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Summary 42 

 43 

The established risk factors of coronavirus disease 2019 (COVID-19) are advanced age, male 44 

sex and comorbidities, but they do not fully explain the wide spectrum of disease 45 

manifestations. Genetic factors implicated in the host antiviral response provide for novel 46 

insights into its pathogenesis. 47 

We performed an in-depth genetic analysis of chromosome 21 exploiting the genome-wide 48 

association study data, including 6,406 individuals hospitalized for COVID-19 and 902,088 49 

controls with European genetic ancestry from the COVID-19 Host Genetics Initiative. We 50 

found that five single nucleotide polymorphisms within TMPRSS2 and near MX1 gene show 51 

associations with severe COVID-19. The minor alleles of the five SNPs correlated with a 52 

reduced risk of developing severe COVID-19 and high level of MX1 expression in blood.  53 

Our findings demonstrate that host genetic factors can influence the different clinical 54 

presentations of COVID-19 and that MX1 could be a potential therapeutic target. 55 

  56 
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Introduction 57 

 58 

The recent severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) pandemic has 59 

caused so far more than over 2.5 million deaths (https://covid19.who.int/). The coronavirus 60 

disease 2019 (COVID-19), caused by the SARS-Cov-2, is associated with diverse clinical 61 

presentations, ranging from asymptomatic or mildly symptomatic infections to respiratory 62 

failure and death (Bellani et al., 2021; Grasselli et al., 2021; Grasselli et al., 2020; Richardson 63 

et al., 2020). Advanced age is an established risk factor, as well as male sex and 64 

comorbidities such as hypertension and diabetes (Zhou et al., 2020). Since these risk factors 65 

do not fully explain the wide spectrum of disease manifestations, dissecting the genetics of 66 

the host response to SARS-CoV-2 infection may provide novel insights into its pathogenesis 67 

(Anastassopoulou et al., 2020).  68 

A genome-wide association study (GWAS) (Ellinghaus et al., 2020) identified two 69 

susceptibility loci of severe COVID-19: the first locus on chromosome 3 harbors multiple 70 

genes (SLC6A20, LZFTL1, CCR9, CXCR6, XCR1, FYCO1) that could be functionally 71 

implicated in COVID-19 pathology; the second on chromosome 9 that defines the ABO 72 

blood groups (Ellinghaus et al., 2020). Other very recent papers reported the results from the 73 

analysis of two large independent GWASs that validated the two previous risk loci and found 74 

novel risk variants at chromosome 19p13.3, 12q24.13, and 21q22.1 associated with severe 75 

COVID-19 (Pairo-Castineira et al., 2020; Shelton et al., 2020).  76 

Two whole exome sequencing studies showed that inactivating rare mutations in genes 77 

belonging to the type I interferon pathway predispose to life-threatening COVID-19 78 

pneumonia (van der Made et al., 2020; Zhang et al., 2020). Addionally, preliminary results 79 

on a small set of Italian cases suggest that coding variants in TMPRSS2 and PCSK3 may 80 

contribute to the variability in infection susceptibility and severity.(Latini et al., 2020).  81 

In our previous opinion article, based on the analysis of allele frequencies across different 82 

populations and expression quantitative triat loci (eQTLs) data, we hypothesized that 83 

common variants on chromosome 21 near TMPRSS2 and MX1 genes may be genetic risk 84 

factors associated with the COVID-19 different clinical manifestations (Russo et al., 2020). 85 

Both TMPRSS2 and MX1 are involved in the host response to SARS-CoV-2 infection. ACE2 86 

is the main entry receptor for SARS-CoV-2 (Wang et al., 2020). Entry depends on the 87 

binding of the surface unit S1 of the spike (S) protein of the virus to the receptor. SARS-88 

CoV-2 engages ACE2 as the entry receptor and employs the host cellular TMPRSS2 for S-89 
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protein priming (Hoffmann et al., 2020b; Matsuyama et al., 2010). Particurarly, binding of 90 

SARS-CoV-2 S- protein with ACE2 receptor is then followed by host TMPRSS2-mediated 91 

cleavage of the viral S-protein. This process, defined as priming, involves cleavage of the S-92 

protein at S1/S2 and S2 sites which is essential for the viral fusion with the host cell 93 

membrane before entry into the cell (Hoffmann et al., 2020b; Matsuyama et al., 2020). 94 

