2.4. Topological insulators

Topological insulators are band insulators hosting spin polar-
ised edges states within the bulk gap [79–81].

The original idea about this new state of matter was put 
forward by Kane and Mele in two seminal research papers 
published in 2005 [60, 61]. They showed that a specific type 
of SOI in SLG can lead to the opening of a gap in the spectrum 
and that edge states exists within this gap when considering a 
ribbon geometry. In figure 3 we can observe the gap opened 
by the intrinsic SOI [62] and the edge states within the gap. In 
two-dimensions, this phenomenon is also known as quantum 
spin-Hall effect (QSHE). It can be thought as two copies (one 
per spin) of the integer quantum Hall effect (IQHE). The main 
difference is that, contrary to the magnetic field, SOI does not 
break time-reserval symmetry. Thus, here, there are two coun-
ter propagating helical edge states opposed to the single chiral 
edge state of the quantum Hall fluid. As in the case of the 
IQHE, the edge states are characteristics only of the finite size 
systems. It is also possible to introduce a specific topological 
numbers named Z2 that defines the robustness of these edge 
states [60].

Up to now, such phenomenon has not been observed in 
SLG, however shortly after the seminal works of Kane and 
Mele, a proposal for observing the QSHE in HgTe/CdHgTe 
quantum wells was put forward by Bernevig et al [82, 83], 
whose prediction was readily confirmed by König et al [84]. 
Since than, there is a huge quest for discovering new 2D TIs. 
One of the most interesting is represented by InAs/GaSb 
quantum well [85, 86] which is very attractive as it is achiev-
able using the standard and, very well known, III–V semicon-
ductor technology.

Contrary to the case of IQHE, the paradigm of the QSHE 
can be extended to 3D. This work has been mainly carried 
out by Fu and Kane [87, 88]. Since their seminal works, a 
race for discovering new 3D TIs is open. Recent overviews on 
these materials can be found in one of the several review arti-
cles published on the topic [79–81]. Among them the paper 
by Ando [81] contains an interesting table  summarising all 
known 2D and 3D TI discovered up to 2013.

Most of the research work is devoted to analyse the spec-
tral properties of such material—mainly via angle-resolved 
photoemission spectroscopy. Only few experiments show 
the transport properties of this new class of materials. 
Mainly because most of the 3D TI are not proper insulators 
due to a non negligible current flowing through impurity 
states [89]. A very interesting set of transport experiments 
has been performed in films of Bi2Se3 [90] prepared with 
a special two-dimensional geometry (see figure 4). In this 
work the authors show a sizable tunability of RSOI in 3D 
TI. The effects of this tunability are clearly observed in 
the interference pattern of the Aharonov–Bohm (AB), the 
Altshuler–Aronov–Spivak (AAS) and the Aharonov–Casher 
(AC) effects [51, 91, 92]. This is very interesting because it 
allows to realise novel functionalities such as possible non-
Abelian operations on spins.

2.5.  Weyl semimetals

Weyl semimetals also known as ‘topological semimetals’ are 
zero gap semiconductors with a Fermi level very close to the 
centre of the gap that is at zero energy as in the case of SLG 
and TIs. The effective Hamiltonian describing the low energy 
states close to the Fermi level in WSs is represented by a ×2 2 
Hamiltonian that is linear in the momentum—as for TI and 
SLG—but it is an actual 3D model, thus containing all the 
three Pauli matrices. The simplest model Hamiltonian in k p 
approximation reads:

H = ± ⋅± p sv ,F� (7)

where vF is the Fermi velocity, and p and s are the vectors 
of the momentum and of the Pauli matrices, respectively. By 
inspection of equation (7) we evince that a generic perturba-
tion cannot open a gap in the energy spectrum. Its energy 
spectrum reads ( ) = ± ∣ ∣± pE p vF . This is usually correct for 
an even number of nodal points where the expansion (7) is 
allowed. At each node we can associate a chirality, this mea-
sures the relative handedness of the three momenta and the 
Pauli matrices associated in the Weyl equation—the chirality 
±1 for the Hamiltonians H±, can also be thought as a source 

Figure 3.  Edge states of the quantum spin-Hall effect in zig–zag 
graphene nano ribbons, the bulk states are given by the solid-orange 
lines, the spin-polarised states are the dashed-blue lines.

Rep. Prog. Phys. 78 (2015) 106001
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of Berry curvature carried by the WS nodes. This is a general 
property of Weyl fermions realised in band structures: their net 
chirality must in fact cancel8. Note that it is usually assumed 
that bands are individually nondegenerate. This requires that 
either the time-reversal symmetry or the inversion symmetry 
(parity) is broken. In order to realise the minimal case of just a 
pair of opposite chirality Weyl nodes, time-reversal symmetry 
must be broken [94].

The idea of WS was first theoretically proposed by 
Murakami in 2007 [95] and later it was further elaborated by 
Wan et al in 2011 [94]. Based on ab initio band calculations, 
it was proposed that pyrochlore iridates, such as Y2Ir2O7, in 
the antiferromagnetic phase, may realise such a WS [94, 96].  
A recent review on the spectral properties of this type of 
system is reported by Vafek and Vishwanath [97] and on the 
transport properties by Hosur and Qi [98].

3.  Spin transport in RSOI material

Before describing the role of RSOI in the spin-dependent 
transport, it is important to understand how it modifies the 
spectral properties of a free electron in a 2DEG.

3.1.  General properties of the RSOI in semiconductors

We consider a 2DEG in the (x, y)–plane in the presence of 
the RSOI (5) and with effective electron mass *m . The full 
Hamiltonian of the system is

H
α=

*
+

ℏ
( × )p
s p

m2
.z0

2

� (8)

The eigenvalues read

E α( ) = ℏ
*

± = ℏ
*

( ± ) − Δ± k
k

m
k

m
k k

2 2
,

2 2 2

SO
2

SO� (9)

where = ∣ ∣ = +kk k kx y
2 2 is the modulus of the electron 

momentum, = α *
ℏ

k m
SO 2  is the RSOI coupling constant with 

the dimension of a momentum and ( )Δ = α *
ℏ
m

SO
2
. Usually the 

last term of (9) is neglected because it is second order in α. 
Moreover, even if included, it would lead to a rigid shift of 
the bands, thus renormalising the chemical potential μ. The 
eigenvectors of the Hamiltonian (8) relative to the spectrum 
(9) are plane waves:

Ψ ( ) =
± θ±

⋅

−
⎛
⎝
⎜

⎞
⎠
⎟r

e

2

1
ie

,
k ri

i� (10)

where θ = ( )k karctan /y x  is the polar angle between the momen-
tum vector and the kx direction. It is important to note that the 
spin states (10) are always perpendicular to the motion direc-
tion. In fact, if an electron moves along x direction the spinor 
part of the eigenvectors become ( )1; i  and ( − )1; i  that is the 
spin up and spin down are along the y direction. By contrast, 
if the electron moves along the y direction, the eigenvectors 
become ( )1; 1  and ( − )1; 1  that is the spin up and spin down 
state in the x direction (see figure 5(b)).

In figures 5(c)–(e) we report the ky-section of the energy 
spectrum versus the momentum for a 2DEG in different 

Figure 4.  (a): SEM image of the square-ring device realised in Bi2Se3; (b): Illustration of the AB effect interference (red trajectories) 
and AAS interference (solid and dotted green loops) for charges in a square ring. The existence of RSOI creates an effective magnetic 
field BSO pointing towards/ or from the center of the ring for counterclockwise (CCW)/clockwise (CW) propagation modes, which 
influences spin precession and generates an AC phase in addition to the AB and AAS phases. (c) Modulation of the wave function as 
function of θ π/ : θ( )A1  (solid-green line) and θ( )A2  (solid-red line). Here θ α= * ℏm L2 / 2 is spin precession angle over a distance L and 

θ θ θ θ θ( ) = ( + + )A cos 4 cos sin cos 2 /41
4 2  and θ θ θ( ) = ( + )A sin cos 2 /42

2  are the modulation of the wave function as a function of θ (see 
[90] for more details). The former varies roughly at twice frequency of the latter. (d): Δ −R Vg curves at fixed magnetic fields marked by 
the lines and arrows of corresponding colours. The spin precession angle is modulated by π4  by varying Vg from the interval 2.16 to 2.77 V 
marked by the two stars. The dashed lines help illustrating the opposite phases between the green and blue curves in the AAS region. 
Courtesy of [90].

8  This can be understood in terms of the fermion doubling theorem [93]. 
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physical situations. In figure 5(c) we considered a free parti-
cle in a 2DEG. In this case the spectrum is twofold degener-
ate in spin. In the presence of a magnetic field B (see panel 
figure 5(d)), the spin degeneracy is lifted out by the Zeeman 
effect and the gap separating spin up and spin down is equal 
to μ*g B2 B , where *g  is the effective gyromagnetic ratio and μB 
is the Bohr’s magneton. When the RSOI is present figure 5(e), 
the spin degeneracy is lifted out except for ky   =   0. In this situ-
ation the degeneracy is removed without the opening of gaps. 
The semiclassical particle velocities are given by

E α( ) =
ℏ

∂ ( )
∂

= ℏ
*

± = ℏ
*

( ± )±
±v k
k
k

k
k k

m m
k k

1
.SO� (11)

If we consider the quantum-mechanical velocity operator

H=
ℏ

[ ]r r˙
i

,0� (12)

and the expression (10) for the eigenstates, it is straightfor-
ward to show that its matrix elements are given by

δ⟨Ψ ( )∣ ∣Ψ ( )⟩ = ( − ) ( )′ ′± ± ±k r k k k v k ˙    .� (13)

That is the semiclassical velocities ( )±v k  are, as usual, the 
diagonal elements of the velocity operator. In the presence of 
the RSOI, the velocity operator is not simply the momentum 
divided by the effective mass as for free electrons and the 
Fermi surface splits into two surfaces shown in figure 5(b). 
One can easily observe that counter propagating electrons 
have opposite spins. Spin and momentum are locked to each 

other. This has important consequences in the following. 
Parametrising the wave vectors as φ φ= ( )k k   cos , sin  the two 
Fermi surfaces are described by the following equation:

E E
α α( ) = ∓

*
ℏ

+
*

ℏ
+

*
ℏ±

⎛
⎝
⎜

⎞
⎠
⎟k

m m m    2
.F

F 2 2

2

2 F� (14)

Here the double sign corresponds to the two dispersion 
branches (9).

