ANALYTICAL METHOD FOR DESIGN OF FIRE RESISTANCE OF STEEL STRUCTURAL ELEMENTS

Flavia Fascia¹*, Renato Iovino² and Emanuele La Mantia²

1: Department of Architecture University of Naples Federico II Piazzale Tecchio, Naples - Italy e-mail: fascia@unina.it

2: Telematic University Pegaso Piazza Trieste e Trento, Naples - Italy e-mail: renato.iovino@unipegaso.it; e-mail: emanuele8510@hotmail.it

Keywords: Housing Safety

Abstract The engineering approach in the design of fire prevention allows the engineer to study fire prevention solutions that do not meet the requirements of the Rules provided that they ensure the same level of fire safety.

To design interventions appropriate to ensure the fire resistance of structures, and in particular for the steel structures, the performance approach of the Rules requires the adoption of predefined solutions as a function only of the structural material and the required fire resistance.

The performance approach of the Norms, therefore, does not take into account the loads acting on the structural element and the critical temperature, which is the temperature at which the load that can be worn in hot equals the exercise load.

Often, during the design phase, some of the requirements of rules are difficult, if not impossible to meet. A practical example is that of a restoration project of a historic building, for which interventions are required non-invasive, reversible and compatible.

In this paper it is presented a study that enables you to design interventions appropriate to ensure the fire resistance of structural elements with an analytical method and, therefore, with an engineering approach. In particular, according to the fire scenario adopted, the analytical method proposed allows to determine the critical temperature of the structural element under study, depending on the working load, the resistant section and solicitation of project.

Subsequently, depending on the critical temperature and the required fire resistance, it is possible to design the appropriate fire-fighting interventions.

1. INTRODUCTION

With the law of 09.05.2007 Italian legislature, for the first time, introduces the engeneer approach in fire safety of building. Next to the prescriptive policy, ampiously applied in Italy, is thus present in firefighting regulatory framework introduced the criterion of performance of engineering approach [1].

With the engineering approach, the designer, using models and rigorous calculation procedures, plays what are the possible scenarios of fire that the building will face. Based on these scenarios, the designer will choose the most suitable design solutions, demonstrating the safety objectives set.

Calculation methods of structural fire resistance performance are based on the concept of the section reduced to hot, intending for reduced to heat section steel or concrete) that section able to equilibrate with its resistance to cold stress that can balance the section with its heat resistance [2].

2. CALCULATION OF THE FIRE RESISTANCE OF STEEL STRUCTURES

The design of fire-resistant steel structures with the analytical method must be checked in general that the carrying capacity last temperature θP_{θ} , is greater than the working load Pe[3]:

$$P_{\theta} > P_{e} \qquad (1)$$

For the determination of P_{θ} it is necessary to know the temperature θ of the material as a result of exposure to fire for a time t, the reduction factor of compressive elastic modulus reduction factor Φ_c and Φ_E .

In the most general case, proceed with the following step:

- identifying the law of variation of ambient temperature (T) as a function of time (t) of exposure to fire: T = f (t)
- identifying the law of temperature change of material (θ) as a function of time (t) of exposure to fire: $\theta = f(T) = f(t)$
- identifying the law of variation of resistance to heat (σ_{θ}) than the cold resistance (σ) : $\Theta_{\sigma} = \sigma_{\theta}/\sigma = f(\theta)$
- identifying the law of variation of the elastic modulus in heat (E_{θ}) and the elastic modulus in cold (E):

 $\Theta_{E} = E_{\theta} / E = f(\theta)$

2.1. The law of variation of environmental temperature t

For scenarios of fire the standard defines three nominal curve: the standard curve, the curve of the hydrocarbons and the outside curve. The temperature in the surroundings of a structural member exposed to fire assumes, to vary the exposure time, the values given in table 1.