SARS-CoV-2 can use other proteases such as cathepsin B/L for S-protein in the absence of 95 

TMPRSS2 receptors. However, in the lungs (the primary organ for SARS-CoV-2 infection), 96 

cathepsin B/L cannot substitute for TMPRSS2 protease activity as the latter is indispensable 97 

for viral entry as observed for SARS-CoV and MERS-CoV (Hoffmann et al., 2020a). MX1 is 98 

an interferon-α/β inducible gene that encodes a guanosine triphosphate metabolizing protein 99 

involved in the cellular antiviral response (Ciancanelli et al., 2016). 100 

In this study, to further support our hypothesis, we exploited GWAS meta-analysis data from 101 

the COVID-19 Host Genetics Initiative (COVID-19 Host Genetics Initiative, 2020) and 102 

performed an in-depth genetic analysis of chromosome 21 using summary statistics where 103 

common variants at this chromosome were associated with severe COVID-19 at the genome-104 

wide significance level (P≤5×10-8). Using the cohort of 908,494 subjects with European 105 

origins, we found five single nucleotide polymorphisms (SNPs) at the TMPRSS2/MX1 locus 106 

showing suggestive association with the disease. All five SNPs replicated the association in 107 

two independent cohorts of Asian subjects, whereas two SNPs confirmed the association in 108 

African and one SNP in the Italian cohort. Significant eQTLs signals were found for the MX1 109 

gene in blood.  110 
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Results 111 

TMPRSS2/MX1 locus is associated with severe COVID-19 112 

To prove that common variants at TMPRSS2/MX1 (21q22.3) locus may affect the 113 

susceptibility to severe COVID-19 onset, we analyzed the summary statistics of a large 114 

available GWAS dataset released by the COVID-19 Host Genetics Initiative (COVID-19 115 

Host Genetics Initiative, 2020). The dataset includes 6,406 hospitalized cases and 902,088 116 

controls with European ancestry (“Table S1. Study groups that have contributed to GWAS 117 

meta-analyses of the COVID-19 Host Genetics Initiative, Related to Figure 1”). A region on 118 

chromosome 21 appears to be significantly associated with severe COVID-19 at the genome-119 

wide level (https://www.covid19hg.org/results/) as also demonstrated in a recently published 120 

GWAS study (Pairo-Castineira et al., 2020). To investigate whether more than one 121 

association signals may exist at chromosome 21, we selected 74 SNPs showing a P≤1×10-5 122 

and we identified 3 independent loci among them (“Table S2. Summary statistics at 123 

chromosome 21 from GWAS dataset, Related to Figure 1). The most significant signal was 124 

represented by rs13050728 (P=2.76×10-12, OR=0.83, Figure 1a) that maps within the 125 

INFRA2 gene. The other two signals showed a suggestive significance level (P≤1×10−5) and 126 

were tagged by rs111783124 (P=2.39×10-6, OR=1.17, Figure 1b) and rs3787946 127 

(P=2.73×10-6, OR=0.87, Figure 1c), respectively. The rs3787946 maps in an intronic region 128 

of TMPRSS2 and the first closest gene was MX1 (Figure 1c); herein, we named this locus as 129 

“TMPRSS2/MX1”. An in-depth inspection of the TMPRSS2/MX1 locus showed that 13 SNPs 130 

were in linkage disequilibrium (LD) with the lead rs3787946 (r2>0.8, Table 1) and that the 5 131 

most significant SNPs (P-values ranging from 2.7×10-6 to 5.8×10-6, Table 1) were in strong 132 

LD with each other (r2>=0.90, “Figure S1. Linkage disequilibrium block at TMPRSS2/MX1 133 

locus, Related to Figure 1”). The other 9 SNPs showed an LD with the lead SNP rs3787946 134 

ranging from 0.8 to 0.9 and P-values ranging from 6×10-4 to 0.04 (Table 1). We then sought 135 

to replicate the associations of the 14 SNPs in three independent cohorts of cases and controls 136 

of GenOMMIC GWAS (Pairo-Castineira et al., 2020) with non-European ancestry. All the 11 137 

available SNPs replicated in the east asian population (EAS) population; the top five SNPs 138 

replicated in the South Asian (SAS) ancestry population, whereas two out of five SNPs in the 139 