3.2.  Rashba SOI in quantum wires: subbands hybridisation

By further confining a 2DEG along one direction (we choose 
y in the following) we can realise a quantum wire. In this case 
we cannot solve analytically the system Hamiltonian, as we 
have done for the simple case of a 2DEG. Different theoretical 
models have been used to describe confinement effects. A very 
convenient representation consists in assuming a transverse 
confining potential in the y directions, and let the electrons 
propagate along the the x direction. This choice is particularly 
convenient when expressing the matrix elements of the SOI 
[99–101]. The Hamiltonian reads:

H H H= + +∥ ⊥H ,mix� (15)

with the following terms:

H σ=
*

− ℏ
*∥

p

m

k

m
p

2
x

y x

2
SO� (16a)

Figure 5.  Properties of the Rashba energy spectrum. (a) Portion of the energy spectrum of the Hamiltonian (8). (b) The Fermi contours 
relative to the Hamiltonian (8), the spin states are shown as well. (c) section of the energy spectrum for a free electron. (d) section of the 
energy spectrum for an electron in presence of a magnetic field, e.g. Zeeman splitting. (e) section of the energy spectrum for an electron in 
presence of RSOI.
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H =
*

+ ( )⊥
p

m
V y

2
y
2

� (16b)

�

(16c)

Where V( y) is a infinite well potential of width W. 
Neglecting Hmix, the terms in equations  (16a) and (16b) do 
commute, therefore the eigenvalues and eigenvectors can be 
easily expressed as:

⎛
⎝
⎜

⎞
⎠
⎟σ π σ( ) = ℏ

*
+ − ℏ

*
〈 〉∥+⊥E n k

m
k

n

W

k k

m
, ,

2
y x x

x
y

2
2

2 2

2

2
SO

� (17)

�
(18)

where ϕ ( )yn  are the nth eigenfunctions of the potential V( y) 
that are a either a sine or a cosine functions and ψ ( )xkx

 simple 
plane waves shifted by the RSOI, here σ⟨ ⟩y  can get the values 
±1. The term Hmix induces mixing between these states and 
gives rise to a deformation of the electronic bands and to anti-
crossings in the energy spectrum.

Anti-crossings occur between sub-bands correspond-
ing to transverse eigenstates with different n (figure 6(a)). 
While simple one dimensional (1D) models predict a rigid 
spin-momentum locking with in–plane spin perpendicular to 
the momentum along the wire direction, multi-band models 
predict that only electrons with momentum far away from 
anti-crossings have the spin essentially perpendicular to the 

momentum, i.e. ⟨ ⟩ ∼ ±Sy
1

2
 and ∼k xkx . This is shown in fig-

ure 6(b), where we can see the expectation value of ⟨ ⟩Sy  as a 
function of the longitudinal momentum kx—it changes form 

− 1

2
 to 1

2
 for kx changing from negative to positive values. The 

same picture applies to the other sub-bands. Here we shall 
focus on the role played by the number of sub-bands used for 
evaluating the system properties. The Hamiltonian (15) can-
not be diagonalized exactly, but a partial analytical/numeri-
cal solution can be obtained by truncating the Hilbert space 
associated to the modes produced by V( y). Diagonalizing the 
Hamiltonian (15) for ≫N 1 modes produces a result that is 
substantially correct for the lowest N  −  1 modes but not for 
the mode N. This is observed, e.g. in the spectral proper-
ties and in the spin polarisation. The spectrum is shown in 
figure 6(a), we have in colours-solid lines for N   =   3 and in 
black-dashed lines for N   =   2. We see that the first sub-bands 
in both cases (N   =   3 and N   =   2) are quite similar apart from a 
negative energy shift [101]. However, the situation is very dif-
ferent when we consider the second sub-bands, these greatly 
differ in the two cases—due to the presence of the third mode 
for the case N   =   3. Considering the spin polarisation the 
effect is more visible. In figure 6(b) the spin polarisations for 
the first sub-bands for N   =   2 (red lines) and N   =   50 (blue 
lines) are shown, the behaviours are similar in both cases but 
around ∼k 0x . The error produced by Hilbert space truncation 
is shown in figure 6(c), here it is shown the spin polarisation 
for the second sub-bands (red lines), for N   =   2. We observe 
a mirroring of the results reported in figure  6(b). However, 
the most correct result with N   =   50 (blue lines) contradicts 
completely N   =   2.

The message here is that when solving a problem of quan-
tum transport in a confined geometry a sufficient number 
of sub-bands should be taken into account in order to avoid 
systematic errors due to the truncation of the Hilbert space 
[99–101]. The same conclusions are obtained by changing the 

H
α σ=
ℏ

p .x ymix

ψ ϕ ψ σ( ) = ( ) ( )∣ 〉σ x y y x,n k n k yy x x

Figure 6.  (a) Band structure of quantum wires with square well potential along the confining direction. The coloured lines refer to the 
first three sub-bands in the case of a wire with three modes whereas the dotted-black lines refer to the same wire but only considering two 
modes. (b) Spin polarisation ⟨ ⟩Sy  as a function of the transversal momentum for the first sub-band in the case of a two band model (red-
solid and red-dashed lines). (c) Spin polarisation ⟨ ⟩Sy  as a function of the transversal momentum for the second sub-band in the case of a 
two band model (red-solid and red-dashed lines). Both in panel (b) and (c) the spin polarisation is evaluated using a truncated Hilbert space 
containing 50 modes (blue-solid and blue-dashed lines).
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shape of the confining potential V( y) from square potential 
one to harmonic oscillator one [99, 100] or by introducing 
a further periodic modulation along the longitudinal direc-
tion x [102]. The sub-band hybridisation that we have shown 
before can give rise to a dip into the conductance of quan-
tum wires with RSOI as shown in several works both ana-
lytically [99, 101] and numerically [103] and can also be 
interpreted in terms of a Landau-Zener transition when ana-
lysing the conductance of a quantum point contact [104].

3.3.  General properties of the Rashba SOI in graphene

If we restrict ourself to the case of a single valley approxima-
tion, the effects of RSOI on SLG via Hamiltonian (6) change 
with respect to what we have seen in the case of a 2DEG 
in section 3.1. The complete Hamiltonian for the SLG with 
RSOI reads:

H σ σα σ σ α σ σ= ⋅ + ( × ) = ( + )+ ( − )p sv v p p s s
2 2

.z x x y y x y x yK F F

� (19)
The energy eigenstates are plane waves ψ ∼ Φ( ) ⋅k e k ri  

with Φ a four-component spinor and eigenvalues given by 
( = ℏ =v 1F )

E
α ϵ α( ) = ± + + +ϵ± k k k
2 4

,x y,
2 2

2
� (20)

where index ϵ = ± specifies the particle/hole branches of the 
spectrum. The energy dispersion, as a function of kx, at fixed 
ky   =   0, is illustrated in figure 7 with and without RSOI. As 
we can see here, the RSOI gives rise to a finite curvature of 
the linear energy spectrum and lifts the spin degeneracy. Two 
opposite spin bands get gapped while the other two are still 
degenerate at ∼k 0. However, contrary to the case of 2DEGs, 
the energy spectrum is not shifted along the momentum axis 
as in equation  (9). This is related to the fact that the RSOI 

Hamiltonian does not depend on the electron momentum but 
only on its pseudo-spin, to the lowest order in the momen-
tum expansion. Nevertheless, this approximation no longer 
holds if we expand RSOI Hamiltonian to higher orders, as 
they explicitly depend on the electron momentum. Their main 
effect, for strong RSOI, is to produce the appearing of extra 
Dirac cones (tridiagonal wrapping [105–107]).

The eigenstates of the Hamiltonian (19), are expressed by 
the spinors Φ ( )ϵ± k, :

θ
ϵ ϵΦ ( ) = × ( ± ± )ϵ

ϕ ϵθ ϵθ ϵθ ϕ ϵθ
±

±

− − −± ± ± ±k
1

2 cosh
e , e , i e , ie ,,

T i /2 /2 /2 i /2

�
where ◻T denotes transposition and�

(21)

=
+ϕ k k

k
e

i
,

x yi� (22)

with = +k k kx y
2 2. The spin operator components are 

expressed as I= ⊗S sj j
1

2 2. Their expectation values on the 
eigenstates Φ ϵ±,  read

ϵ ϕ
θ

⟨ ⟩ = −
±

S
sin

2 cosh
,x� (23a)

�

(23b)
�

(23c)

which shows that the product ϵ±  coincides with the sign of 
the expectation value of the spin projection along the in–plane 
direction perpendicular to the direction of propagation. For 
vanishing RSOI, the eigenstates Φ ϵ±,  reduce to linear combi-
nations of eigenstates of Sz. Similarly, the expectation value of 
the pseudo-spin operator σ is given by

σ ϵ ϕ
θ

⟨ ⟩ =
±

cos

cosh
,x� (24a)

σ ϵ ϕ
θ

⟨ ⟩ =
±

sin

cosh
.y� (24b)

Since the RSOI in SLG does not depend on momentum, 
the velocity operator still coincides with the pseudo-spin 
operator: H σ= = [ ] =v r r˙ i , . Thus, the velocity expectation 
value in the state Φ ϵ±,  is given by equations (24a) and (24b). 
Alternatively, it can be obtained from the energy dispersion as

E
ϵ= ∇ =
+

ϵ ϵ
α

v
k

k
.k

2
4

2� (25)

If we considered also the intrinsic SOI, the effective Fermi 
velocity would acquire a more complex dependence from the 
RSOI [107, 108].

Sub-band hybridisation due to RSOI also occurs in gra-
phene nano-ribbons. However, its manifestation depends on 

θ α= ±±
k

sinh
2

,

ϵ ϕ
θ

⟨ ⟩ =
±

S
cos

2 cosh
,y

⟨ ⟩ =S 0,z

Figure 7.  Energy spectrum of graphene for ky   =   0 as a function 
of k along the x axis. The dashed lines correspond to the linear 
dispersion for α = 0, the solid and the dotted lines to the case of 
finite RSOI. The lines with the same colours correspond to the same 
spin state.
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the type of boundary [69]: zig–zag [105] or armchair [107]. 
The most peculiar effects are observed in the case latter. Here 
in fact, the RSOI couples not only different modes but intro-
duces also a finite coupling inside each sub-band. It is due to 
the presence of two inequivalent carbon atoms in the unit cell 
of a SLG nano ribbon and is completely different from the case 
of a quantum wire with RSOI of the previous section [107].