Hereafter, we will have fire scenario corresponding to the nominal standard curve:

$$\Gamma = 20 + 345 \log_{10} (8t + 1)$$
 (2)

time [min]		Temperature [°C]							
	Standard nominal	Nominal hydrocarbon	Nominal outer curve						
	curve	curve							
15	739	1.071	676						
30	842	1.098	680						
45	902	1.100	680						
60	945	1.100	680						
90	1.006	1.100	680						
120	1.049	1.100	680						
180	1.110	1.100	680						
240	1.153	1.100	680						
360	1.214	1.100	680						
	Table 1 – Ambiental temperature T								

From the values given in table 1, we see that around the structure:

-the maximum temperature is reached after about 30 minutes of exposure to the fire for the scenario of fire of hydrocarbons;

-the maximum temperature is reached after about 15 minutes of exposure to an external fire scenario;

-the temperature increases rapidly in the first 45 minutes, then take a difference quotient descending for the scenario of fire standards.

2.2. THE LAW OF VARIATION OF TEMPERATURE Θ IN A MATERIAL

The law of variation of temperature θ in a steel profile is obtained by equating, at all times, the flow of heat that penetrates in the profile (proportional to the surface of the profile) to the amount of heat absorbed by the metal (proportional to the volume V of the profile).

In the case of homogeneous heating, acceptable hypothesis for value $\mu = S/V$ not less than 30 m⁻¹, the law of variation of temperature θ depending on time t, for a fixed value of μ , presents the trend referred to the curve of Figure 1.

From scientific experimentation exists in new Government logo shows that the values of θ in function of t and μ , for steel structural members exposed to fire rated standard, are those listed in table 2. The table fire exposure times not exceeding 30' because, in almost all cases, unprotected steel structures over 30' fire exposure you have the collapse of the material.

Table 2 data processing has allowed us to obtain the function $\theta = f(t)$, for fixed values of μ , is a third-order polynomial:

$$\theta = k_1 \cdot t^3 + k_2 \cdot t^2 + k_3 \cdot t + k_4 \quad (3)$$

with the values of the coefficients k_1 , k_2 , k_3 and k_4 reported in table 3.

t							μ=	S/V	[m ⁻¹]							
[min]	50	75	100	125	150	175	200	225	5 250) 27	75	300	325	350	375	400
2	36	45	53	61	69	76	84	92	100) 1(07	115	123	130	136	145
4	72	97	121	144	167	189	209	230) 247	26	67	285	302	313	334	349
6	117	161	203	241	277	310	340	368	3 394	41	17	437	457	474	489	503
8	167	231	288	338	383	421	455	485	5 510) 53	31	549	564	577	587	596
10	221	302	370	428	476	516	547	572	2 593	60)9	622	632	639	646	650
12	275	371	447	507	554	589	616	636	651	66	52	670	676	680	684	687
14	330	436	515	574	616	646	666	681	691	69	98	703	707	710	712	714
16	383	496	575	629	665	688	703	714	1 721	72	26	729	732	734	735	737
18	433	550	626	673	703	721	732	740) 745	5 74	48	750	752	754	755	756
20	482	598	668	709	733	747	755	760) 764	- 76	57	768	770	771	772	773
22	527	641	704	739	757	768	774	778	3 781	. 78	83	784	785	786	787	788
24	568	678	734	763	777	785	790	793	3 796	5 79	97	799	800	801	801	802
26	607	710	759	783	794	801	805	807	7 809	81	11	812	813	813	814	815
28	642	738	781	800	809	814	817	819	821	. 82	23	824	825	825	826	826
30	674	762	799	815	822	826	829	831	833	8 83	34	835	835	836	837	837
	Table 2	- Valu	$tes of \theta a$	is a fui	nction of	t and µ	ı, for ste	el stru	ictural e	lemer	nts ez	xposed	to stand	lard non	ninal fi	re
								µ [m	1 ⁻¹]							
	50)	75		100		125		150)		175		200		225
K ₁	-0,01	93	-0,020)9	-0,001	4	-0,002	2	0,01	18	0	,0253	C),0375	0,	0481
K ₂	0,78	94	0,536	8	-0,081	8	-0,856	0	-1,66	98	-2	2,4058	-2	3,0401	-3,	,5774
K ₃	15,9	45	28,26	8	42,28	6	56,01	6	68,5	62	7	9,034	8	37,438	94	1,172
K ₄	1,44	41	-14,45	57	-32,51	7	-48,76	6	-61,1	52	-6	59,198	-	72,65	-72	2,284
								μ [m	1 ⁻¹]							
	25	0	275		300		325		35()		375		400		
K ₁	0,05	70	0,064	4	0,070	4	0,075	0	0,07	88	0	,0823	0	,0840		
K ₂	-4,01	37	-4,364	17	-4,638	7	-4,847	3	-5,01	68	-5	5,1615	-4	5,2259		
K ₃	99,4	03	103,30	00	106,09	0	108,04	-0	109,6	530	1	10,640) 1	10,700		
K ₄	-69,9	963	-64,84	41	-57,90	4	-49,64	9	-43,3	36	-3	33,766	-2	22,815		
				Tab	ole 3 - V	alues	of coeff	icien	ts k in	funct	ion	ofµ				