African (AFR) one (Table 1). By using the TaqMan assay, we typed the rs12329760 variant 140 

in samples from 226 hospitalized COVID-19 patients (“Table S3. Characteristics of Italian 141 

patients recruited by our research group, Related to Table 1”) and 1848 controls from 142 

Southern Italy collected in our Institute. An additional Italian cohort of 1915 controls and 770 143 
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cases, typed for rs12329760 by whole-exome sequencing, was obtained from the Network for 144 

Italian Genomes (NIG) database (Daga et al., 2021). After combining the two cohorts, we 145 

confirmed the minor allele as a protective factor against the aggressive form of the disease 146 

(Table 2, ORallele=0.89, Pallele=0.07; ORdominant=0.57, P=0.01; ORCCvsTT=0.57, P=0.01). The 147 

results of our case-control study suggest that the protective effect against the severity of 148 

COVID-19 is mainly due to the TT genotype. 149 

 150 

SNPs at TMPRSS2/MX1 locus are enriched in regulatory regions active in the thymus 151 

We tested if the 14 SNPs (Table 1) and their proxy SNPs (r2>0.8) were significantly over-152 

represented in active enhancers and promoters in multiple cell types and tissues by using 153 

HaploReg v4.1. These SNPs were enriched in the regulatory regions of several tissues 154 

(“Table S4. Results of SNP enrichment analysis in regulatory elements in different tissues 155 

and cell types, Related to Figure 2”), but the best enrichment was found in induced 156 

pluripotent stem cells and thymus (Figure 2a). 157 

 158 

Functional role of the most significant SNPs at TMPRSS2/MX1 locus 159 

We then investigated the predicted functional role of the 14 SNPs by GWAVA and CADD 160 

tools. We found that two out of the five most significant SNPs, i.e. rs9983330 and 161 

rs12329760, showed the first (combined score=26) and second (combined score=23) most 162 

significant score (Table 1). The rs12329760 was classified as a coding variant (p.Val197Met) 163 

localized in the exon 6 of the TMPRSS2 gene and was predicted to be pathogenic (PolyPhen-164 

2=probably damaging and SIFT=deleterious).  165 

 166 

The most significant disease-associated SNPs are eQTLs for MX1 in blood 167 

We verified if the top five SNPs (Table 1) might cause gene expression alterations 168 

interrogating the GTEx portal for all the common variants within TMPRSS2/MX1 locus. We 169 

found that all the top five SNPs had eQTL signals for MX1 exclusively in blood tissue. 170 

Particularly, the minor alleles of these SNPs correlated with higher expression of MX1 171 

compared to the major alleles (Figure 2b, “Figure S2a. Results of SNP enrichment analysis 172 

in regulatory elements in different tissues and cell types, Related to Figure 2”). Of note, all 173 

the other SNPs, except for rs2298660, did not have eQTL signals for MX1 in the blood 174 

(“Table S5. Results of eQTL analysis for the common variants at TMPRSS2/MX1 locus, 175 

Related to Figure 2). The two SNPs rs12329760 and rs2298660 were confirmed as eQTLs for 176 

MX1 in the blood (P=1.79×10-6 and 2.8×10-6, minor alleles correlated with a higher 177 
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expression compared to the major alleles) by interrogation of another independent publicly 178 

available dataset (Westra et al., 2013). TMPRSS2 is highly expressed in lung (Russo et al., 179 

2020), so we investigated if the top five SNPs were eQTLs for TMPRSS2 in lung tissues at a 180 

nominally statistically significant level (P≤0.05). We found that the minor alleles of four out 181 

of five SNPs correlated with lower expression of TMPRSS2 compared to the major alleles 182 

(Figure 2c and “Figure S2b. Results of SNP enrichment analysis in regulatory elements in 183 

different tissues and cell types, Related to Figure 2”). Notably, rs12329760 is also an eQTL 184 

for TMPRSS2 in osteoblasts treated with dexamethasone (Grundberg et al., 2011). 185 

