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ABSTRACT The Turing pattern formation is modeled by reaction-diffusion (RD) type partial differential
equations, and it plays a crucial role in ecological studies. Big data analytics and suitable frameworks to
manage and predict structures and configurations are mandatory. The processing and resolution procedures
of mathematical models relies upon numerical schemes, and concurrently upon the related automated
algorithms. Starting from a RDmodel for vegetation patterns, we propose a semi-automatic algorithm based
on a smart numerical criterion for observing ecological reliable results. Numerical experiments are carried
out in the case of spot’s formations.

INDEX TERMS Vegetation turing patterns, finite difference methods, Internet of Things.

I. INTRODUCTION
The availability of modeling frameworks to investigate bio-
logical and environmental phenomena is of paramount impor-
tance for predicting purposes. The huge amount of data from
the real world also requires techniques and tools to extract,
manage and properly classify information. The Internet of
Things (IoT) system of connecting machines and sensors is
a useful tool for reading the real world. In fact, by extracting
information from a large number of data acquired in biolog-
ical as well as environmental contexts, one gains physical
insights on the processes at stake, and can forecast at different
temporal/spatial scales. The basis of these approaches is the
automation of the processing and resolution procedures of
mathematical models that describe the real world. The Turing
pattern formation is mathematically modelled by RD-type
PDEs. Most of the early studies on Turing patterns dealt with
chemical RD-systems. The fundamental concept introduced
by Turing was that, in order to be stable (steady), states
have to be diffusion-free. To the contrary, diffusion favors
the emergence of unstable and spatially heterogeneous pat-
terns [1]. The pattern formation dynamics generally occurs
due to the interaction of two (or more) chemicals. This is
generally modelled by a system of nonlinear PDEs.

The are many studies relating biological processes to Tur-
ing patterns via RD models. Due to the nonlinear nature of

the overall mathematical problem, it is generally very hard
getting an analytical solution. Thus, in the majority of the
real world situations, one must resort to numerical methods.
Nevertheless, there is a relatively limited number of stud-
ies on the matter, the importance of the problem at stake,
notwithstanding. The widely adopted numerical schemes for
RD models are the finite difference (FD) [2], and finite ele-
ment methods [3]. More recently, discontinuous Galerkin
finite element methods [4] have become increasingly pop-
ular, as well. Finally, implicit-explicit schemes have been
also used, especially in conjunction with spectral methods in
Fluidmechanics [5]. One of the first example arising Turing
instability is from the Brusselator model [6]. The unique fea-
ture of such a problem is that it enables one getting analytical
solutions which lend themselves as benchmark to validate
more involved numerical schemes [7]–[10]. The same is for
the Schnakenberg model [11], representing a simplified ver-
sion of the previous one [12], [13]. A detailed analysis about
the time-integration schemes, and numerical results can be
found in [12] and [13]. Finally, a generalization of the previ-
ous models, accounting for the spatial pattern’s distribution,
was provided by Gray-Scott [14]. Implicit-explicit schemes
to describe pattern formation arising from such a model
can be found in [15]. Besides the numerical approaches,
RD-type models related to Turing’s patterns have been
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tackled by means of the cellular automata models [16]. Such
an approach could be used to develop a counterpart to simu-
late both the Brusselator’s model and that of Gray-Scott [17].

In this paper we present a numerical (FD) approach for a
RD model describing the vegetation patterns’ formation as
determined by the interactions between biomass evolution,
water availability and toxicity in plant-soil feedback [18].
It is shown that our algorithm leads to a simple stability
criterion avoiding numerical artifacts. In particular, such a
criterion serves as a tool to be (consciously) used in the
integration scheme in order to avoid meaningless results [19].
The paper is organized as follows. In the section II we
present the RD model giving rise to the vegetation patterns
formation; in section III we focus on the numerical solution
by a FD scheme, and the accuracy vs stability of the numer-
ical model. Section IV exploits the algorithmic into details;
conclusions are outlined in the Section V.

II. THE MATHEMATICAL MODEL AND THE
DISCRETIZED SCHEME
We consider the numerical solution of the following system
of nonlinear PDEs [18]:

∂B
∂t
= DB1B+ GB(B,W ,T ), (1a)

∂W
∂t
= DW1W + GW (B,W ), (1b)

∂T
∂t
= T [Bqs− (k + wp)]+ qdB, (1c)

where B, W , T are the specific (per unit surface) biomass,
water, and toxic compounds. The coefficients DB,DW ∈ R+
accounts for the diffusion of the biomass and water, respec-
tively, whereas the nonlinear reaction terms GB and GW are
defined as:

GB(B,W ,T ) = cB2W − (d + sT )B,

GW (B,W ) = p− rB2W − lW . (2)

The positive parameters appearing into (2) are chosen either
in accordance with [20], [21] or selected from within an
order-of-magnitude feasibility range. More precisely, p is the
rain intensitiy, k is the rate of decay of toxicity, and s is the
sensitivity of the plants to the toxicity (see [18, Table 1] for
further details). Equations (1a)–(1c) are defined on a bounded
domain � ⊂ R2, and are subjected to zero Neumann-type
boundary conditions along the boundary ∂� of the domain.
The initial conditions are:

B(x, y, 0) = B0, W (x, y, 0) = W0, T (x, y, 0) = 0, (3)

for (x, y) ∈ �. A FD scheme on a regular grid in Cartesian
coordinates provides an approximation of the solution over a
finite number of grid points {zi,j}, s.t. zi,j = (i1x, j1y) i =
0, . . . ,Nx − 1, j = 0, . . . ,Ny − 1, with 1x := xmax

Nx−1
and

1y := ymax
Ny−1

the grid mesh-sizes. If a temporal grid is defined

as τ k := k1t, k = 0, . . . ,M , with temporal step-size
1t := tmax

M , the scheme provides an approximation, say uki,j,
at zi,j and time step τ k .

Let uki,j be the approximation of B, W and T at zi,j and
time step τ k . For the eqs (1a)–(1b) we apply a FD scheme
forward in time and centered (second order) in the space,
whereas (1c) is solved by a first order accurate forward Euler
scheme. We then define a weight average scheme can be
defined for the two PDEs, that is based on a convex (θ -type)
combination of the spatial terms of the forward/backward
difference methods. We set D ≡ DB = DW in (1a)–(1b),
so that it yields

uk+1i,j − u
k
i,j = Dµ[θ1(1y2 · δ2xu

k+1
i,j +1x

2
· δ2yu

k+1
i,j )+

+ (1− θ1)(1y2 · δ2xu
k
i,j +1x

2
· δ2yu

k
i,j)]+

+1t[θ2gk+1 + (1− θ2)gk ] (4)

∀(i, j), i = 1, . . . ,Nx , j = 1, . . . ,Ny, being

δ2xu
k
i,j = uki+1,j − 2uki,j + u

k
i−1,j,

δ2yu
k
i,j = uki,j+1 − 2uki,j + u

k
i,j−1,

whereas gk is the non linear term at the time level τ k , and

µ =
1t

1x21y2
. (5)

To investigate the Turing pattern formation, it is sufficient to
assume θ2 = 0 (explicit scheme).

III. A SEMI-AUTOMATIC ALGORITHM FOR VEGETATION
TURING PATTERNS
With θ := θ1, we re-write (4) into matrix form as AX = Y ,
beingA,X and Y a 3NxNy×3NxNymatrix, and 3NxNy×NxNy
matrices, respectively. Such matrices are defined as:

A =

AB 0 0
0 AW 0
0 0 INx × Ny

,
X =

X k+1B
X k+1W
X k+1T

,
Y =

 Y kB
Y kW
Y kT

,
where AB and AW are square sparse, pentadiagonal, non-
symmetric, positive definite, diagonally dominant, and
banded (width Nx) matrices of Nx × Ny-order; INx × Ny is
the unit matrix of order Nx × Ny. By setting

R1 :=
θ1tDB
(1x)2

, R2 :=
θ1tDB
(1y)2

,

r1 :=
(1− θ )1tDB

(1x)2
, r2 :=

(1− θ )1tDB
(1y)2

, (6)

and

S1 :=
θ1tDW
(1x)2

, S2 :=
θ1tDW
(1y)2

,

s1 :=
(1− θ )1tDW

(1x)2
, s2 :=

(1− θ )1tDW
(1y)2

. (7)
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(k > 0), the (i, j)-th elements of AB and AW are respectively:

(1+ 2R1 + 2R2)b
k+1
i,j − R1

(
bk+1i+1,j + b

k+1
i−1,j

)
+

−R2
(
bk+1i,j−1 + b

k+1
i,j+1

)
(8)

and

(1+ 2S1 + 2S2)w
k+1
i,j − S1

(
wk+1i+1,j + w

k+1
i−1,j

)
+

− S2
(
wk+1i,j−1 + w

k+1
i,j+1

)
(9)

(i = 0, . . . ,Nx − 1, j = 0, . . . ,Ny − 1 and k = 0, . . . ,M ).
Likewise, the Y -bocks are

Y kB = bki,j +1t
[
cbki,j

2
wki,j − (d + stki,j)b

k
i,j

]
+

+ r1
(
bki+1,j − 2bki,j + b

k
i−1,j

)
+

+ r2
(
bki,j−1 − 2bki,j + b

k
i,j+1

)
Y kW = wki,j +1t

[
p− rbki,j

2
wki,j − lw

k
i,j

]
+ s1

(
wki+1,j − 2wki,j + w

k
i−1,j

)
+

+ s2
(
wki,j−1 − 2wki,j + w

k
i,j+1

)
(10)

and

Y kT = tki,j +1t
[
q(d + stki,j)b

k
i,j − (k + wp)tki,j

]
(i = 0, . . . ,Nx − 1, j = 0, . . . ,Ny − 1). The parameter θ
allows to swap the numerical scheme, that is θ = 0 provides
explicit (forward in time) FD, θ = 1/2 corresponds to the
Crank-Nicolson scheme, whereas θ = 1 a fully implicit
(backward in time) Euler scheme. The explicit scheme has
second-order convergence in the space, and a first order
accuracy in time. It is conditionally stable, and the Courant-
Friedrichs-Lewy (CFL) condition is:

∃ c > 0 : 1t ≤ c1x2.

