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a b s t r a c t

Recently, an alternative measure of uncertainty called cumulative residual extropy
(CREX) was proposed by Jahanshahi et al. (2019). In this paper, we consider uncertainty
measures of minimum ranked set sampling procedure with unequal samples (MinRSSU)
in terms of CREX and its dynamic version and we compare the uncertainty and
information content of CREX based on MinRSSU and simple random sampling (SRS)
designs. Also, using simulation, we study on new estimators of CREX for MinRSSU
and SRS designs in terms of bias and mean square error. Finally, we provide a new
discrimination measure of disparity between the distribution of MinRSSU and parental
data SRS.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ranked set sampling (RSS) design is a cost-effective sampling for situations where taking actual measurements on units
s expensive but ranking units is easy. For the first time, based on the RSS sampling design, [1] provided a more efficient
stimator of the population mean comparing to the simple random sampling (SRS) counterpart. To learn more about this
oncept, the readers can refer to [2]. There are many available studies that have developed and generalized the method
f sampling used in RSS scheme and they efficiently estimate the population parameter comparing to the SRS scheme.
ecently, [3] studied information content of minimum ranked set sampling procedure with unequal samples (MinRSSU)
s useful modification of RSS procedure in terms of extropy. In the MinRSSU, we draw m simple random samples, where
he size of the ith samples is i, i = 1, . . . ,m. The one-cycle MinRSSU involves an initial ranking of m samples of size m
s follows:

1 : X (1:1)1 → X̃1 = X(1:1)1

2 : X (1:2)2 X(2:2)2 → X̃2 = X(1:2)2

...
...

...
. . .

...
...

...

m : X (1:m)m X(2:m)m · · · X(m:m)m → X̃m = X(1:m)m
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where X(i:i)j denotes the ith order statistic from the jth SRS of size i. The resulting sample is called one-cycle MinRSSU of
ize m and denoted by X (m)

MinRSSU = {X̃i, i = 1, . . . ,m}. The parameter m should be kept small because the ranking should
ot be difficult in this sense and the ranking may be done for example by using an easily measurable covariate, then it is
ot difficult to identify the minimum of ranked individuals in each subset. Note that X̃i has the same distribution as X(1)i

which is the smallest order statistic in a set of size i with probability density function (pdf) f(1)i(x) = if (x)[1 − F (x)]i−1

and survival function F̄(1)i(x) = [1− F (x)]i = F̄ i(x), where f (.), F (.) and F̄ (.) are the underlying pdf, cumulative distribution
function (cdf) and survival function. In reliability theory, X̃i measures the lifetime of a series system.

Several authors have worked on measures of information for RSS and its variants. [4] explored the notions of
information content of RSS data and compared them with their counterparts in SRS data. [5] obtained some results of
residual (past) entropy for ranked set samples. [6] studied information measures for record ranked set sampling. [7]
considered information measures of maximum ranked set sampling procedure with unequal samples in terms of Shannon
entropy, Rényi entropy and Kullback–Leibler information, instead [8] in terms of Tsallis entropy. More recently, [3] studied
information content of MinRSSU in terms of extropy and [9] considered the problems of uncertainty and information
content of RSS data based on extropy measure and the related monotonic properties and stochastic comparisons.

Let X denotes a continuous random variable with pdf f . [10] introduced a new measure termed by extropy associated
with X as

J(X) = −
1
2

∫
+∞

−∞

[f (x)]2dx = −
1
2

∫ 1

0
f (F−1(u))du, (1.1)

here F−1(.) is the quantile function of X . [11] explored some characterization results, monotone properties, and lower
ounds of extropy of order statistics and record values. Also, [3] and [9] considered the information measure of extropy
(X) based on MinRSSU and RSS schemes, respectively and compared the results with their counterpart under SRS design.

This paper is organized as follows: Section 2 deals with the results of cumulative residual extropy (CREX) for MinRSSU
ata by comparing to its counterpart under SRS data. In Section 3, new estimators are proposed for CREX in SRS and
inRSSU designs using empirical approach. Also, by using simulation study, the behaviour of estimators of CREX in
inRSSU and SRS are compared in terms of bias and mean square error. Furthermore, we show that how MinRSSU scheme
an efficiently reduce the uncertainty measure comparing to SRS design. Section 4 provides a new discrimination measure
f disparity between the distribution of MinRSSU and parental data SRS. Section 5 concludes the paper.