  186 
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Discussion 187 

Despite the substantial advances made in recent months in the field of SARS-CoV-2 188 

infection, the major question remains about the identification of the factors that modulate the 189 

variable clinical spectrum of COVID-19. 190 

Host genetic risk factors are emerging as a potential explanation for the clinical heterogeneity 191 

of COVID-19 and are also crucial to find new druggable therapeutic targets (Asselta et al., 192 

2020; Beck and Aksentijevich, 2020; Benetti et al., 2020; Pairo-Castineira et al., 2020; Singh 193 

et al., 2020). The main host cell entry factors of SARS-CoV-2 are ACE2 and TMPRSS2 194 

(Asselta et al., 2020; Benetti et al., 2020). The spike (S) glycoprotein of the virus binds to the 195 

ACE2 making it essential for the entry of the virus into the host cell. S- protein priming by 196 

the serine protease TMPRSS2 allows the fusion of viral and cellular membranes, resulting in 197 

virus entry and replication in the host cells (Singh et al., 2020). TMPRSS2 is emerging as a 198 

host cell factor that is critical for SARS-CoV-2 infection (Hoffmann et al., 2020b).  199 

In our previous study, we hypothesized that common variants at chromosome 21, driving 200 

TMPRSS2 and MX1 expression, might have a mild-to-moderate effect on the susceptibility to 201 

SARS-CoV-2 infection. Particularly, genetic variants associated with reduced TMPRSS2 and 202 

elevated MX1 expression might confer less individual susceptibility to SARS-CoV-2 203 

infection and favor a better outcome (Russo et al., 2020). Here, to further support our 204 

hypothesis, we exploited GWAS data of a cohort of 908,494 subjects with European origins 205 

from the COVID-19 Host Genetics Initiative (COVID-19 Host Genetics Initiative, 2020) and 206 

performed an in-depth genetic analysis of chromosome 21. We identified five common 207 

variants (rs3787946, rs9983330, rs12329760, rs2298661, and rs9985159) at locus 21q22.3 208 

within TMPRSS2 and near the MX1 gene that showed suggestive associations with severe 209 

COVID-19. In particular, we found that the alleles with minor frequency were less recurrent 210 

among hospitalized patients when compared to the control individuals, suggesting their 211 

protective role against the progression of the disease. Interestingly, all five SNPs were 212 

replicated in two cohorts of Asian origin, whereas two SNPs replicated in a case series of 213 

African ancestry. Additionally, we replicated the association of the rs12329760 SNP in an 214 

independent case-control cohort of Italian origin. As “proof of concept”, the rs12329760 SNP 215 

was also detected in recent studies (Hou et al., 2020; Vargas-Alarcon et al., 2020). It was 216 

demonstrated that the SNP, in addition to its eQTL role, decreased the stability of the protein, 217 

which might impede viral entry (Vishnubhotla et al., 2020); moreover, in silico analysis 218 

demonstrated that it created a de novo pocket protein (Paniri et al., 2020). These results 219 

Jo
urn

al 
Pre-

pro
of



9 

 

confirm 21q22.3 as a novel susceptibility locus to unfavorable outcome of COVID-19. 220 

Furthermore, molecular mechanisms underlying this genetic predisposition may be common 221 

among individuals with different ethnicity. 222 

The results from our enrichment analysis for regulatory genomic regions suggested that the 223 

identified SNPs and other proxy SNPs located at 21q22.3 locus can be associated with 224 

different outcomes of COVID-19 by altering DNA elements that regulate the transcription of 225 

MX1 and likely of other genes relevant to the thymus functions. The thymus plays a 226 

significant role in the regulation of adaptive immune responses. The effect of aging on the 227 

thymus and immune senescence is well established, and the resulting inflammaging is found 228 

to be implicated in the development of many chronic diseases (Gunes et al., 2020; Kellogg 229 

and Equils, 2020). Both aging and diseases of inflammaging are associated with severe 230 

COVID-19, and a dysfunctional thymus may be implicated in the unfavorable outcome of 231 

disease (Gunes et al., 2020; Kellogg and Equils, 2020). Of note, MX1 plays an important role 232 

in the thymus as part of the innate antiviral immune response. Indeed, it is exclusively 233 

expressed after engagement of the type I interferon receptor by interferon-α/β in normal fetal 234 

and post-natal human thymus, but not in the periphery. The highest level of MX1 is properly 235 

found in mature thymocytes (Colantonio et al., 2011). 236 

The five SNPs here identified had eQTL signals for MX1 exclusively in blood tissue. 237 