3.4. The spin double refraction

The physics of an interface between a 2DEG with and without 
SOI is very similar to that of the optical birefringence [109] and 
is a direct consequence of the two possible Fermi velocities for 
the two modes (11). In the following we consider a 2DEG in 
the (x, y)—plane characterised by an effective electron mass 

*m  and an interface along the y direction separating a region 
without SOI (N-region) and a region with it (SO region). Elastic 
scattering at the interface allows for conservation of the total 
energy and of the momentum parallel to the interface—ky in 
our case. As we have seen in the previous section, the Fermi 
surface for an energy EF is constituted of two circles with radius 

(14). An incoming particle from the N region is character-

ised by the momentum = ( )k k k,x y
N N N  and the incidence angle 

⎜ ⎟
⎛
⎝

⎞
⎠ϕ = arctan

k

k

y

x

N

N . Momentum conservation implies that

θ θ ϕ= = =+ + − −k k k ksin sin sin ,y
SO SO N N� (26)

where we have introduced E= ( )± ±k kSO F
F  and θ± are the propa-

gation angles in the SO region for the two different modes. An 
incoming particle from the normal region propagates into the 
SO region along two different modes with indices ±. In [101, 
110–112] this phenomenon is named spin-double refraction. 
From equation (26) we can obtain an expression for the two 
refraction angles—figures 8(a) and (b):

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟θ ϕ=±

±

k

k
arcsin sin .

N

SO� (27)

If the refraction angle is equal to π
2
, than the corresponding 

mode will not propagate forward, thus it is closed—figures 8(c) 
and (d). Of course, there are two critical angles ϕ±

c  correspond-
ing to the closure of the corresponding modes in the SO region 
defined by the relation:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ϕ =± ±k

k
arcsin .c

SO

N� (28)

According to equation  (14): <+ −k kSO SO so that ϕ ϕ<+ −
c c . 

Furthermore, considering that +k SO is always smaller than kN, 
the mode (+) will be always open. The previous results are 
based only on kinematic considerations and are independent 
by the nature of the SOI. The key ingredient is the presence 
of an interaction that splits the 2D Fermi surface into two cir-
cles. For example, the same physics would be possible at an 
interface between a normal region and a region with a strong 
Zeeman splitting, assuming that the Fermi energy allows the 
propagation along the two modes in the region with the mag-
netic field.

Some care is required when writing down the Hamiltonian 
for this scattering problem. Indeed the two regions (N and 
SO) are obtained by considering an inhomogeneous coupling 
constant for the RSOI α( )x . As a consequence, α( )x  does not 
commute with the momentum operator α[ ( ) ] ≠x p, 0x . Thus 
the Hamiltonian describing the two regions has to read:

H
α α δ=

*
+ ( )

ℏ
( − ) −

*
∂ ( )

∂
+ ( )−

p
m

x
s p s p s

m

x

x
V x

2
i

1

2
.x y y x yN SO

2

int

� (29)

Figure 8.  Spin Refraction angles θ± as a function of the incoming particle angle ϕ. Panel (a) and (b) case parameters of two modes always 
open. Panel (c) and (d) case parameters where the critical angle of mode (−), ϕ−

c  is bigger than π /2. In Panels (b) and (c) the red-dashed line 
is the mode (−) whereas the blue-solid line is the mode (+).
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where the second to last terms reestablish the hermitic-
ity [113]. In the simplest approximation we can consider 
α α( ) = Θ( − )x x xint , where Θ( )x  is the Heaviside step func-
tion. The last term mimics the presence an SOI interface, 
according to the standard approach describing interfaces with 
delta potentials of strength Vint [114]. A more realistic descrip-
tion has to account also for possible changes of the effective 
electron mass * → *( ) = *Θ( − ) + * Θ( + )m m x m x x m x xN int SO int  
in the two regions, more details can be found in [101, 110]. 
When considering the presence of a second interface, where 
the RSOI vanishes again, the refraction angles for the two 
modes will be the same and equal to the incoming one ϕ [111, 
112]. However this double interface structure cannot produce 
a finite spin polarisation when the incoming particles are 
unpolarised. This is due to the fact that in order to produce a 
spin polarisation we need to violate the Onsager relation for 
a two terminal system [115, 116]. Violation is possible if and 
only if time reversal symmetry is broken, this implies, e.g. the 
application of a magnetic field.

The same physics is possible also in the case of SLG, the 
main difference is that the RSOI in this case does not con-
tain the momentum operator (6). As a consequence we do not 
need the extra term in the full Hamiltonian as in equation (29).  
A complete analysis of the spin-double refraction for the 
case of graphene is reported in [108] where a transfer matrix 
method is presented, which is useful for studying the spin-
dependent transport in hybrid structures in SLG, as a periodic 
RSOI potential [117, 118].

4.  Pure spin current generation in RSOI material

A crucial point in spintronics is the creation of pure spin cur-
rents. Over the last 20 years, many methods for creating pure 
spin currents have been proposed. We will focus mainly on 
ratchet and pumping methods that also have received experi-
mental verification. Here we should be define spin current and 
discuss a method for evaluating it in terms of the Landauer–
Büttiker formalisms [119]. A pure spin current is defined as a 
particle flow carrying finite spin polarisation without an asso-
ciated charge current.

A simple example follows: suppose, for instance, that a 
charge Q and spin polarisation Spq moves from a contact p to 
q during the time ∈ [ ]t T0,  and in the next period ∈ [ ]t T T, 2  
the same amount of charge Q, but a different spin polarisation 
Sqp, moves from contact q to p. The net charge transported 
between p and q, in the time ∈ [ ]t T0, 2  is zero, but the net spin 
polarisation is S S SΔ = −pq qp.

4.1.  Spin current in Landauer–Büttiker formalism

In order to evaluate the spin-current we consider N non-
ferromagnetic contacts injecting spin-unpolarised current 
into the leads. We use, as customary, a local coordinate sys-
tem for the lead under investigation, where x is the coordi-
nate along the lead in the direction of charge propagation due 
to an applied bias in linear response and y is the transverse 

coordinate. In each lead, at a fixed energy E, several conduct-
ing modes are open. The wave function for each mode reads

χΨ ( ) =
( )

( )Σ( )± ± ( )x y
k E

y s,
1

e ,E ns
n

k E x
n,

i n� (30)

here we have introduced the transverse eigenfunctions of the 
lead of width W:

⎜ ⎟
⎛
⎝

⎞
⎠ Nχ π( ) = ∀ ∈y

W

n y

W
n

2
sinn

with the eigenenergy ( )= πℏ
*En m

n

W2

22

 and Σ( )s  is the 

spin eigenfunction. The superscript ± of Ψ refers to the 
motion direction along the lead axis with the wave-vector 

= *( − ) ℏk m E E2 /n n
2 . We use the scattering approach for 

deriving the current formula: the amplitudes of the states 
inside the leads are related via the scattering matrix ( )S E , 
determined by the Hamiltonian of the coherent conductor. The 
scattering state inside the qth lead reads

Z
∑ ∑φ ( ) = [ ( )Ψ ( ) + ( )Ψ ( )]
∈ =±

+ −x y a E x y b E x y, , , ,E
q

n s
ns
q

E ns ns
q

E ns, ,

with ( = ±s ). It consists of incoming states Ψ+ entering the 
coherent conductor from the contact q and outgoing states Ψ− 
leaving the coherent conductor into the contact q. The ampli-
tudes of incoming ans

j  and outgoing bns
i  states are related each 

other via the scattering relation

∑ ∑ ∑( ) = ( ) ( )
= ∈ =±

′ ′ ′ ′b E S E a E ,n s
i

j

N

n j s
n s ns
i j

ns
j

1 1
,

,
� (31)

where the scattering matrix ( )S E  has the following structure 
for an N terminal system:

( ) =

( ) ( ) ⋯ ( )
( ) ( ) ⋯ ( )
⋮ ⋮ ⋱ ⋮
( ) ( ) ⋯ ( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

S

r t t

t r t

t t r

E

E E E

E E E

E E E

.

N

N

N N N N

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

Here the sub-matrix ( )r Ej j,  is a square matrix of dimen-
sionality Mj(E), corresponding to the number of open chan-
nels in lead j at energy E connected to a reservoir with 
chemical potential μj—it already includes the spin degree of 
freedom. The matrix ( )r Ej j,  contains the scattering amplitudes 
of incoming channels of lead j being reflected back into out-
going channels of the same lead. The sub-matrix ( )t Ei j,  is a 

( ) × ( )M E M Ei j  matrix that contains the scattering amplitudes 
for transmission between incoming channels from lead j and 
outgoing channels of lead i.

The wave function of the scattering state inside lead 
i, where only the incoming channel ( ) ∈ns j is populated 

δ δ δ( = )′′ ′ ′ ′ ′an s
j

j j n n s s, , , , reads for j   =   i:

∑φ ( ) = Ψ ( ) + ( )Ψ ( )+

( )∈

−

′ ′
′ ′ ′ ′x y x y r E x y, , , ,E ns

i
E ns

n s i
n s ns
i i

E n s, , ,
,

,� (32)

and, correspondingly, for ≠j i
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∑φ ( ) = ( )Ψ ( )
( )∈

−

′ ′
′ ′ ′ ′x y t E x y, , .E ns

i

n s i
n s ns
i j

E n s, ,
,

,� (33)

For a generic spin wave function Φ( )x y,  the spin current 
( )I xS  passing through a cross section (x   =   const) of a lead is 

given by:

∫( ) = Φ*( ) Φ( )JI x y x y x yd , , .S S� (34)

Here, we have used the most common definition of the spin 
current operator [120]. Defining an arbitrary quantisation axis 
u, than the operator JS reads:

⎜ ⎟
⎛
⎝

⎞
⎠
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥= ℏ ⋅ ℏ

*
∂
∂ →

− ∂
∂ ←

J s u
m x x2 2 i

S� (35)

which multiplies that standard quantum mechanical current 
times the projection of the spin along the u. Here, as custom-
ary, the partial derivatives act on the expressions to their right 
and left (as indicated by the arrows), respectively. By applying 
the former operator to the scattering state (32) we obtain the 
spin current (34) inside lead σin

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑( ∈ ) = ℏ

*
− ( )′=

( )∈′ ′
′ ′I x i

m
s s r E

2
,E ns

j i

n s i
n s ns
i i

S; ,

2

,
, 2

where ( ∈ = )n s j j i, , . The same can be done for the other scat-
tering state (33), and we find the corresponding expression 
( ∈ ≠n s j j i, , )

∑( ∈ ) = − ℏ
*

( )′≠

( )∈′ ′
′ ′I x i

m
s t E

2
.E ns

j i

n s i
n s ns
i j

S; ,

2

,
, 2

Each channel is populated according to the Fermi–Dirac 
distribution μ( )f E; n  of the respective contact n, the statical 
average of the total spin current in lead i reads

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∫

∫

∑ ∑

∑

π
μ

π
μ μ

〈 ( ∈ )〉 =
*
ℏ

( ) ( ∈ )

= − ( ) ( ) + ( ) ( )