. Cumulative residual extropy of MinRSSU

Let X denotes the lifetime of a system with survival function F̄ . Recently, a new measure of information is proposed
y [12] with substituting the function F̄ in extropy formula (1.1). This new measure is called CREX and defined as

ξJ (X) = −
1
2

∫
+∞

0
F̄ 2(x)dx. (2.1)

Note that −∞ < ξJ (X) ≤ 0. If the CREX of X is less than that of another random variable, say Y , i.e. ξJ (X) ≤ ξJ (Y ),
hen X has less uncertainty than Y . Now let ξJ (X) < +∞. Then, for the MinRSSU and SRS designs, we have

ξJ (X (m)
MinRSSU ) = −

1
2

m∏
i=1

[−2ξJ (X(1:i))] = −
1
2

m∏
i=1

∫
+∞

0
F̄ 2i(x)dx (2.2)

= −
1
2

m∏
i=1

∫ 1

0

(1 − u)2i

f (F−1(u))
du

= −
1
2

m∏
i=1

E
[
(1 − U)2i

f (F−1(U))

]
, (2.3)

nd

ξJ (X (m)
SRS) = −

1
2

[∫
+∞

0
F̄ 2(x)dx

]m
= −

1
2
[−2ξJ (X)]m. (2.4)

o compare the above measures, let us consider the following examples.

xample 2.1. If U ∼ Uniform(0, 1), then

ξJ (U (m)
MRSSU ) = −

1
2

m∏
i=1

1
2i + 1

= −
1
2

( √
π

2mΓ (m +
1
2 )

)
< ξJ (U (m)

SRS) = −0.5
(
1
3

)m

. (2.5)
2
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Example 2.2. If Z is exponentially distributed with mean 1
λ
, then we have

ξJ (Z (m)
MRSSU ) = −

1
2

m∏
i=1

1
2iλ

< ξJ (Z (m)
SRS) = −

1
2

(
1
2λ

)m

. (2.6)

xample 2.3. Let X is finite range distribution with F̄ (x) = (1 − ax)b, 0 < x < 1
a , a > 0, b > 0. Then, we have

ξJ (X (m)
MRSSU ) = −

1
2

m∏
i=1

1
a(1 + 2ib)

< ξJ (X (m)
SRS) = −

1
2

(
1

a(1 + 2b)

)m

. (2.7)

heorem 2.1. Let X (m)
MinRSSU be the MinRSSU from population X with pdf f and cdf F . Then, ξJ (X (m)

MinRSSU ) ≤ ξJ (X (m)
SRS) for

> 1.

roof. Since F̄ 2(x) ≥ F̄ 2i(x) for i ≥ 1, we have(∫
+∞

0
F̄ 2(x)dx

)m

≤

m∏
i=1

∫
+∞

0
F̄ 2i(x)dx.

he proof follows by recalling (2.2) and (2.4). □

emark 2.1. If f (F−1(u)) ≥ 1, 0 < u < 1, then ξJ (X (m)
MinRSSU ) is increasing in m ≥ 1.

roof. From (2.2), we get

ξJ (X (m+1)
MinRSSU )

ξJ (X (m)
MinRSSU )

=

∫ 1

0

(1 − u)2m+2

f (F−1(u))
du ≤

1
2m + 3

≤ 1.

The result follows readily, since the extropy is negative . □

In the following, we provide some results on the cumulative residual extropy of X (m)
MinRSSU in terms of stochastic ordering

roperties. Now, we state important properties of ξJ (X (m)
MinRSSU ) using the stochastic ordering. For that we present the

ollowing definitions:

efinition 2.2 (Shaked and Shanthikumar, 2007). Let X and Y be two non-negative random variables with pdfs f and g ,
dfs F and G, and hazard functions λX (x) =

f (x)
F̄ (x)

and λY (y) =
g(y)
Ḡ(y)

, respectively. Then

. X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y ) if P(X ≥ x) ≤ P(Y ≥ x) for all x ∈ R.