Particularly, the minor allele of these SNPs correlated with higher expression of MX1 and 238 

associated with a minor risk of developing severe COVID-19. These results support the 239 

evidence that MX1 can play a relevant role in determining less severe forms of disease and 240 

are in line with a recent study that suggests MX1 as an antiviral effector against SARS-CoV-2 241 

(Bizzotto et al., 2020). Indeed, the expression of MX1 was found to be high in SARS-CoV-2 242 

positive subjects, negatively correlated with age, and independently associated with increased 243 

viral load (Bizzotto et al., 2020). MX1 is part of the antiviral response induced by type I and 244 

III interferons (Zav'yalov et al., 2019). Inactivating mutations in genes belonging to type I 245 

interfern pathway and the consequently decreased levels of proteins have been shown to 246 

occur in patients with severe COVID-19 (Zhang et al., 2020). 247 

Of note, within the region on chromosome 21, significantly associated with severe COVID-248 

19 at the genome-wide level, the most significant signal was represented by rs13050728 that 249 

maps within the INFRA2 gene. Particurarly, INFRA2 gene encodes for the type I membrane 250 

protein that forms the interferon-α/β receptor, involved in the canonical host antiviral 251 

signalling mediators (Duncan et al., 2015), so associated with interferon signlalling like 252 

MX1. The SNP rs13050728 was previously identified as lead variant from the meta-analysis 253 
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of overlapping SNPs between GenOMICC, The COVID-19 Host Gentics Initiative and 254 

23andMe studies and its allele C was reported to reduce the odds of severe COVID-19 as 255 

associated with an increased expression of IFNAR2 (Pairo-Castineira et al., 2020). These 256 

findings, along with ours, further strength the protective role of IFN pathway against severe 257 

COVID-19. 258 

We also report that the minor allele of four of the top five SNPs might reduce the expression 259 

of TMPRSS2 in lung tissues. In particular, the rs12329760 coding variant (p.Val197Met) is 260 

predicted to decrease the TMPRSS2 protein stability and ACE2 binding, thus decreasing 261 

virus entry into the cells (Vishnubhotla et al., 2020). Of note, this variant was recently found 262 

to be less frequent among Chinese patients with critical COVID-19 disease (Wang et al., 263 

2020). Additionally, it correlates with lower expression of TMPRSS2 in osteoblast treated 264 

with dexamethasone (Grundberg et al., 2011), a drug currently used to inhibit an excessive 265 

inflammation response (Group et al., 2020). Together, these data suggest that even the 266 

functions of TMPRSS2 may be affected by the occurrence of protective variants against 267 

severe COVID-19. 268 

Finally, we want to point out that our findings highlight the effectiveness of investigating 269 

other independent (putative) risk loci, when they do not pass genome-wide significance 270 

levels. These loci, usually overlooked in extensive meta-analysis and multi-cohorts efforts, 271 

might indeed contain important genetic variants associated with severe COVID-19 and map 272 

genes relevant to the pathogensis of this disease. We then encourage post-GWAS genetic 273 

(re)analyses using multiple data sources to unravel novel COVID-19 risk loci and possible 274 

insights on the underlying biology. 275 

In conclusion, our results provide evidence that common variants, regulating the expression 276 

of MX1, can predispose to the risk of developing severe COVID-19. Unraveling the role of 277 

regulatory variants at the TMPRSS2/MX1 locus could represent an important starting point 278 

for the treatment of COVID-19. 279 

 280 

Limitations of the Study 281 

The data on eQTLs related to TMPRSS2 must be interpreted with caution as these eQTL 282 

signals in the lung (P=0.019) do not pass the GTEx significance threshold adjusted for 283 

multiple comparisons (0.000055). Additional studies are required to further verify the role of 284 

genetic variants at TMPRSS2/MX1 locus in modulating the TMPRSS2 expression. 285 

Furthermore, the statistical approach adopted in this study did not include multivariate 286 

analyses to take into account confounding factors. Although this limitation does not affect the 287 
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robustness of the presented genetic associations as replicated in multiple indipendent cohorts, 288 

we believe that future studies will help to better define the effect of genetic variants at 289 