∞

= ( )∈

∞

≠

I x i
m

E f E I x i

E f E R E f E T E

2
d ;
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where the spin resolved transmission and reflection are 
defined as

∑

∑

( ) = ( − )

( ) = ( − )
=±

+ −

=±
+ −

′
′ ′

′
′ ′

T E T T

R E R R ,

i q

s
s

i q
s

i q

i i

s
s

i i
s

i i

S
,

,
,

,
,

S
,

,
,

,
,

with

∑ ∑( ) = ( )
∈ ∈

′
′

′ ′T E t E ,s s
i q

n i n q
ns n s
i q

,
,

,
, 2

� (37)

∑ ∑( ) = ( )
∈ ∈

′
′

′ ′R E r E .s s
i i

n i n i
ns n s
i i

,
,

,
, 2

� (38)

Probability conservation implies that the scattering matrix 
has to be unitary I[ ( )] ( ) = ( )[ ( )] =S S S SE E E E† † , than the fol-
lowing relation holds:
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″ ″

″ ″
( )∈ ≠ ( )∈′ ′

′ ′r E t E 1.
n s i

ns n s
i i

q i n s q
ns n s
i q

,
, 2

,
, 2

By using the symmetry relation between the spin transmis-
sion and reflection (see [119]), it is straightforward to show 
that

∑( ) + ( ) =
≠
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i q
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In view of equation (36) we eventually find the spin current 
in lead i
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Equilibrium spin currents can locally exist in systems with 
SOI as shown for 2DEGs [121] and in mesoscopic systems 
[122], however equation  (39) clearly shows that at thermal 
equilibrium (μ μ= ∀ ∈ { }j N1,j ) the spin current vanishes 
inside leads without SOI and/or magnetic field. This absence 
of equilibrium spin currents in the leads has been shown for 
systems with preserved time-reversal symmetry [123]. An 
expression very similar to (39) has been used to investigate 
the SHE [124–127]. In the presence of SOI or magnetic fields 
it is nontrivial to write down a continuity equation for the spin 
current, the problem has been addressed in several articles 
[122, 128–130].

4.2.  Pure spin current generators

In this section we describe two mechanisms that can be used 
for generating a pure spin current.

4.2.1.  Spin ratchet.  A particle ratchet [131, 132] is a system 
with broken inversion (left/right) symmetry that generates a 
net currents upon external ac-driving in the absence of a net 
(time-averaged) bias potential. Ratchets have much in com-
mon with current rectifiers, though there are differences, in 
particular in the dissipative case [131]. The theoretical concept 
of ratchets, originally introduced for classical dynamics, was 
later extended to the quantum dissipative regime [133]. The 
main difference between ratchets and rectifiers is that quan-
tum ratchets exhibit current reversal upon changing, e.g. the 
temperature or energy [132, 133]. A quantum ratchets were 
experimentally realised in semiconductor heterostructures in 
a chain of asymmetric ballistic electron cavities in the low-
temperature regime, with a dynamics was close to coherent 
[134]. Also the charge current reversal phenomenon has been 
demonstrated [135].

A spin ratchet is a quantum ratchet with lack of broken 
spatial symmetry—in order to get a zero charge current—and 
a finite RSOI ensuring a breaking of the spin symmetry thus 
allowing for a finite spin current. Theory predicts spin ratch-
ets to work both in the ballistic regime [136–138] and in the 
dissipative one [139–141]. A set-up for the ballistic ratchet 
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has been also proposed with periodically disposed magnetic 
stripes instead of electrostatic barriers and RSOI [119, 142].

A ballistic spin ratchet is mainly constituted by a quasi-
one dimensional channel with a set of symmetric barriers 
and RSOI (see figure 9(a)). The lack of broken symmetry 
implies the absence of a net charge current. In order to 
understand the presence of a finite spin current we show 
here the same argument proposed in [136, 137]. A key 
ingredient is the sub-band hybridisation that we have intro-
duced in section 3.1.

We consider a wire with two open transverse modes 
(N   =   1, 2) and a smooth symmetric potential barrier U(x) 
in the two bias or rocking situations ( ≷V 0), see figure 9(b). 
Upon adiabatically traversing the barrier from region A via 
B to C (see lower part of figure  9(b)), the electron energy 
spectrum ( )E kn x  split by RSOI is shifted rigidly upward and 
downward by the adiabatic potential barrier U(x). For fixed 
Fermi energy EF, the initial shift causes a depopulation of the 
upper levels (N   =   2) and a spin-dependent repopulation of the 
lower one (N   =   1) while moving from B to C. If EF is travers-
ing an anti-crossing between successive modes (see the region 
indicated by the dashed window in figure 9(b), there is a cer-
tain probability P for electrons to change their spin state. This 
causes an asymmetry between spin-up and spin-down states 
for the repopulated levels [104]. The related transition prob-
ability can be computed in a Landau-Zener framework. In the 
case of a transverse parabolic confinement of frequency ω0, 
this probability reads [104, 136]:

π ω
( ± ) = −

− Σ
∂ [ ( ) ± ( )]

−

⎪ ⎪

⎪ ⎪
⎧
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⎩
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P V
k

U x z V g x z
1 exp

, ,
.z

x
0

SO 0
1

0
� (40)

Here Σz denotes the difference in the polarisation of the 
two modes involved, and the function g(x, z) describes how 
the potential drops inside the system. In principle g(x, z) is 
obtained by solving the Boltzmann equation, however its 
exact form is irrelevant in order to understand the working 
principle of the spin ratchet. The spin transmission is propor-
tional to P(V) and thus different for the two rocking situations 

≷V 0. Hence, the ratchet spin current ⟨ ( )⟩I VS  is finite, also for 
the case of a symmetric barrier. A quantitative explanation of 
the spin ratchet effect for a system of multiple barriers (figure 

9(a)) is beyond this model. An experimental verification of 
the spin ratchet effect was proposed in [143]. However, in this 
experiment the breaking of the spin symmetry was achieved 
by combining a superconductor with a magnetic field.

4.2.2.  Spin pumping.  Adiabatic charge pumping [144] con-
sists of the transport of charge obtained—at zero bias volt-
age—through the periodic modulation of some parameters in 
the scattering region, e.g. some voltages.

In 2003, Governale et al [145] proposed an updated 
of the scheme of charge pumping extended to the spin, 
following a suggestion by Mucciolo et al [146]. The 
pumping scheme consists of an electrostatic barrier that is 
changed periodically in time and a gate, as second pump-
ing parameter, to tune the strength of RSOI [145]. They 
showed that, neglecting sub-band hybridization, the charge 
current is zero whereas the spin current is finite. However, 
in a more realistic case in which many modes are opened, 
and consequently coupled by RSOI, the charge current is 
finite but two order of magnitude smaller than the spin one.  
A prototypal spin pumping system has been realised in a 
GaAs quantum dot in [147], in which an ingenious method 
for detecting spin currents is presented. Similar pumping 
mechanisms have been proposed for graphene with RSOI 
[148], and TIs [149–152].

4.3.  Datta and Das spin field effect transistor

The spin momentum locking due to the RSOI is one of the key 
ingredients used in 1990 for the proposal of a spin-FET by 
Datta and Das [9]. It is believed that spin-FET has the advan-
tages of low energy consumption and fast switching speed 
since it does not involve creating or eliminating the electrical 
conducting channels during the switching, required by tra-
ditional FETs. This spin-FET is the electronic analog of an 
electro-optic modulator. The electro-optical effect makes the 
dielectric constant of a medium different along the two per-
pendicular directions (e.g. y, z).

Let us assume to have photons with a polarisation at 
45ˆwith respect to the y axis (in the y–z plane) [109]. They can 
can be represented as a linear combination of z- and y-polar-
ised photons:

Figure 9.  Panel (a): Sketch of the system of symmetric periodic equally spaced barriers used for the ballistic spin ratchet. Panel 
(b): Illustration of the spin polarisation mechanism for transmission through a strip with a single adiabatic symmetric potential barrier U(x) 
(solid line) in the two rocking situations (dashed and dotted line). At points A, B and C the position-dependent energy dispersion relation 

( )E kn x  is sketched with respect to the Fermi energy EF (horizontal line) for two transverse modes and RSOI-induced spin splitting of each 
mode. Courtesy of [136].

Rep. Prog. Phys. 78 (2015) 106001



Review

14

( ) ( )( ) = +
°

1
1

1
0

0
1

.
z y45

� (41)

Because of the anisotropy of the dielectric constant, as the 
light passes through the electro-optic material of length L, the 
two components acquire different phase shifts k1 L and k2 L. 
Thus the light emerging from the electro-optic material can 
be represented as ( )e , ek L k Li i T1 2 . It is collected by an analyser 
polarised along the 45ˆ direction. Therefore the output power 
is given by

⎛
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� (42)

The light output is modulated with a gate voltage that con-
trols the differential phase shift θΔ = ( − )k k L1 2 .

The analog electronic device based on the RSOI is shown in 
figure 10. In the original proposal by Datta and Das, the polar-
iser and the analyser were suggested to be implemented via 
ferromagnetic contacts (as Fe) [8]. In such materials the den-
sity of states for electrons with a specific spin orientation—at 
the Fermi energy—greatly exceeds that for the opposite direc-
tion. A contact magnetised in the x direction preferentially 
injects and detects electrons spin polarised along positive x 
which is represented as a linear combination of the positive 
z-polarised ∣ ↑ ⟩ and negative z-polarised electrons ∣ ↓ ⟩:

( ) ( )( ) = +1
1

1
0

0
1x z z

� (43)

Finally, the analogue of the electro-optic material is real-
ised by employing a 1D quantum wire with RSOI. Within a 
single band model, RSOI causes the ∣ ↑ ⟩ and ∣ ↓ ⟩ electrons 
with the same energy to have different wave vectors ↑k  and ↓k  
(see figure 5(e) and equation (11)). Let us consider an electron 
travelling in the x direction with kz   =   0 and ≠k 0x . The eigen-
energies for the corresponding 1D case are given equation (9) 
with ky   =   0.

Using equations (9)–(14), it is possible to recover a relation 
for the phase shift between the two spins:

θ αΔ = ( − ) =
ℏ↑ ↓k k L
m L2

2� (44)

which is proportional to α.
The above analysis was originally limited to a single-mode 

quantum wire. However, as we have learnt in the section 3.2, 
in the presence of multiple modes, physics changes.

A fully numerical multi-mode analysis of the spin-FET 
was proposed by Mireles and Kirczenow [153]. They inves-
tigate the effect of the strength of the RSOI on the spin-trans-
port properties of narrow quantum wires of width W. This is a 
quasi-one-dimensional wire, i.e. assumed to be infinitely long 
in the propagation direction (see figure 11).