. X is smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if λX (x) ≥ λY (x) for all x.

. X is smaller than Y in the dispersive order (denoted by X ≤disp Y ) if f (F−1(u)) ≥ g(G−1(u)) for all u ∈ (0, 1), where F−1

nd G−1 are right continuous inverses of F and G, respectively.

. X is said to have decreasing failure rate (DFR) if λX (x) is decreasing in x.

. X is smaller than Y in the convex transform order (denoted by X ≤c Y ) if G−1F (x) is a convex function on the support
f X .

. X is smaller than Y in the star order (denoted by X ≤∗ Y ) if G−1F (x)
x is increasing in x ≥ 0.

. X is smaller than Y in the superadditive order (denoted by X ≤su Y ) if G−1(F (t + u)) ≥ G−1(F (t)) + G−1(F (u)) for
≥ 0, u ≥ 0.

. X is said to have an increasing reversed hazard rate (IRHR) if λ̃X (x) =
f (x)
F (x) is increasing in x.

Theorem 2.3. If X ≤st Y , then ξJ (X (m)
MinRSSU ) ≥ ξJ (Y (m)

MinRSSU ), m > 1.

Proof. By the assumption of the stochastic order, F̄ 2i(x) ≤ Ḡ2i(x) for all x ≥ 0. Now using (2.2), for m > 1, we get the
desired result. □

Theorem 2.4. Let X and Y be two non-negative random variable. If X ≤disp Y , then ξJ (X (m)
MinRSSU ) ≥ ξJ (Y (m)

MinRSSU ) for m > 1.

roof. By the assumption of the dispersive order , f (F−1(u)) ≥ g(G−1(u)) for all u ∈ (0, 1). Using (2.2), for m > 1 the
esult follows. □
3
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Theorem 2.5. If X ≤hr Y , and X or Y is DFR, then ξJ (X (m)
MinRSSU ) ≥ ξJ (Y (m)

MinRSSU ) for m > 1.

Proof. If X ≤hr Y , and X or Y is DFR, then X ≤disp Y , due to [13]. Thus, from Theorem 2.4 the desired result follows. □

heorem 2.6. Let X and Y be two non-negative random variable with pdf’s f and g, respectively, such that f (0) ≥ g(0) > 0.
f X ≤su Y (X ≤∗ Y or X ≤c Y ), then ξJ (X (m)

MinRSSU ) ≥ ξJ (Y (m)
MinRSSU ) for m > 1.

Proof. If X ≤su Y (X ≤∗ Y or X ≤c Y ), then X ≤disp Y , due to [14]. So, from Theorem 2.4 the desired result follows. □

Proposition 2.7. Let X (m)
MinRSSU and X (m)

RSS be MinRSSU and RSS data from distribution X with DFR ageing property, respectively.
Then for m > 1 we have

ξJ (X (m)
MinRSSU ) ≥ ξJ (X (m)

SRS).

Remark 2.2. Let ϕ be a non-negative function such that the derivative ϕ′(x) ≥ 1 for all x. Then X ≤disp ϕ(X). Thus,

ξJ (X (m)
MinRSSU ) ≥ ξJ (ϕ(X)(m)

MinRSSU ).

If X ≤disp Y , Theorem 3.B.26 in [15] claims that Xi:m ≤disp Yi:m, i = 1, 2, . . . ,m. Thus, according to Theorems 4.5 and
4.6 in [11], we obtain the following Proposition .

Proposition 2.8. Let X (m)
MinRSSU be a sample from MinRSSU design.

(i) If X is DFR ageing property, then ξJ (X(1)m) is increasing in m ≥ 1.

(ii) If X is IRHR property, then ξJ (X(1)m) is decreasing in m ≥ 1.

Proposition 2.9. Let Y (m)
MinRSSU = aX (m)

MinRSSU + b with a > 0 and b ≥ 0. Then, ξJ (Y (m)
MinRSSU ) = aξJ (X (m)

MinRSSU ).

Proposition 2.10. Let X be a symmetric random variable with respect to the finite mean µ = E(X). Then

ξJ (X (m)
MinRSSU ) = CJ (X (m)

MinRSSU ),

where CJ (X) = −
1
2

∫
+∞

0 [FX (x)]2dx is the cumulative extropy (see [12]).