2.3. The law of variation of the heat resistance (σ_{θ}) than the cold resistance (σ) .

The increase in the temperature of the steel causes an increase in the amplitude and frequency of the oscillations of the atoms around their balance position. This phenomenon causes a transformation of carbon atoms. In particular, around 700 $^{\circ}$ C steel passes from ferritic to austenitic, while at 1500 $^{\circ}$ C it becomes a liquid carbon and iron solution. These structural transformations naturally result in changes in the properties of the steels and at high temperatures, and there is a lowering of the breaking strength and the elasticity limit.

Figure 1 shows the steel tension-deformation diagram for temperatures varying from ambient temperature to 650 °C. From the figure it is noted that while the elasticity limit decreases regularly as the temperature rises, the breaking resistance increases to 200-300 °C and then decreases as the temperature rises.

Steel strength coefficient is defined as the ratio

$$\Phi_{y} = \frac{f_{y\theta}}{f_{yk}} \qquad (4)$$

function of temperature θ

temperature θ

You can see in Figure 2, the Φ y variation according to temperature θ . The curve (a) shown in Figure 2, represents the law of variation of Φy proposed by D.T.U. The study of the curve (a) allowed to derive the following mathematical expressions to calculate Φ y as a function of θ :

for

$$0 < \theta \le 600 \text{ °C} \qquad \Phi_y = 1 + \frac{\theta}{900 \ln \frac{\theta}{1750}} \tag{5}$$

for

$$\Phi_{y} = \frac{340 - 0.34 \cdot \theta}{\theta - 240} \tag{6}$$

Relationships (5) and (6) you can also write in inverse form:

 $600 < \theta \le 1000 \ ^{\circ}C$

for

r
$$0 < \theta \le 600 \text{ °C}$$
 $\theta = 745 \cdot \left(1 - \left(\Phi_y\right)^{1/3}\right)^{2/3}$ (7)

for
$$\theta \le 1000 \,^{\circ}\text{C}$$
 $\theta = \frac{240 \cdot \Phi_y + 340}{\Phi_y + 0.34}$ (8)

Relationships (7) and (8) can be used to determine the critical temperature θ_{crit} steel, namely that temperature at which the load that can be brought to heat $P_{\theta crit}$ load cold door structure equals the Pe:

$$\theta_{crit} \rightarrow P_{\theta crit} = P_e$$

It should be noted, though, that while the report (8) is correct, the (7) is accurate.

2.4. The law of variation of the heat elastic modulus $(E_{y\theta})$ than the cold elastic modulus (E_y)

Defined the reduction factor of the modulus of elasticity:

$$\Phi_{Ey} = \frac{E_{y,\theta}}{E_y}$$

where

is the modulus of elasticity of steel is the modulus of elasticity of heat

 E_v

 $E_{v,\theta}$

Figure 3 – Variability of ΦEy zone as a function of temperature θ

You can see in Figure 3, the time zone of elastic modulus variation as a function of temperature θ , in scientific literature. Taken as reference the curve in Figure 3 traits, has the function of θ Φ Ey report below:

$$\Phi_{Ey} = 1 + \frac{\theta}{2000 \cdot \ln \frac{\theta}{1100}} \tag{9}$$

3. APPLOCATION OF THE PROCEDURE FOR THE CALCULATION OF THE RESISTANCE OF STEEL STRUCTURES.

A metal structure subjected to a fire, loses its ability resistant as you increase the temperature generally remains constant while the operating load that must lead. You will have the structure crisis when load P_{θ} , that the structure is capable of bringing to the temperature θ , is less than the operating load Pe.