The nearest-neighbour tight-binding Hamiltonian the 
RSOI (5) takes the form
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where the summation is intended over next-neighbours 
⟨…⟩x y, , = αt aSO 2

 is the isotropic next-neighbour transfer RSOI 
hopping term (where a is the lattice constant), and ℓc j s, ,

†  the 
electron creation operator on the site (ℓ j, ) with spin state s 
( =↑ ↓ )s , .

The wire is divided in three main regions. In two of these  
(I and III in figure  11), which are near the ferromagnetic 
source and drain, the parameter tSO is set to zero. In the middle 
region (II) the RSOI is finite ( ≠t 0SO ).

The spin-dependent transport problem is solved numeri-
cally through the use of the spin-dependent Lippman–
Schwinger equation9

H∣Ψ〉 = ∣Φ〉 + ( ) ˆ ∣Ψ〉G E ,0 SO
tb

� (46)

where ∣Φ⟩ is the unperturbed wave function, i.e. an eigen-
state of the kinetic lattice Hamiltonian H0 without RSOI, and 

Figure 10.  The spin-field effect transistor proposed by Datta and Das [9].

Figure 11.  Schematic of the tight-binding model for the system. In 
the shaded areas the spin-orbit interaction if finite ≠t 0SO . Courtesy 
of [153].

9  Nowadays a lot of numerical computation, also for systems with RSOI, is 
performed via recursive Green’s function method; among the free codes one 
of the most used is KWANT [154].
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Hϵ( ) = ( + − )−G E E i0 0
1 is the Green’s functions for the sys-

tem in the absence of any kind of scattering.
A simple criterion for distinguishing the cases of weak 

and strong RSOI is introduced in [153]. The contribution of  
the mixing of the spin sub-bands should be negligible as long the  
sub-bands spacing Δ = −E E Em nW

0 0 is much larger than the 
sub-band intermixing energy

Hϕ ϕ⟨ ∣ ∣ ⟩

−
≪′

E E
1n s m s

m n

, SOI ,
0 0� (47)

where ϕ∣ ⟩n s,  are the unperturbed electron wavefunctions. 
However, if the confinement energy and/or the RSOI are of 
the same order as the energy shift introduced by the sub-band 
mixing contribution, then the above condition is about one or 
larger. In this case one can introduce

( )
( )β β≈

+
=

π

π ak
,

a

W

a

W

SO

2

F
SO
c� (48)

where β =
∣ ∣
t

tSO
SO , and kF is the Fermi wave number. The criti-

cal value βSO
c  defines a weak RSOI regime if β β<SO SO

c  and a 

strong coupling regime if β β>SO SO
c  [153].

In figure  12 the behaviour of the spin-resolved conduct-
ance as function of the RSOI parameter tSO is shown. In fig-
ure 12(a) the incident Fermi energy is fixed to 0.5 ( ≈ −k a0.7 1) 
and W   =   6a   =   60 nm, which gives a critical value β = 0.22SO

c . 
This value of βSO separates the sinusoidal behaviour of ↑↓G  
for β ⩽ 0.22SO  from its behaviour for β > 0.22SO  where the 
confinement energy is of the order of the sub-band mixing 
energy. The effect is clearer for a wider wire (W   =   120 nm) 
(see figure 12(c)) for which the critical value of βSO is 0.07. 
To show that the non-sinusoidal behaviour is due mainly to 
the sub-band mixing, in the figures 12(b) and (d) we report the 
spin-conductance as function of tSO with the same parameter 
of figures 12(a) and (c) respectively but in the unphysical situ-
ation of α ≠ 0y  and α = 0x , respectively. It is evident that the 
sinusoidal behaviour is recovered. The modification of spin-
FET due to the inclusions of many transversal modes has been 
also investigated in [155].

Figure 12.  Spin–orbit coupling strength dependence of the ballistic spin conductance; solid line is ↑G , dashed line ↓G : (a) Narrow wire 
of W   =   6a and uniform RSOI (α α= = at2x y SO). (b) Same as in (a) but with α = 0x  and α = at2y SO; perfect oscillations are seen for all 
tSO. (c) Same as in (a) with W   =   12a. (d) Modulation for W   =   12a, with α = 0x  and α = at2y SO. The sub-band mixing clearly changes the 
otherwise perfectly sinusoidal spin-conductance modulation. Courtesy of [153].
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So far, several obstacles have been found on the way of the 
realisation of the spin-FET [9]. The main one is related to the 
injection of spin polarised currents. For example, it has been 
shown that in diffusive transport regime, for typical ferromag-
nets only a current with a small polarisation can be injected 
into a semiconductor 2DEG with long spin-flip length even if 
the conductivity of semiconductor and ferromagnet are equal 
[19]. This situation is dramatically exacerbated when ferro-
magnetic metals are used; in this case the spin polarisation in 
the semiconductor is negligible.

A possible solution to this problem was proposed by 
employing dilute magnetic semiconductor [20] as source and 
drain contacts. In these systems a few percent of the cations in 
the III–V or II–VI semiconductors compounds are randomly 
substituted by magnetic ions, usually Mn, which have local 
magnetic moments. The effective coupling between these local 
moments is mediated by free carriers in the host semiconduc-
tor compound (holes for p-doped materials and electrons for 
n-doped one) and can lead to ferromagnetic long-range order. 
Curie temperatures Tc close to 100 K have been found in bulk 
(Ga,Mn)As systems [20].

Using the properties of the dilute magnetic semiconductor, 
all-semiconductor spin-FET have been proposed in which the 
conducting channel is provided by a two-dimensional hole gas 
[156].

The first experimental realisation of the spin-FET has been 
done in 2009 by the Johnson’s group [21]. Instead of using 
the configuration initially suggested by Datta and Das [9], 
in this experiment a nonlocal measurement scheme has been 
used [8, 157–159]. This allows to perform a better measure-
ment of the charge and spin signals. The quantum wire was 
realised in a InAs heterostructure with strong RSOI with 
the ferromagnetic contacts realised with Ni81Fe19 permalloy 
on the top. Figure 13(a) shows the oscillation of the output 

voltage of the spin-FET as a function of the gate voltage that 
is changing the strength of the RSOI for two different length 
of the distance between the two ferromagnetic contacts. As 
reported in equation  (44) the phase shift between the two 
spin channels is proportional to the distance between the two 
ferromagnets. Therefore, for the longer case (red-solid data) 
we observe a shift of the length on the half period of oscilla-
tions. Figure 13(b) shows the oscillation for a fixed distance 
between the ferromagnetic contacts but at different tempera-
tures. We observe a signature of coherent oscillations up to 40 
K. At higher temperatures inelastic scattering become more 
pronounced and coherent effects are washed out [21]. Another 
experimental realization was also lately reported in [22].

5.  Interference effects and Berry phase

5.1.  Rashba interaction as SU(2) gauge field: application to 
quantum networks

In this section we explore RSOI as a SU(2) non-Abelian gauge 
field. We start by recasting the RSOI in the Hamiltonian (8) as 
a SU(2) vector potential:
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comparing the two lines of (49) we recognise A = ( × )α*
ℏ

z ss
m . 

In this form the Rashba Hamiltonian resembles that of a particle 
in a magnetic field, thus allowing for a straightforward con-
nection with the physics of the AB effect [30]. In the case of a 
SU(2) vector potential, it is known as AC effect [23]. In anal-
ogy to AB effect, we can introduce a phase field that reads:

Figure 13.  (a) Gate voltage modulation of spin FETs having different channel lengths, with T   =   1.8 K and I   =   1 mA. The symbols 
indicate experimental data. The solid lines are the fits obtained from α φ= ( * ℏ + )−V A m Lcos 2 1 . Data are offset for clarity. Baseline voltages 
are 1.032 mV and 0.715 mV for L   =   1.25 μm and 1.65 μm, respectively; (b) Temperature dependence of oscillatory conductance with 
L   =   1.25 μm and I   =   1 mA. As temperature increases, the mean free path decreases and transport characteristics change from ballistic to 
diffusive. Courtesy of [21].
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where ϕSOI is the flux associated to the RSOI effective field 

and ϕ = hc

e0  the flux quantum. When travelling through a 

closed path an electron gains a non-Abelian phase due to 
the presence of the RSOI. This extra phase can give rise to 
interference phenomena. By contrast to the phase gained in a 
perpendicular magnetic field—that depends only on the area 
enclosed by the particle path—here the actual path covered 
by the electron plays an important role. In the standard AB 
set-up the magnetic field can be tuned in order to move from 
a full destructive to a full constructive interference. In the 
case of AC the role of the magnetic field is played by the 
RSOI that can be modulated modifying α, i.e. by gating the 
heterostructure. The AC effect has been observed in semi-
conductor heterostructure [160], in HgTe rings [84] and TI 
interferometric structures [90] (see figure  4). The interplay 
between the AB and the AC effect, and the mutual effect of 
an Abelin and non-Abelin gauge field has been investigated 
in [161, 162].

In order to understand the fundamental difference between 
the AB and the AC effect, we propose here a very simple 
gedankenexperiment for a square interferometer. Let Rpq be 
the phase gained by the wave function Ψ( )r —travelling from 
a point p to a point q. It reads

R ∫= − ⋅ ( × )( ) ⎧
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⎩
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s z l kexp i dpq
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depending on whether we are considering a U(1) or SU(2) 
gauge field, where A is the vector potential associated to a mag-
netic field B. We now consider the closed path in figure 14(a) 
and explicitly consider the phases gained by the electron trav-
elling along each of its arm. The four arms of the interferom-
eter have the same length ℓ = Lpq  (  ∈ { }pq AB, AC, BD, CD ), 
the angle at its base is θ, and its area is S. In order to obtain 
destructive interference the sum of the phases gained along 
consecutive arms has to be zero:

R R R RΓ = ⋅ + ⋅ =β β β β 0BD AB CD AC� (52)

with β ∈ { ( ) ( )}SU 2 , U 1 .
By using the Gauss’ theorem and defining the magnetic 

field flux as Aϕ = ∣ ∣ = (∇ × )B S S, we obtain that in the case 
of a U(1) phase the destructive interference is verified when 

the condition =ϕ
ϕ

1

20
 is met for every the value of the angle θ. 

Here, the condition for the destructive interference is straight-
forward because the phases (51b) are c-numbers.

In the case of the non-Abelian phase field the phases (51a) 
are linear combination of Pauli matrices. Therefore a solution 
for the condition (52) is obtained by looking at the transmis-
sion probability—proportional (to lowest order) to [ΓΓ ]Tr † . 
This quantity is shown in the figure 14(b), we can see that the 

condition of zero transmission probability is obtained if θ = π
2
 

and = πk LSO 2
. To summarise, while in the case of a U(1) gauge 

field we can obtain destructive interference for each geometri-
cal realisation of the interferometer (see figure 14(a)), in the 
SU(2) case a specific geometric arrangement of the loop is 
required.