Let X be the random lifetime of a system, recall that X[t] = [X − t | X ≤ t] describes the residual lifetime of a system.
or all t ≥ 0 the mean residual lifetime is given by

µ(t) = E[X − t | X ≥ t] =
1

F̄ (t)

∫
+∞

t
F̄ (x)dx.

Now, we can define a generalized measure of cumulative residual extropy as

ξJ (X; t) = −
1
2

∫
+∞

t

[
F̄ (x)
F̄ (t)

]2
dx. (2.8)

ote that ξJ (X; t) ≥ −µ(t)/(2F̄ (t)). Moreover , we have

ξJ (X (m)
SRS; t) = −

1
2
[−2ξJ (X, t)]m. (2.9)

nder the MinRSSU design, it is clear that

ξJ (X (m)
MinRSSU ; t) = −

1
2

m∏
i=1

[−2ξJ (X(i:i); t)] = −
1
2

m∏
i=1

∫
+∞

t

[
F̄ (x)
F̄ (t)

]2i
dx

= −
1
2

m∏
i=1

E
[

U2iF̄ (t)
f (F−1(1 − UF̄ (t)))

]
. (2.10)

Theorem 2.11. Let X be a random lifetime variable with cdf F (·), Then, for m > 1

ξJ (X (m)
MinRSSU ; t) ≤ ξJ (X (m)

SRS; t). (2.11)

Proof. The proof is similar to Theorem 2.1. □

Remark 2.3. If f (F−1(1 − uF̄ (t))) ≥ 1, 0 < u < 1, then ξJ (X (m)
MinRSSU ; t) is increasing in m ≥ 1.
4
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3. Results on empirical measure of CREX

This section focuses on the estimation of the ξJ (X) based on the SRS and MinRSSU schemes. Let X(1) ≤ X(2) ≤ ... ≤ X(n)
be the order statistics of the random sample X1, X2, . . . , Xn from cdf F . Then the empirical measure of F is defined as

F̂n(x) =

⎧⎨⎩ 0, x < X(1),
k
n , X(k) ≤ x ≤ X(k+1), k = 1, 2, . . . , n − 1
1, x > X(n).

Thus, the empirical measure of ξJ (X) is obtained by replacing the distribution function F by the empirical distribution
unction F̂n as

Vn = −
1
2

∫
ˆ̄F 2
n (x)dx = −

1
2

n−1∑
k=1

∫ X(k+1)

X(k)

(
1 −

k
n

)2

dx

= −
1
2

n−1∑
k=1

Uk+1

(
1 −

k
n

)2

, (3.1)

here Uk+1 = X(k+1) − X(k), k = 1, . . . , n − 1. [12] showed that Vn almost surely converges to the CREX of X , i.e.

Vn
a.s.
→ ξJ (X), as n → +∞.

he problem of estimation of ξJ (X) based on MinSSU scheme can be deduced in the same line of the estimation based
n SRS design Vn. In this part, we assume that instead of one-cycle MinRSSU, the process is repeated l cycles to have a
ample of size n = ml. In this case, the resulting MinRSSU is denoted by

{
X(1:i)j, i = 1, . . . ,m; j = 1, . . . , l

}
, where X(1:i)j

is the lowest order statistic from the ith sample in the jth cycle. Let Y(1), . . . , Y(n) be the ordered values of the MinRSSU
design

{
X(1:i)j, i = 1, . . . ,m; j = 1, . . . , l

}
. Then, the natural estimation of ξJ (X) based on the MinRSSU, can be obtained

as

Rn = −
1
2

n−1∑
k=1

Zk+1

(
1 −

k
n

)2

,

where Zk+1 = Y(k+1) − Y(k), k = 1, 2, . . . , n − 1. Our preliminary computations and simulations showed that Rn has some
eficiencies to be unbiased and have low mean square error (MSE) to estimate the ξJ (X). We observed that the term
1 −

k
n

)
should be slightly modified so that the estimator has optimal properties to estimate ξJ (X). We propose to modify

this term with
(
1 −

k
n+m+w

)
, where w is a number that resulting estimator has optimally low bias and MSE. The resulting

estimator of the ξJ (X) has the following form

Rm,n = −
1
2

n−1∑
k=1

Zk+1

(
1 −

k
n + m + w

)2

. (3.2)