The calculation procedure generally consists of the following phases:

- calculation of θ temperature reached by the structure element exposed to fire;
- determination of the critical temperature θ_{crit} ;

 \bullet comparison of the critical temperature θ_{crit} and the temperature reached by the structural member.

In almost all cases the θ_{crit} is very low so the building has fire resistance time of less than 30

minutes of exposure to fire; the steel structure, therefore, must be protected and the θ_{crit} comes in handy for designing the isolation.

In Note 1 provides an application checking the fire resistance of unprotected steel for some structures.

1. Steel column		
For a column formed by a	$N_e = 500 \text{ kN}$	compressive load of exercise
profile HE A 220, are:	Acciaio	S355
b t	f _{yk} =355 N/mm ²	the typical yield strength
	γ _{M0} =1,05	global partial factor
	h = 210 mm	the profile height
4 +	b = 220 mm	the profile width
	$t_{\rm w} = 7 \ mm$	the thickness of the core
	$t_f = 11 \text{ mm}$	the thickness of the wing
	$A = 64,34 \text{ cm}^2$	the area of the straight section
	$W_x = 515,2 \text{ cm}^3$	the section modulus x-x

So:

$$\begin{split} \mu &= P/S = 1,225/(64,34\cdot 10^{-4}) = 195 \approx \!\! 200 \ m^{-1} \\ f_{yd} &= f_{yk}/\gamma_{M0} = 355/1,05 = 338 \ N/mm^2 \end{split}$$

the mass ratio the resistance of the steel calculation

For t = 30 min of exposure to standard fire curve nominal scenario using the (3) shows that the temperature of the steel holds:

 $\theta_c^{30} = 0.0375 \cdot 30^3 - 3.0401 \cdot 30^2 + 87.438 \cdot 30 - 72.65 = 821 \ ^{\circ}C$

Applying the (8) we get the strength reduction coefficient of steel:

$$\Phi_y^{30} = \frac{340 - 0.34 \cdot 821}{821 - 240} = 0.10475$$

Therefore, the load that can be worn in warm holds:

 $N_{\theta}^{30} = (0,10475 \cdot 338 \cdot 64,34 \cdot 10^2 \cdot 10^{-3}) = 224$ kN in c.t.

At the end, $N_{\theta}^{30} < N_e$ and then for you can't take even a fire resistance of R30.

Consider the critical temperature θ crit, i.e. the temperature at which the load that can be brought to heat N θ crit is equal to the operating load. By imposing the condition:

 $N_{\theta crit} = \Phi_{crit} \left[(f_{yd} \cdot A) \right] = N_e$

 $M_e = (40 \cdot 4^{-})/8 = 80 \text{ km}$ The mass ratio is:

the resistance of the steel calculation

$$\begin{split} \mu &= P/S = 1,225/(64,34\cdot 10^{-4}) = 195 \approx \!\! 200 \ m^{-1} \\ f_{yd} &= f_{yk}/\gamma_{M0} = 355/1,05 = 338 \ N/mm^2 \end{split}$$

For t = 30 min of exposure to standard fire curve nominal scenario using the (3) shows that the temperature of the steel is:

 $\theta_c^{30} = 0,0375 \cdot 30^3 - 3,0401 \cdot 30^2 + 87,438 \cdot 30 - 72,65 = 821 \ ^\circ C$

By applying the [5.45] we obtain that the coefficient of drag reduction of steel holds: $\Phi_{y}^{30} = \frac{340 - 0.34 \cdot 821}{821 - 240} = 0.10475$

and, so, hot bending moment holds: $M_{\theta}^{30} = (0,10475 \cdot 338 \cdot 515, 2 \cdot 10^{-3}) = 18,24$ kNm in c.t.