TMPRSS2/MX1 locus on the clinical subgroups of COVID-19 disease; for instance, 290 

performing association analyses on patients stratified by disease aggressiviness or controlled 291 

for comorbidities in larger cohorts. 292 

  293 
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All methods can be found in the accompanying “Transparent methods supplemental 294 

file”. 295 

 296 

Resource availability  297 

Further information and requests for resources should be directed to and will be fulfilled by 298 

the Lead Contact, Prof. Mario Capasso, mario.capasso@unina.it.  299 

 300 

Material availability  301 

This study did not generate nor use any new or unique reagents.  302 

 303 

Data and code availability 304 

Manhattan plot and QQ plot of the results from the large GWAS “The COVID-19 Host 305 

Genetics Initiative website” are available at the website (https://www.covid19hg.org/results/). 306 

The 770 hospitalized COVID-19 cases and 1915 controls typed for rs12329760 by whole-307 

exome sequencing were retrieved from the web database Network for Italian Genomes (NIG) 308 

available at the website (http://nigdb.cineca.it/index.php). 309 

Prediction of the functional impact of 14 SNPs at TMPRSS2/MX1 locus was assessed by 310 

Genome Wide Annotation of VAriants (GWAVA) tool available at the website 311 

(htts://www.sanger.ac.uk/sanger/StatGen_Gwava) and by Combined Annotation Dependent 312 

Depletion (CADD) tool at (https://cadd.gs.washington.edu/). 313 

The Blood eQTL Browser is available at (https://www.genenetwork.nl/bloodeqtlbrowser/). 314 

 315 
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Figure legends 457 

 458 

Figure 1. Regional association plots of the SNPs at three independent association signals 459 

of chromosome 21. Plots were generated using LocusZoom. Y‐axes represent the 460 

significance of association (−log10 transformed P values) and the recombination rate. SNPs 461 

are color‐coded based on pair‐wise linkage disequilibrium (r2) with indicated lead SNPs: 462 

rs13050728 (panel a), rs111783124 (panel b) and rs3787946 (panel c). 463 

 464 

Figure 2. Enrichment of SNPs in regulatory regions and eQTL analyses. The statistically 465 

significant fold enrichments (P<0.05 after Bonferroni correction) of SNPs in regulatory DNA 466 

regions active in different tissues are shown (a). eQTL violin plots between genotypes of 467 

rs3787946 (b) and rs3787946 (c) with MX1 and TMPRSS2 expression from the from the 468 

Genotype-Tissue Expression (GTEx). The significance threshold adjusted for multiple 469 

comparisons is equal to 0.000055. 470 

 471 
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Table 1. Associations of SNPs at TMPRSS2/MX1 risk locus in linkage disequilibrium with the lead rs3787946 in different 
populations and prioritization scores  