.1. A new estimation

In the previous section, the estimator Vn of ξJ (X) is a linear function of sample spacing Uk+1 = X(k+1) − X(k), k =

1, . . . , n − 1. The asymptotic distribution of this linear function of sample spacing can be found, for example in [16]
and [17] only for exponential and standard uniform distributions. So we provide another estimator for ξJ (X) which is a
linear function of order statistics.

Proposition 3.1. Let X be an absolutely continuous non-negative random variable with survival function F̄ , then

ξJ (X) = −

∫
+∞

0
xF̄ (x)dF (x). (3.3)

Proof. By (2.1) and Fubini’s theorem, we obtain

−

∫
+∞

0
xF̄ (x)dF (x) = −

∫
+∞

0

(∫ x

0
dt
)
F̄ (x)f (x)dx

= −

∫
+∞

0

(∫
+∞

t
F̄ (x)f (x)dx

)
dt = −

1
2

∫
+∞

0
F̄ 2(t)dt.

Hence, the proof is completed. □
5



M.R. Kazemi, S. Tahmasebi, C. Calì et al. Results in Applied Mathematics 10 (2021) 100143
The new estimator can be obtained replacing F̄ (x) with ˆ̄Fn(x) in (3.3), so ξ̂J (X) has the following form

ξ̂J (X) = −

∫
+∞

0
x ˆ̄Fn (x) dF̂n (x) = −

1
n

n∑
i=1

(
1 −

i
n

)
X(i). (3.4)

Let J (x) = (1 − x). Then (3.4) has the form

ξ̂J (X) = −
1
n

n∑
i=1

J
(

i
n

)
X(i),

which is a linear function of order statistics. The natural estimation of ξJ (X) based on the MinRSSU, can be obtained as

ξ̂J (Y ) := ξ̂J (XMinRSSU ) = −
1
n

n∑
i=1

J
(

i
n

)
Y(i).

[18] showed that asymptotic distribution of such a linear combination is normal distribution. The results of [18] also
hold if the independent observations are not identically distributed. These properties help us to obtain the asymptotic
distribution of ξ̂J (X) for both SRS (observations are independent and identical) and MinRSSU (observations are only
independent) designs.

Theorem 3.2. Assume that E
(
X2
)
< +∞. Then

√
n
(
ξ̂J (X) − ξJ (X)

) d
→ N

(
0, σ 2 (J, F)

)
,

√
n
(
ξ̂J (Y ) − ξJ (X)

) d
→ N

(
0, σ 2

MinRSSU (J, F̃ , K )
)
,

where

σ 2 (J, F) =

∫
+∞

0

∫
+∞

0
J(F (x))J(F (y))[F (min(x, y)) − F (x)F (y)]dxdy,

σ 2
MinRSSU (J, F̃ , K ) =

∫
+∞

0

∫
+∞

0
J(F̃ (x))J(F̃ (y))K (x, y)dxdy,

and F̃ (.) and K (x, y) are given as

F̃ (x) =
1
m

m∑
i=1

F(1)i(x),

K (x, y) =
1
m

m∑
i=1

[F(1)i(min(x, y)) − F(1)i(x)F(1)i(y)].

Proof. For F̃ (x) and K (x, y), we have

F̃ (x) = lim
n→+∞

l
n

m∑
i=1

F(1)i(x) =
1
m

m∑
i=1

F(1)i(x),

K (x, y) = lim
n→+∞

l
n

m∑
i=1

[F(1)i(min(x, y)) − F(1)i(x)F(1)i(y)]

=
1
m

m∑
i=1

[F(1)i(min(x, y)) − F(1)i(x)F(1)i(y)],

where as before l is the size of the cycle of MinRSSU design with n = ml. The rest of the proof is done by using the results
of [18] for both SRS and MinRSSU designs. □