These effects can have interesting implications in the trans-
port properties of nontrivial quantum networks. In the follow-
ing, we shall focus on a very special type of lattice structure: 
the T3 lattice (see figure 15(b)), whose unit cell contains three 
inequivalent sites [163]. Its spectrum is composed of two dis-
persive bands that are equivalent to the one of the honeycomb 
lattice and a flat band at zero energy that is due to the presence 
of lattice sites with uneven coordination number [165, 166]. 
In the presence of a perpendicular magnetic field—when the 

ratio =ϕ
ϕ

1

20
 —the spectrum reduces to three flat bands [167]. 

This localisation effect is a consequence of the AB effect tak-
ing place within each of the plaquette contained in the T3 lat-
tice (in yellow in figure 15(b)). The same effect is observed in 

its quasi-1D analog, the diamond chain (see figure 15(a)) for 

the =ϕ
ϕ

1

20
 [168].

Can the same physics be driven also by the RSOI? The 
question has been addressed by one of the authors using the 
method of quantum networks [169]. Full localisation due 
RSOI is possible only in the diamond chain [170] (figure 

Figure 14.  (a): Scheme of the interferometer for addressing the difference between an Abelian and a non-Abelian phase. (b): Normalised 
transmission probability ∝ [ΓΓ ]T Tr †  for the interferometer in the left panel in the case of the action of a SU(2) gauge field (52).
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15(c)) and is forbidden, for the arguments illustrated above, in 
the case of the T3 lattice [164]—figure 15(d). In figures 15(c) 
and (d) we show the conductance of the diamond lattice and 
the T3 lattice, respectively, as a function of the magnetic flux 
and RSOI. We observe that in the case of the diamond chain 
15(c), both effects induce a complete localisation equivalent 
to zero conductance. However, in the case of the T3 lattice 
figure 15(d), only the magnetic field can induce (almost) com-
plete localisation. The residual conductance comes from the 
conducting state along the lattice boundary due to the Hall 
effect. However it can be reduced to zero by injecting elec-
trons through the centre of the lattice [171]. Signatures of 
this AB caging effect have been observed also experimentally 
[169, 172]. The diamond chain lattice model with RSOI and 
magntic field has been also proposed as a system for produc-
ing a spin filter [173–177].

5.2.  Interference in quantum rings

Mesoscopic quantum rings allow to have direct access to 
the phase of the electron wavefunction, when their size 
is smaller than the coherence length. Interference effects 
have been observed in metal quantum rings many years ago 

[178]. Since electrons are spinful particles, the spin part of 
the wavefunction is influenced by the magnetic field via the 
Zeeman term in the Hamiltonian. A more subtle effect arises 
when there is a magnetic field non-orthogonal to the plane 
of the orbiting particle (e.g. the effective magnetic field 
due to the RSOI) because, as a consequence of the orbital 
motion, its spin dynamics is instantaneously governed by a 
time-dependent Hamiltonian [179, 180]. This time depen-
dence ends up in an extra phase acquired by the particle 
wavefunction which is named after Berry [181, 182], who 
put in foreground its topological properties when the orbits 
are closed.

During the last years, the effects of RSOI on the AB oscil-
lations have been observed in semiconductor based quantum 
rings by several groups [24, 183–185]. As said before, in the 
presence of both orthogonal magnetic field and RSOI, the 
total effective momentum dependent magnetic field is tilted 
with respect to the vertical direction. The resulting Berry 
phase influences the interference pattern.

In [28, 29] one of the authors studied the conductance 
and the spin transport in a quantum ring in the presence of 
RSOI and magnetic field, accounting also for dephasing at 
the contacts. The AB resonance in the Fourier transform 

Figure 15.  (a) Sketch of diamond chain, this is the one-dimensional version of the T3 lattice. (b): Sketch of the T3 lattice, it is a Bravais 
lattice with a unit cell containing three inequivalent sites: A, B and H, the latter has coordination number higher that the other two [163]. 
(c): averaged conductance for the diamond chain as a function of the magnetic flux ratio (lower x-axis, blue solid-line) and as a function of 
the dimensionless RSOI (upper x-axis, red-dashed line) (Courtesy of [164]). (d): averaged conductance normalised to the number of leads 
for the T3 lattice as a function of the magnetic flux ratio (lower x-axis, blue solid-line) and as a function of the dimensionless RSOI (upper 
x-axis, red-dashed line) (Courtesy of [164]). In (c) and (d) B and E are the applied magnetic field and the electric field, respectively.
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of the magneto-conductance displays satellite peaks due 
to the RSOI (see figure 16) that have been experimentally 
observed [186]. During the last years, several theoretical 
techniques have been employed to study quantum rings. 
In [187, 188], an imaginary time path integral approach is 
developed to study the conductance of a strictly 1D quan-
tum ring, and its conductance fluctuations in the diffusive 
limit. In [189] a real time path integral approach is applied 
in the limit of negligible Zeeman splitting. Several research 
articles discussed the conductance properties and the spin 
dependent transport of quantum rings in the 1D ballis-
tic limit, by means of a spin dependent scattering matrix 
approach [26, 27, 190–192]. In the absence of the magnetic 
flux, the conductance shows quasi-periodic oscillations in 
the RSOI strength, which can be modified by switching the 
magnetic field on. Numerical calculations [26, 193, 194] 
have shown that in the 2D case there are only quantita-
tive modifications of the 1D results that do not qualitatively 
affect the physics. Thus, in the following, we will just focus 
on the 1D limit.

The model Hamiltonian, describing a half integer spin par-
ticle, in an orthogonal magnetic field and with RSOI [195], 
reads
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where ( ) = (− )A r y x, , 0B
0 2

 is the vector potential generating 

the uniform field B, normal to the ring surface, ω = *g eB

mcc 2
 is the 

cyclotron frequency, and c the speed of light. We fix the vector 
potential in the symmetric gauge. We present, here, fully gen-

eral results as they depend on the ratio α
ωℏ Rc

 which can be tuned 
by acting on α. We assume a single channel ring as a 1D circle 

of radius R, connected to two leads. Accordingly, the position 
of the particle on the ring is parametrised by the angle φ. The 

vector potential has just the azimuthal component =φ
ϕ
π

A
R2
, 

where ϕ is the magnetic flux threading the ring.
In order to study the conduction properties of the ring, we 

need the propagation amplitude for an electron at energy E0 
entering the ring with spin polarisation s0 and leaving it with 
spin polarisation s f . This is given by

∫ τ
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where ⟨ ∣ ⟩r rs t s t, , , ,f f f 0 0 0  is the amplitude for a particle entering 
the ring at the point r0 and at the time t0 with spin polarisation 
s0 to exit at the point rf  at the time t f  with spin polarisation 

s f . Here, τ =
ℏ

mR
0 2

2

 is the time scale for the quantum motion. 

In order to compute ⟨ ∣ ⟩r rs t s t, , , ,f f f 0 0 0 , we adopt a path inte-
gral representation for the orbital part of the amplitude. Since 
we parametrise the orbital motion of the particle in terms of 
the angle φ, we provide the appropriate Lagrangian, Lorb, as a 
function of φ φ, ˙. It reads
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The last two contributions in equation  (55) are constants 
that come from the RSOI term, and the Arthurs term, which 
is required when a path integration is performed in cylindrical 
coordinates. Since both contributions are constant, they can be 
lumped into the incoming energy ∼E E0 F and therefore they 
will be omitted henceforth.

By taking into account the spin degree of freedom, as well, 
we represent the propagation amplitude as
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where = ϕ
ϕ
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0
.
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is the full spin propagator, T is the time ordering operator, and 
( )H tspin  is the spin Hamiltonian that reads
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with γ = ατ
ℏR

2 0.
For a ring device, at each lead one has to take into account 

three possible scattering processes, consistently with the con-
servation of the total current. This is described in terms of a 
unitary S-matrix that, when the two arms are symmetric, is 
given by

Figure 16.  (a): Sketch of a quantum ring. The magnetic field B 
drives the AB effect, while the electric field can tune the RSOI.  
(b) Fourier transform of the magneto conductance. By increasing 
ROI two satellite peaks rise close to the AB peak. They can be 
attributed to the Berry phase acquired by the electron during its 
motion. Courtesy of [28].
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The numerical labelling of the S-matrix elements refer-
ring to the three terminals of each contact fork, are explained 
in figure 17(1a). Assuming, for simplicity, that the scattering 
matrix is the same for both leads, equation (59) will hold both 
at the left-hand lead, and at the right-hand lead of the ring.

In particular, S = r3,3  is the reflection amplitude for a 

wave coming from the left lead, S = − ( + )( ) ( ) r11 2 ,1 2
1

2
 the 

reflection amplitude for a wave incoming from the upper/

lower arm, S = ( − )( ) ( ) r11 2 ,2 1
1

2
 is the transmission ampli-

tude from the upper (lower) to the lower (upper) arm and 

S S= = ( − )( ) ( ) r11 2 ,3 3,1 2
1

2
2  is the transmission amplitude 

from the upper/lower arm to outside of the ring. As the ring is 
assumed to be symmetric, the same scattering matrix applies 
to the right lead where we indicate with primed numbers the 
three terminals as shown in figure 17. In figure 17 we show 
the simplest paths of the electrons in the ring including only 
forward scattering at the contacts. More involuted paths arise 
if we account also for backscattering processes in which the 
electron can get backscattered within the same ring’s arm 
from which it is coming. For instance, the paths (2 f  ) and (2h), 
as well as (2g) and (2i) in figure 18, include looping in oppo-
site directions around the ring. Interference between clock-
wise and counterclockwise windings leads to WL corrections. 
We denote these corresponding paths—including also (2c) 
and (2d )—as ‘reversed paths’. In our approach, all order 
paths are numerically generated up to the convergency and 
the S −matrix (59) is implemented in the numerical algorithm. 
Within Landauer’s approach, the conductance G is given by

G A∑=
ℏ
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′

e
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2

,
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2
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Here we will consider the dependence on the external mag-

netic field ϕ
ϕ0

 and on the RSOI strength k RSO  both in the absence 

and in the presence of dephasing at the contacts. To make the 
model more realistic, we allow for higher order looping of the 
electron within the ring. In [28], only the paths of the kind of 
figures 17(2a) and (2b) were included. Following [29] we con-
sider here also the paths of the kind of figure 18 in which the 
electron can be backscattered into the ring. We use here r   =   0 
in the scattering matrix between the arms and the leads, which 
means that no back-reflection in the incoming lead is present.