RS number EA  OA MAF r2 OR P_EUR OR P_EAS OR P_SAS OR P_AFR *Region 
score 

*TSS 
score 

^Predicted 
Function ^Score  °Combined 

score 

rs3787946 C G 0.23 1.00 0.87 2.73E-06 0.63 0.026 0.71 0.02 0.74 0.07 0.16 0.29 INTRONIC 2 6 

rs9983330 G A 0.23 0.91 0.88 3.12E-06 0.54 0.004 0.73 0.04 0.79 0.16 0.31 0.64 REGULATORY 4 26 

rs12329760 T C 0.24 0.90 0.88 3.13E-06 0.64 0.029 0.76 0.08 0.78 0.14 0.32 0.41 MISSENSE 7 23 

rs2298661 A C 0.23 0.99 0.88 4.51E-06 0.63 0.030 0.67 0.01 0.60 0.01 0.18 0.35 INTRONIC 2 9 

rs9985159 T C 0.23 0.98 0.88 5.80E-06 0.61 0.018 0.75 0.06 0.98 0.89 0.16 0.46 INTRONIC 2 15 

rs2298660 T C 0.20 0.82 0.88 0.001 NA NA NA NA NA NA 0.12 0.28 INTRONIC 2 4 

rs7364088 A G 0.26 0.84 0.91 0.002 NA NA NA NA NA NA 0.19 0.23 INTRONIC 2 6 

rs2298663 T C 0.25 0.87 1.08 0.005 1.49 0.052 1.12 0.40 0.94 0.66 0.26 0.37 REGULATORY 4 15 

rs2094881 C T 0.25 0.87 1.08 0.005 1.47 0.058 1.10 0.47 0.93 0.60 0.29 0.26 REGULATORY 4 13 

rs8131649 T C 0.25 0.85 0.92 0.007 0.64 0.035 0.90 0.46 1.01 0.93 0.26 0.35 REGULATORY 4 12 

rs8134203 T C 0.26 0.85 1.08 0.007 1.49 0.058 1.09 0.54 0.91 0.50 0.26 0.41 REGULATORY 4 17 

rs8134216 T C 0.26 0.85 1.08 0.007 1.54 0.038 1.11 0.43 0.91 0.49 0.28 0.4 REGULATORY 4 19 

rs2104810 A G 0.26 0.85 1.08 0.008 1.54 0.040 1.10 0.47 0.90 0.48 0.23 0.35 REGULATORY 4 11 

rs8131648 C T 0.26 0.85 1.07 0.036 NA NA NA NA NA NA 0.33 0.42 REGULATORY 4 26 

*Scores from GWAVA predictor tool 
^Scores from CADD predictor tool 
°GWAVA and CADD scores were ranked from the smallest to largest and the obtained values were summed 
In bold the SNPs that replicated in at least one cohort 
EA: Effect Allele; OA: Other Allele 
EUR: Europen; EAS: East Asian; SAS: South Asian; AFR: African; ITA: Italian 
MAF: minor allele frequency 
OR: Odds Ratio 
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Table 2. Association of rs12329760 SNP with severe COVID-19 in Italian population 

 
SI cases 
n=226 

SI controls 
n=1848 

NIG cases 
n=770 

NIG 
controls 
n=1915 

All cases 
n=996 

All controls 
n=3763 PSI 

  
OR (CI: 95%) 
  

PNIG 
  

OR (CI: 95%) 
  

PAll  
  

OR (CI: 95%) 
  

 
n % n % n % n % n % n % 

Genotype 

CC 164 72.6 1274 68.9 532 69.1 1289 67.3 696 69.9 2563 68.1 - 
 

- 
 

-   
CT 57 25.2 497 26.9 220 28.6 554 28.9 277 27.8 1051 27.9 0.47 0.89 (0.64-1.22) 0.68 0.96 (0.79-1.15) 0.71 0.97 (0.83-1.13) 
TT 5 2.2 77 4.2 18 2.3 72 3.8 23 2.3 149 4.0 0.14 0.50 (0.20-1.26) 0.06 0.60 (0.35-1.02) 0.01 0.57 (0.36-0.89) 

Allele 

C 385 85.2 3045 82.4 1284 83.4 3132 81.8 1669 83.8 6177 82.1 -  -   -   
T 67 14.8 651 17.6 256 16.6 698 18.2 323 16.2 1349 17.9 0.14 0.81 (0.62-1.07) 0.16 0.89 (0.76-1.04) 0.07 0.89 (0.78-1.01) 

Dominant 

CC/CT 221 97.8 1771 95.8 752 97.7 1843 96.2 973 97.7 3614 96.0 -  
 

-  
 

-    
TT 5 2.2 77 4.2 18 2.3 72 3.8 23 2.3 149 4.0 0.15 0.52 (0.20-1.30) 0.06 0.61 (0.36-1.03) 0.01 0.57 (0.37-0.89) 

Recessive  

CC 159 70.4 1274 68.9 532 69.1 1289 67.3 691 69.4 2563 68.1 -  
 

-  
 

-    
CT/TT 62 27.4 574 31.1 238 30.9 626 32.7 300 30.1 1200 31.9 0.26 0.84 (0.61-1.14) 0.37 0.92 (0.76-1.10) 0.28 0.92 (0.79-1.07) 
NIG: Network for Italian Genomes 
OR: odds ratio; CI: Confidence Interval  
SI: Southern Italy 
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Highlights 

 

- Genetic analysis was performed on 7,970 individuals hospitalized for COVID-19. 

- Five SNPs within TMPRSS2/MX1 locus (chr.21) are associated with severe COVID-19. 

- The minor alleles of the five SNPs correlated with high level of MX1 expression in blood.  

- MX1 could be a potential therapeutic target in patients with COVID-19. 
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