As we formerly stated for providing the estimator Rm,n, some adjusted forms of estimator ξ̂J (Y ) can be used since
the estimator ξ̂J (Y ) has some deficiencies to estimate CREX which need to be fixed. We again observed that the term(
1 −

i
n

)
needs to be slightly adjusted so that the resulting estimator has optimal properties to estimate CREX. This new

term has the following form

1 −
i

, (3.5)

n + ψ(m, w)

6
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Table 1
The biases and MSEs of the different estimators: Exponential distribution.
m w Results based on Rm,n m w Results based on ξ̂Jm,n(Y )

l = 2 l = 3 l = 2 l = 3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 −2 0.321 0.407 0.370 0.477 2 −11 0.632 0.650 0.536 0.562
−1 0.131 0.354 0.133 0.460 −10 0.402 0.483 0.354 0.427
0 −0.051 0.423 −0.069 0.580 −9 0.263 0.435 0.223 0.370
1 −0.216 0.556 −0.234 0.733 −8 0.171 0.434 0.125 0.361
Rn 0.321 0.407 0.370 0.477 ξ̂J (Y ) 0.402 0.483 0.354 0.427

3 −1 0.124 0.367 0.164 0.304 3 −7 0.033 0.374 0.006 0.307
0 −0.017 0.429 0.040 0.315 −6 0.012 0.382 −0.020 0.317
1 0.124 0.367 0.164 0.304 −5 −0.006 0.391 −0.044 0.328
2 −0.253 0.632 −0.191 0.472 −4 −0.022 0.399 −0.065 0.340
Rn 0.437 0.478 0.411 0.444 ξ̂J (Y ) 0.452 0.489 0.430 0.458

4 0 0.024 0.383 0.118 0.291 4 −3 0.029 0.329 −0.007 0.269
1 −0.077 0.452 0.029 0.313 −2 0.020 0.332 −0.019 0.274
2 −0.170 0.532 −0.057 0.363 −1 0.012 0.334 −0.030 0.278
3 −0.256 0.616 −0.139 0.427 0 0.004 0.337 −0.040 0.283
Rn 0.486 0.509 0.474 0.490 ξ̂J (Y ) 0.509 0.527 0.489 0.503

5 1 −0.004 0.390 0.114 0.281 5 1 0.072 0.277 0.050 0.232
2 −0.082 0.448 0.046 0.296 2 0.067 0.277 0.043 0.233
3 −0.156 0.512 −0.021 0.329 3 0.063 0.278 0.036 0.233
4 −0.224 0.578 −0.085 0.373 4 0.058 0.278 0.030 0.234
Rn 0.533 0.545 0.524 0.532 ξ̂J (Y ) 0.554 0.563 0.540 0.547

where the function ψ(., .) is a challenging factor that can be specifically determined for each given distribution and
onsequently the resulting estimator has optimal low bias and MSE. In this case, the resulting estimator has the following
orm

ξ̂Jm,n(Y ) = −
1
n

n∑
i=1

J
(

i
n + ψ(m, w)

)
Y(i). (3.6)

n the next section, we determine the form of the function ψ(., .) for exponential, uniform and beta distributions and we
how that the optimal choice of this function can reduce the bias and MSE in the estimate of CREX.

.2. Simulation study

In advance, we explain the role of the parameter w and function ψ(m, w) for which Rm,n and ξ̂Jm,n(XMinRSSU ) have
ptimally low bias and MSE. For this purpose, we examine some distributions to obtain the function ψ(m, w) and optimal