The dephasing due to diffusiveness in the contacts is 
accounted by adding a random phase ζ ζ∈ (− )z ,  for each scat-
tering at the leads. In figure 19, we report the conductance G as 

a function of ϕ
ϕ0

 , with =k R 0SO  (left column) or as a function 

of k RSO  with =ϕ
ϕ

0
0

 (right column). These are averaged over 

N   =   1000 realisations of dephasing, and plotted for increas-
ing window of phase randomness (ζ π π π= /3, , 2  from top to 
bottom). The black curves refer to ideal contacts (including 
only the paths of figure 17) while the red curves refer to real-
istic contacts (including also the paths of figure 18).

The ring is rather insensitive to small dephasing at the con-
tacts however, by increasing the amount of dephasing (middle 
and bottom left panels in figure 19) we find that the sensitiveness 
is larger in the case of realistic contacts. This is due to the fact 
that for realistic coupling, the electrons in the ring can experience 
higher order paths, since it scatters with the leads many times.

In the right panel of figure  19, we plot the dc-conduct-
ance as a function of k RSO  at ϕ = 0 for both ideal contacts 
and realistic contacts (black and red lines in each box), with 
an increasing phase randomisation (boxes from top to bot-

tom with ζ π π= π , , 2
3

), averaged over N   =   1000 disorder 

Figure 17.  First and second order paths included in the calculation 
of the transmission amplitude across the ring, from left to right, 
including forward scattering only. Numbers ( )′ ′ ′1, 2, 3 1 , 2 , 3  in 
figure 17(a) refer to the labelling of the terminals in equation (59). 
Courtesy of [29].
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2a

2b

3

1

2

Figure 18.  Second order paths of the transmission amplitude from 
left to right including backscattering at the leads. Paths (2 f ) and 
(2h), as well as (2g) and (2i) contribute to the weak localization 
corrections. Courtesy of [29].
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realisations. In the case of ideal contacts and little dephasing 
(top right panel black curve), we observe again quasi periodic 
oscillation of the conductance reproducing, the localisation 
conditions at the expected values of k RSO  [26–29, 190]. When 
including higher order processes, interference effects give rise 
to a slightly different pattern. In the case of realistic contacts, 
we note that the conductance of the ring is seriously affected 
by dephasing. Indeed, large dephasing gives rise to random 
oscillations that are not averaged out—thus washing out the 
conductance oscillations. The effect takes place for ζ π∼  
when time reversed paths are included, in contrast to ζ π∼ 2  
when the time reversed paths are absent. As regular magneto-
conductance oscillations are experimentally observed [24, 
183–185] with little percentage of contrast between maxima 
and minima, we conclude that, in real samples, dephasing is 
ubiquitous.

6.  Related problems

6.1.  Spin-Hall effect

The SHE is a phenomenon, associated to SOI—it can be 
used to electrically generate or detect spin currents in non-
magnetic systems. This effect has been observed both in 
metallic and semiconductor systems (for a review see [196, 
197]). In this review, we will mainly focus on semiconduc-
tors, in which RSOI plays a major role. The SHE predicts 

that an unpolarised electric current can generate a transverse 
spin current, whose spin is perpendicular to the plane of the 
two currents. It was predicted in two pioneering articles by 
Dyakonov and Perel in 1971 [198, 199]. It is a consequence 
of the Mott scattering of electrons on unpolarised impurities, 
which results in spatial separation of electrons with opposite 
spins. It is closely related to the anomalous Hall effect—
Hall effect in ferromagnetic materials—originally observed 
by Hall himself [200] and later explained by Karplus and 
Luttinger [201] and Nozieres and Lewiner [202]. It does 
not require magnetic field nor magnetism, in other words it 
does not require broken time reversal symmetry (for a review 
see [203]). The SHE was hardly investigated till Hirsch [33] 
and Zhang [204] proposed such phenomenon to the atten-
tion of the spintronics community. Three main mechanisms 
have been proposed to contribute to the SHE: namely the 
spin dependent band structure of the material (the so called 
intrinsic mechanism) and the impurity scattering mechanisms, 
i.e. the ‘skew scattering’ and the ‘side jump’, conventionally 
addressed as extrinsic mechanisms. The extrinsic mechanisms 
are the same responsible of the anomalous Hall effect [203]: 
the skew scattering originates from the different scattering 
angle due to a spin–orbit impurity, depending on the electron 
spin and angular momentum; while the side jump reflects the 
shift in the trajectory of the backscattered electrons originat-
ing from the anomalous velocity operator in SOI systems 
[205]. The intrinsic mechanism was proposed by Murakami 

Figure 19.  Conductance as a function of ϕ ϕ/ 0 (left panels) and k RSO  (right panels) for ideal (black curves) and realistic (red curves) 
contacts. An increasing amount of dephasing at the contacts is also included: from top to bottom: ζ π π π= /3, , 2 . Courtesy of [29].
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et al [34] and by Sinova et al [35], it resorts on the DSOI and 
RSOI in 2D III–V GaAs quantum wells. This mechanism does 
not explicitly depend on impurities, however these cannot be 
neglected as they are absolutely essential to the establishment 
of the steady state current. In principle, the spin Hall current 
can be calculated using the Kubo formula. However, inclu-
sion of vertex corrections due to impurities, in the linear SOI 
model leads to a vanishing spin Hall conductivity [206, 207] 
in striking contrast to earlier calculations not including vertex 
corrections [35]. More complicated models (explicitly carried 
out for transition metals) [208] overtake this problem, giving 
rise to a finite spin Hall conductivity in reasonable agreement 
with the experiments. Some proposals require the presence 
of a magnetic field to give rise to a finite spin Hall current 
even in the presence of linear SOI and disorder [48, 209–213]. 
Among the first successful experiments we here highlight the 
work by Wunderlich et al [38] that used coplanar p-n diodes 
to detect circularly polarised electroluminescence at opposite 
edges of the spin Hall bar, and the work by Kato et al [36] 
that employed a magneto-optical Kerr microscope to scan the 
spin polarisation across the Hall bar. The former ascribed their 
finding to the intrinsic mechanism whereas the latter to the 
extrinsic one. Since that time several interesting experiments 
performing optical measurements for the spin detection in the 
intrinsic and extrinsic SHE have been performed [214, 215, 
37, 39, 216–220]. A detailed description of this physics is out 
of the purpose of this reviews and we refer the readers to more 
specific review articles on the SHE for more information [196, 
197].

6.2.  Diffusive limit: weak anti-localization

In the previous sections we have mainly described the phys-
ics of ballistic mesoscopic systems, i.e. solid state devices 
in which the lateral size of the sample L is smaller than the 
coherence length ϕL  and of the elastic mean free path ℓe. In 
this regime, impurity scattering can be safely disregarded, and 
the ballistic motion of electrons well describes the physical 
scenario. However, in the mesoscopic limit, it may happen 
that the lateral size of the sample L, while being still smaller 
(or of the order of) than the coherent length of the material 

< ϕL L , it is larger than the elastic mean free path: > ℓL e. 
Impurity scattering cannot be neglected and the electrons scat-
ter in the sample undergoing a quantum diffusive dynamics. 
In a 2DEG at low temperature, quantum corrections to the 
conductance are mostly due to interference effects between 
two electrons scattered by the same impurity. These propagate 
along the same closed trajectory but in opposite directions—
usually known as Cooperon correction. This process has its 
more spectacular manifestation in the so called WL (see [51, 
221, 222]): it increases the effective scattering cross-section 
and therefore leads to a suppression of the conductivity. In the 
presence of a magnetic field B perpendicular to the electron 

plane, the two waves acquire a phase difference φΔ = ϕ
ϕ

2 B

0
, 

where ϕB is the magnetic flux through the area enclosed by 
the electron trajectory, therefore quantum interference effects 
are suppressed and the conductance increases to the classical 

limit. Such a modification in conductivity, as a function of 
the magnetic field, is known as positive magneto conductivity 
(sometimes called negative magnetoresistance). This quantum 
correction to the resistivity can be explicitly calculated evalu-
ating the Cooperon diagram. For a 2DEG in perpendicular 
magnetic field
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coherence time and electron relaxation time and D is the dif-
fusion coefficient in 2D, respectively. In the limit of very weak 
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thus negative, and the resistivity correction can be shown to be

σ σΔ ( ) − Δ ( ) ∝
ϕ

⎛

⎝
⎜

⎞

⎠
⎟B

B

B
0 ,

2

� (63)
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2 is a characteristic magnetic field corre-

sponding to a flux quantum through an area of the order of 

π ϕL 2. Measuring the negative magneto-resistance by applying 
a weak magnetic field is a very elegant way to probe weak 
localization correction to the conductance.

In the presence of SOI the WL correction changes its sign 
and the magnetoresistance results to be positive. Indeed, 
Cooperon correction is multiplied by a factor

τ
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where τSOI sets the time scale of the SOI. For strong SOI, the 
exponential factor can be neglected at any time t, thus the 

factor ⟨ ⟩QSOI  changes its sign and tends to − 1

2
. It results in 

a change of the sign of conventional weak localization cor-
rection. This phenomenon, theorised in [223], is called WAL. 
It was first observed in metal films in the presence of spin–
orbit impurities [224, 225] and has been intensively studied 
in the recent past, both in 2DEGs [17, 226, 227] and in large 
quantum dots [228, 229] made out of III–V semiconductors in 
the presence of RSOI (see for instance figure 1(b)). Recently, 
weak WAL measurements have been used to quantify the 
RSOI strength in oxide interfaces [230] and TIs [89].

6.3.  Quantum wires with RSOI, superconductivity and 
magnetic field: the quest for Majorana Fermions

In his seminal article on the symmetric theory of electron and 
positron [231], Ettore Majorana predicted the existence of sel-
fadjoint fermions, i.e. half integer spin particles being their 
own antiparticle, as real solutions of Dirac equation. Since the 
first Majorana’s prediction, the quest for Majorana Fermions 
(MFs) as elementary particles, in the high energy physics, is 
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still open. Experiments on the neutrinoless double beta decay 
should unveil whether neutrinos are MFs or not, but to the date 
there is no answer to this question.

On the contrary, electrons in solid, under particular circum-
stances could recombine with holes—their relative anti-parti-
cles in the solid state language—in order to form self-adjoint 
excitations, i.e. Majorana quasiparticles.

Thus MFs [232, 233] can appear as quasiparticle excita-
tions in solid state systems. For instance, they are expected to 
show up as boundary states of the Kitaev model: a toy-model 
Hamiltonian describing 1D spineless p-wave superconductors.