For the numerical approximation (4), the CFL writes as

∃ c > 0 : 1t ≤
c
2D

1x21y2

1x2 +1y2
. (11)

Given this, we aim at:
(1) keeping low the truncation error;
(2) containing the round-off error propagation, and there-

fore the sneaky numerical artefacts which can arise when
Dµ(1x2 +1y2)→ 0.

IV. RESULTS
Due to the block diagonal form and the constant coefficients
of AB, AW and INx × Ny , we solve w.r.t. B,W and T inde-
pendently at each time level. Each system is solved (see
Table 1) by the generalized minimal residual iterative method
(GMRES). With the parameter values listed in the Table 1
of [18], simulations were performed on aNx×Ny = 100x100
square lattice with xmax = 50, and ymax = 50. The initial
conditions are B0 = 0.2 kg/m2 in N0 = 5000 randomly

TABLE 1. Semi-automatic algorithm for turing pattern.

TABLE 2. Numerical results.

selected elements, and B0 = 0 in the remaining nodes,
W0 = 40 kg/m2 and T0 = 0 at all points. Moreover we fix
p = 0.8 and we run the simulations along tmax = 20000
days. We set θ = 0 and

8 =
c
2D

1x21y2

1x2 +1y2

in the (11), with c = 1 and

1
D
= min

{
1
DB

,
1
DW

}
.

Table 2 summarizes the results obtained for different values
of 1t , 1x = 1y and 8; a brief description follows.
Test case condition satisfied: 1t < 8

case 1)Let be 1t = 0.05, 1x = 1y = 0.5, 8 = 0.0797.
The condition (11) is satisfied and we assume the
computed solution Bref as a reference. The last col-
umn of Table 2 refers to the maximum error in the
solution, w.r.t. Bref . In the Fig.1 (up row) we have
depicted the temporal evolution of the biomass-
density, whereas the temporal evolution of biomass
density, averaged over the lattice is represented in
the Fig. 2 (left). The response of plants to toxicity
negative feedback (s = 0.2) combined with a high
toxicity decay rate (k = 0.2), gives rise (after about
12 minutes) to stable patterns.

Test cases condition not satisfied: 1t > 8

In the Table 2 we have summarized also the results
obtained on failing the condition (11), both by increasing 1t
and decreasing 8:
case 2) Let be 1t = 0.05, 1x = 1y = 0.38, 8 =

0.0469. A reduction of 1x = 1y, does not let 8 to
overcome 1t , and concurrently the condition (11))
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FIGURE 1. The temporal evolution of biomass density: case 1) in Table 2, with 1t = 0.05, 1x = 1y = 0.5, 8 = 0.0797 (up);
case 3) in Table 2, with 1t = 0.08, 1x = 1y = 0.5, 8 = 0.0797 (down).

FIGURE 2. The temporal evolution of mean biomass density in case 1) (left) and case 3) (right). In this last case, the mean value decreases
fast toward zero in less than 7000 time steps.

is violated. With the parameters values listed in
the first line of the Table 2, GMRES (without
restart and in the default number equal to 10 iter-
ations) doesn’t satisfy the prescribed tolerances ε ∈
{10−6, 10−4, 10−2}; the execution is interrupt since
the solver GMRES doesn’t converge.

case 3) Let 1t = 0.08, 1x = 1y = 0.5, 8 = 0.0797.
By increasing 1t w.r.t. 8, the computed values
move away from the reference values, according
to the absolute error in the last column. In Fig.1
(down) some spots represent the biomass evolution
when the condition (11) is violated. The disappear-
ance of the pattern formation after about 10 sec-
onds, is due to the amplification of the round-off
errors through the time stepping, and it demon-
strates that also a small perturbation in the ampli-
fication factor can lead to an unreliable solution.

The Fig.2 (right) shows how the mean value of the
biomass vanishes (in about 7000 time steps).

case 4), 5) Let us assume that 1t = 0.09 and 1t =
0.1, with 1x = 1y = 0.5 and 8 = 0.0797.
An increase of 1t renders the iteration matri-
ces (quasi)-singular, such that no solution can be
achieved.

V. CONCLUSIONS
The IoT systems can be viewed as a glass for reading the real
world, granting the process and producing a huge amount
of data. The automation of the processing and resolution
procedures of mathematical models describing the real world
is mandatory to get insights on the physics underlying the
biological/environmental processes.
In the present paper we have developed a numerical

scheme for a particular RD model describing the forma-
tion and evolution of the vegetation pattern. The numerical
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scheme relies upon a semi-automatic algorithm based on a
stability criterion, that limits the amplification error in the
computed solution. Simulations show that, when the crite-
rion is satisfied, the numerical scheme converges towards a
reliable solution.
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