value of w in Rm,n and ξ̂Jm,n(Y ). In Tables 1–3, for four estimators Rn, Rm,n, ξ̂J (Y ) and ξ̂Jm,n(Y ), we compute the bias and
MSE to estimate the parameter ξJ (X) for some different values of w. Here, the exponential (Exp (λ)), uniform (Unif (0, b))
and beta (Beta (α, 1) , α > 1) distributions are considered. For each configuration, the simulation study was carried out
with 5000 repetitions. The number of cycle and size of the sample in each cycle are taken as l = 2, 3 and m = 2, . . . , 5,
respectively. We compute the bias and root of MSE (RMSE) of each estimator of parameter ξJ (X). In Tables 1–3, it can be
seen that results of biases and RMSEs of estimator ξ̂J (Y ) are not comparable to those of ξ̂Jm,n(Y ) for different values of
w. We intuitively obtain the form of the function ψ(m, w) for different distributions. We found that the function ψ has
the form 5m− 4km +w with k2 = 3, . . . , k5 = 0, 3m− (2km + 1)+w with k2 = −1, . . . , k5 = 2 and m−w for exponential,
uniform and beta distributions, respectively. It is observed that changing the value of l has no effect on the whole results
verified from biases and RMSEs. In all tables, we see that choosing the proper function ψ(m, w) and parameter w as
the challenging factors can improve the efficiency of estimators Rm,n and ξ̂Jm,n(Y ) against Rn and ξ̂J (Y ), respectively, in
estimating the parameter ξJ .

4. Discrimination information

This section considers a new discrimination measure of disparity between the distribution of MinRSSU and parental
data SRS. [9] defined the discrimination information between the density function of the ith order statistic f(i)m and the
underlying density function f as

Dm
(
f(i)m : f

)
=

1
∫

+∞

f(i)m (x)
(
f(i)m (x)− f (x)

)
dx. (4.1)
2 −∞

7
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Table 2
The biases and MSEs of the different estimators: Uniform distribution.
m w Results based on Rm,n m w Results based on ξ̂Jm,n(Y )

l = 2 l = 3 l = 2 l = 3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 −2 0.360 0.392 0.298 0.333 2 −4 0.098 0.275 0.058 0.227
−1 0.249 0.305 0.212 0.264 −3 0.045 0.281 −0.001 0.236
0 0.158 0.253 0.134 0.214 −2 0.005 0.293 −0.049 0.254
1 0.085 0.233 0.066 0.186 −1 −0.026 0.306 −0.088 0.275
Rn 0.360 0.392 0.298 0.333 ξ̂J (Y ) 0.284 0.340 0.238 0.293

3 −1 0.191 0.243 0.201 0.237 3 −2 −0.006 0.247 −0.023 0.200
0 0.125 0.204 0.147 0.196 −1 −0.026 0.255 −0.047 0.209
1 0.067 0.183 0.096 0.165 0 −0.043 0.263 −0.068 0.220
2 0.016 0.181 0.055 0.148 1 −0.058 0.270 −0.087 0.231
Rn 0.349 0.372 0.318 0.339 ξ̂J (Y ) 0.318 0.350 0.290 0.317

4 0 0.14 0.195 0.175 0.204 4 0 −0.012 0.205 −0.008 0.164
1 0.092 0.171 0.135 0.173 1 −0.023 0.209 −0.021 0.168
2 0.049 0.159 0.098 0.148 2 −0.034 0.213 −0.034 0.172
3 0.018 0.159 0.062 0.131 3 −0.043 0.217 −0.046 0.177
Rn 0.372 0.387 0.349 0.360 ξ̂J (Y ) 0.352 0.369 0.337 0.350

5 1 0.116 0.17 0.175 0.198 5 2 0.020 0.181 0.028 0.146
2 0.079 0.153 0.144 0.172 3 0.013 0.183 0.019 0.146
3 0.044 0.144 0.114 0.150 4 0.006 0.184 0.010 0.147
4 0.012 0.144 0.085 0.132 5 −0.001 0.186 0.002 0.148
Rn 0.392 0.401 0.381 0.388 ξ̂J (Y ) 0.387 0.398 0.375 0.383

Table 3
The biases and MSEs of the different estimators: Beta distribution.
m w Results based on Rm,n m w Results based on ξ̂Jm,n(Y )

l = 2 l = 3 l = 2 l = 3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 −2 0.296 0.298 0.276 0.279 2 −3 0.202 0.204 0.146 0.149
−1 0.280 0.283 0.264 0.267 −2 0.108 0.116 0.081 0.089
0 0.267 0.271 0.253 0.257 −1 0.053 0.070 0.035 0.055
1 0.257 0.261 0.244 0.248 0 0.015 0.053 0.000 0.045
Rn 0.296 0.298 0.276 0.279 ξ̂J (Y ) 0.108 0.116 0.081 0.089