Despite the fact that ‘solid state’ MFs are not elementary 
particles, there is strong excitement in the condensed matter 
community, and many efforts are being devoted to their theo-
retical and experimental understanding. Of course, finding a 
novel elementary excitation in solids would have a fundamen-
tal significance on its own, however, in the case of MF there is 
strong interest also for its possible applications. Indeed MFs, 
due to their non-Abelian statistics [234–237] can be consid-
ered as building blocks for topological quantum computation 
and for other alternative decoherence free quantum computa-
tional schemes [238].

Several mechanisms and devices have been proposed 
to isolate and detect MFs in meso/nano scaled devices (see 
[239, 240] for exhaustive reviews on the topic). However, to 
the date, while many efforts are focused on hybrid TI super-
conductor heterostructures [241–243], (one of) the most 
promising device resorts on the use of III–V semiconducting 
nanowires with strong RSOI, in the proximity with conven-
tional superconductors and in the presence of a magnetic field 
along the wire. This mechanism, early proposed in [57, 58] 
has been later experimentally explored in [244–246]. While 
strong hints of MF physics have been highlighted in [245], 
other recent articles [246–251] offer alternative interpretation 
of the observed zero bias anomaly in terms of Kondo physics. 
Therefore an unambiguous ‘smoking-gun’ experimental proof 
of the presence of MFs still has to come.

In the following, we will describe the theoretical back-
ground supporting the physics of MFs in quasi-1D nano wires 
with RSOI, magnetic field and proximity induced supercon-
ductivity. After that, we briefly review a recent experimental 
result.

For sake of simplicity we assume a single active channel in 
the nanowire and set ℏ = 1. The nanowire is along the x direc-
tion, therefore the transverse dynamics, along y direction, can 
be neglected. The Hamiltonian (15) describing the wire can be 
simplified as follows:
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where we have also added a Zeeman term due to the magnetic 
field B along the wire axis and the superconducting pairing 

potential Δ. The operator ψ ( )σ x†  creates an electron of spin σ 
at the position x. One can notice that the Hamiltonian (64) is 

not that of a 1D spineless p-wave superconductor, indeed we 
can easily recognise a local s-wave superconducting pairing 
and spinful electrons. However, by analysing the action of the 
various interaction terms in (64), we can show how to obtain 
an optimal choice of the parameter regime that would map 
(64) into the effective Hamiltonian of a 1D spinless p-wave 
superconductor.

We choose Ψ( ) = [ ( ) ( ) ( ) − ( )]↑ ↓ ↓ ↑x u x u x v x v x, , ,  as a Nambu 
spinor—where u/v are quasi electron/hole wave functions of 
momentum k [252]. Thus the Bogolubov–de Gennes (BdG) 
Hamiltonian (65) in the Ψ( )x  basis, can be recast in the simple 
matrix form:
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where the τi Pauli matrices act in the Nambu space, while si act 
in the spin space and we have introduced the Zeeman energy 
Ez . In the absence of magnetic field and superconductivity, 
the conventional spin-degenerate parabolic band dispersion 
splits because of RSOI, into two parabolas crossing at k   =   0 
(see figure 5(e)). The Zeeman coupling, splits the two bands 
at k   =   0 giving rise to the two bands E+ (k) and E−(k) in fig-
ure  20(a). If the Fermi energy lies between the two bands, 
and the temperature is low enough that the higher band cannot 
be thermally populated, the system is effectively a 1D spin-
less system. The spin degree-of-freedom has been effectively 
quenched by the simultaneous action of the RSOI and Zeeman 
splitting. Only a single pseudo spin degree-of-freedom ‘  −  ’ is 
involved here. In addition we have the s-wave superconduct-
ing pairing. Projecting the full Hamiltonian onto the E−(k) 
band we can write down an effective Hamiltonian

H ∑= ( ( ) + Δ ( ) + )− −E k c c k c c h.c.
k

k k k kP
† † †

� (66)

where α αΔ ( ) = Δ( + )−
−k k k Ei x x z

2 2 2 1/2 is an effective supercon-
ducting pairing with the desired p-wave symmetry. Thus, the 
present problem is isomorphic to the Majorana wire consid-
ered by Kitaev [232]. That guarantees the presence of MFs as 
boundary excitations. However in the spirit of a review article, 
here we will not provide an explicit proof of the presence of 

Figure 20.  (a) Free electrons band splitter by the simultaneous 
application of RSOI and Zeeman splitting. (b) Phase diagram of the 
model Hamiltonian (65).
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MFs as boundary excitations of the wire, as it can be inferred 
by the isomorphism to Kitaev model and can also be found in 
[57, 58] but we will provide the reader with simple symmetry 
arguments to qualitatively justify this result.

Let us start by commenting on the spectrum. By squaring 
twice Hamiltonian (65) we obtain the dispersion relation for 
the two bands

ξ α

ξ α ξ

( Δ) = + Δ + + ( )

± ( Δ) + ( ) + ( )
±E k E k

E E k

,

2

z k

z z k k

2 2 2 2 2

2 2 2

where ξ μ= −k m/2k
2 . The pairing Δ plays two crucial roles. 

It opens a gap at the outer wings of the dispersion, where the 
Zeeman field is unimportant, and modifies the gap forming 
near k   =   0. The former role eliminates the possibility of high-
momentum gapless excitations, thus leaving only the chiral 
states near k   =   0 as low energy excitation. The latter role 
allows us to tune the topological phase transition essential for 
isolating MFs. One can easily verify that the Hamiltonian (65) 
satisfies particle-hole symmetry:

H HΞ ( )Ξ = (− )−k k ,BdG
1

BdG� (67)

where Ξ is the particle-hole symmetry operator. Hence, 
for each eigenstate of positive energy H ψ ψ= EBdG  it 
exists a corresponding eigenstate ψΞ  of opposite energy 
H ψ ψ(Ξ ) = − (Ξ )EBdG . A linear combination γ ψ ψ= + (Ξ ) is 
of course a selfadjoint Fermionic operator, i.e. a MF, however 
it is not an Hamiltonian eigenvector, unlike E   =   0 [253].

It can be shown that the presence of such zero energy self-
adjoint eigenstate is indeed related to the sign of the gap at 
k   =   0

μ= ∣ ( Δ) − ( Δ)∣ = ∣ − Δ + ∣+ − =E E k E k E, , k z0 0
2 2

between the two excitation branches ( Δ)±E k, . When the 
Zeeman energy Ez closes such gap, we have a quantum 
phase transition between two different physical regimes. At 

μ> Δ +Ez
2 2  the gap is a Zeeman gap while in the opposite 

case the gap is due to superconductivity. Explicit construction 
of the zero energy excitation in the two cases shows that when 

the gap is magnetic, selfadjoint zero energy excitations, i.e. 
MFs can appear at the two boundaries of the wire. The phase 
diagram of such system is shown in figure 20(b). Out of the 
topological regime no MFs are expected, but the interesting 
physics of anomalous Josephson effect sets in [254, 255].

In [245] electrons are injected from a normal metal in an 
InSb nanowire in proximity with a NbTiN superconductor 
(see figure 21(a)) and the differential conductance is measured 
as a function of the magnetic field. As proposed in [256] elec-
trons from the normal metal scatter against the zero energy 
MF thus revealing a zero bias anomaly in the differential con-
ductance. In figure 21(b) we can see that as soon as the mag-
netic field is large enough to satisfy the topological criterion,  
a zero bias peak appears that is interpreted as the resonant 
scattering of electrons through the zero energy Majorana state. 
Experiments on these kind of structures are very challenging: 
on the one hand in order to satisfy the topological criterion,  
a sizable magnetic field is required, on the other hand, the 
same magnetic field can disrupt the very fragile superconduc-
tivity induced in the semiconducting nanowire by the prox-
imity effect [257]. Everything has to be finely tuned and the 
temperature has to be quite low, usually below 100 mK. That 
is why many other proposals involving high critical tempera-
ture superconductors [258, 259] or completely different plat-
forms [260, 261] have been investigated, too.

7.  Conclusions and outlook

In this review, we have inspected some of the most interesting 
theoretical and experimental results on spin dependent quan-
tum transport in mesoscopic systems in the presence of RSOI. 
During the last decades a significant number of theories and 
experiments have appeared. The main goal of this review is to 
give an historical overview of the field so to address the reader 
directly to a more specialistic literature. Rashba spin–orbit 
interaction turned out to be an invaluable tool to have access 
and to manipulate the electron spin degree of freedom, without 
breaking time reversal symmetry. From the applicative point 
of view, RSOI has been intensively studied to generate spin 

Figure 21.  (a): Experimental device. Electrons from a normal metal are injected in the InSb nanowire which is in contact with NbTiN 
superconductor. (b): Differential conductance traces as a function of the magnetic field. As soon as the topological criterion is satisfied,  
a zero bias peak appears. Courtesy of [245].
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currents in semiconducting electron systems. Several mecha-
nisms and devices for producing pure spin currents have been 
put forward. Among them, here we have focused our attention 
on quantum spin ratchet and spin pumping.

The physics associated to the RSOI can have very applica-
tive oriented aspects but can also be of stimulus for address-
ing more fundamental issues of quantum mechanics, e.g. 
quantum interference effects. These have been shown to be 
strongly affected by the RSOI, with the novelty of the phase 
factors of non-Abelian nature. We have seen how this addi-
tional phase can give rise to unexpected phenomena, such as 
the localisation in networks with nontrivial connectivity, or 
the appearance of anomalous peaks in the Fourier transform 
of the magneto conductance in quantum rings. Recently, new 
and exciting perspectives open, because RSOI is of funda-
mental relevance for the physics of topological insulators and 
of Majorana fermions in hybrid superconducting-semicon-
ducting heterostructures that are currently attracting a lot of 
interest not only in the condensed matter community.

Besides charge and spin transport, SOI may have a rele-
vant role also in heat transport which is the subject of spin 
caloritronics [262]. Here, the combination of magnetic and 
non magnetic hybrid structure can lead to anomalous behav-
iour in the Seebeck and/or the Peltier coefficients [263, 264]. 
Deviation from standard behavior has been observed also 
in experiments on SLG [265, 266]. Furthermore, it is well 
known that the most efficient media for creating thermoelec-
tric devices are based on materials with a very strong SOI as 
HgTe, PbTe, Bi,Te, and Bi/Sb alloys, [267, 268]. However, a 
complete understanding of the role of RSOI on these proper-
ties is still under investigation [269, 270].

We are sure that in the future this field of research will 
be still thriving. Most probably new electronic and spintronic 
devices will come to the market with functionality that are 
associated to the physics of the RSOI. On the other side, as it 
happened for the case of the Majorana quasiparticle research, 
RSOI could pave the way to fundamental research in order 
to investigate exotic phenomena that could get accessed by 
quantum simulators realised in solid state systems [271].
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