3 −1 0.251 0.255 0.238 0.242 3 −3 0.096 0.102 0.079 0.085
0 0.241 0.245 0.230 0.234 −2 0.052 0.064 0.045 0.056
1 0.233 0.238 0.222 0.227 −1 0.019 0.045 0.017 0.039
2 0.225 0.231 0.216 0.221 0 −0.007 0.043 −0.006 0.037
Rn 0.275 0.278 0.256 0.259 ξ̂J (Y ) 0.096 0.102 0.079 0.085

4 0 0.227 0.231 0.218 0.222 4 −3 0.059 0.068 0.056 0.063
1 0.220 0.225 0.212 0.216 −2 0.031 0.047 0.033 0.044
2 0.214 0.219 0.206 0.211 −1 0.007 0.038 0.013 0.033
3 0.208 0.213 0.201 0.206 0 −0.012 0.041 −0.004 0.031
Rn 0.264 0.267 0.246 0.249 ξ̂J (Y ) 0.095 0.100 0.082 0.087

5 1 0.217 0.221 0.210 0.214 5 −3 0.043 0.053 0.047 0.054
2 0.211 0.216 0.205 0.209 −2 0.022 0.039 0.030 0.040
3 0.206 0.210 0.200 0.204 −1 0.004 0.034 0.015 0.031
4 0.201 0.205 0.196 0.201 0 −0.012 0.036 0.002 0.028
Rn 0.257 0.259 0.239 0.242 ξ̂J (Y ) 0.097 0.101 0.088 0.091

Analogously to (4.1), we define the discrimination information between the survival function of the smallest ordered
statistic F̄(1)i and the underlying survival function F̄ as

D
(
F̄(1)i : F̄

)
= −

1
2

∫
+∞

−∞

F̄(1)i (x)
(
F̄(1)i (x)− F̄ (x)

)
dx. (4.2)

he discrimination information in (4.2) may be rewritten in a simpler way. It can be shown that

D
(
F̄(1)i : F̄

)
= −

1
2

[
E(X(1)2i) − E(X(1)i+1)

]
, (4.3)

here X(1)j is the smallest order statistic in a random sample of size j.
8
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Example 4.1. Let U ∼ Uniform(0, 1). We know that the order statistics from the standard uniform distribution follow
he beta distribution. Then discrimination information based on (4.2) is

D
(
F̄(1)i : F̄

)
= −

1
2

[
1

2i + 1
−

1
i + 2

]
=

i − 1
2 (2i + 1) (i + 2)

.

In the following theorem, we obtain the discrimination information D between MinRSSU and SRS designs.

heorem 4.1. For X (m)
MinRSSU and X (m)

SRS , we have

D
(
X (m)

MinRSSU : X (m)
SRS

)
= −

1
2

(
m∏
i=1

E
(
X(1)2i

)
−

m∏
i=1

E
(
X(1)i+1

))
.

Proof. From (2.1) and (4.2) we have

D
(
X (m)

MinRSSU : X (m)
SRS

)
= −

1
2

(
m∏
i=1

∫
+∞

−∞

F̄ 2i (x1)−

m∏
i=1

∫
+∞

−∞

F̄ i+1 (x1)

)

= −
1
2

(
m∏
i=1

E
(
X(1)2i

)
−

m∏
i=1

E
(
X(1)i+1

))
.

The proof is completed. □

Example 4.2. Let U ∼ Uniform(0, 1). Using the results of Example 4.1, the discrimination information D for the MinRSSU
and SRS designs of the same size m is

D
(
U (m)

MinRSSU : U (m)
SRS

)
= −

1
2

(
m∏
i=1

1
2i + 1

−

m∏
i=1

1
i + 2

)
.

5. Conclusion

This paper has introduced the uncertainty measure of the cumulative residual extropy based on the MinRSSU and SRS
data. Several results of the CREX measure including stochastic orders were obtained for MinRSSU and SRS data. Also, we
provided two estimators of CREX measure for both SRS and MinRSSU data. Furthermore, it was shown that MinRSSU
scheme can efficiently reduce the uncertainty measure of CREX. Also, by providing a discrimination measure, we derived
the distance size between MinRSSU and SRS data.
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