It is M_{θ}^{30} < Me so for you can't take even a fire resistance R30

Consider the critical temperature θ crit, i.e. the temperature at which time he can be brought to heat M θ crit is equal to the time to exercise Me

By imposing: $M_{\theta crit} = \Phi_{crit} [(f_{yd} \cdot W)] = M_e$

We obtain: $\Phi_{crit} = M_e/[(f_{yd} \cdot W)] = (80*10^3)/(338 \cdot 515,2) = 0,46$ Applying the (7) we have:

$$\theta_{crit} = 745 \cdot \left[1 - \left(\Phi_{crit}\right)^{1,3}\right]^{2/3} = 745 \cdot \left[1 - \left(0,46\right)^{1,3}\right]^{2/3} = 550 \text{ °C}$$

temperature that is reached by applying the [5.43], after 10 minutes. Note the critical temperature you can design the frame needed to bring the fire resistance of the structure by 10 minutes a fire resistance value required by the class of the building.

NOTE 1

4. CALCULATION OF THE LINING NEEDED TO CLASSIFY THE STEEL ELEMENT WITH R DEFAULT.

For the structural element plan required to classify coating analytical steel with fire resistance R default, you need to know the θ crit, or the temperature of the material at which is:

 $N_{\theta cirt}\,{=}\,N_e$

Given the critical temperature, using schedules you can design the cover necessary to classify the property at R default.

In the present state of scientific research were developed some 4les that can help you determine the temperature achieved by structural members protected according to the features of specific treatment.

Tab 4-7, drawn up for protective treatments with thermal resistance $Rt = s/\lambda$ variable from 0,043 to 0,258 m² °C/W, create secure profile temperature depending on the ratio of mass and time of exposure to the standard fire rated curve.

		S/V [m ⁻¹]									
[min]	50	100	150	200	250	300	350	400			
5	25	49	72	94	116	136	156	175			
10	62	119	171	217	258	296	330	360			
15	104	192	267	330	383	428	466	499			
20	147	263	354	427	485	532	570	602			
25	189	329	432	510	569	615	651	678			
30	231	390	501	581	639	682	713	736			
35	272	446	562	641	696	734	761	779			
40	311	498	616	696	744	777	798	813			
45	349	545	664	738	783	811	829	840			
50	385	589	707	775	815	839	854	863			
55	420	629	745	808	843	863	875	882			
60	453	667	778	836	866	883	893	899			

65	484	701	807	860	886	900	909	914		
70	514	733	834	881	904	916	923	927		
75	543	762	857	899	919	929	935	939		
80	571	788	878	915	933	942	947	951		
85	597	813	896	930	945	953	958	961		
90	623	835	913	943	957	964	968	971		
95	648	856	928	955	967	973	977	980		
100	671	875	942	966	977	982	986	988		
105	694	892	954	976	986	991	994	996		
110	715	909	966	986	994	999				
115	736	923	976	994						
120	756	937	986							
	Table 4 – Thermic resistance 0.04 m ² °C/W									

t		S/V [m ⁻¹]									
[min]	50	100	150	200	250	300	350	400			
5	15	30	45	59	73	86	100	113			
10	38	73	107	139	169	197	223	247			
15	63	120	172	219	261	299	333	364			
20	69	168	235	293	344	389	427	462			
25	116	214	294	362	418	466	507	542			
30	144	258	350	424	484	534	575	610			
35	171	301	401	480	542	593	634	668			
40	198	342	449	530	594	645	685	716			
45	224	380	493	577	641	691	728	757			
50	249	417	534	620	683	731	766	792			
55	275	452	573	659	721	766	798	822			
60	299	485	609	695	755	797	826	847			
65	323	516	642	727	785	824	851	869			
70	346	546	674	757	812	848	872	889			
75	369	575	703	784	836	870	891	906			
80	391	602	731	809	858	889	908	921			
85	412	629	756	832	878	906	924	935			
90	433	654	780	853	896	921	937	947			
95	453	678	802	857	912	935	950	959			
100	473	700	823	890	927	948	961	969			
105	492	722	842	906	941	960	972	979			
110	511	743	861	921	953	971	981	988			
115	529	763	877	935	964	981	990	996			
120	547	782	893	948	975	990	999				
	Table 5 – Thermic resistence $0.086 \text{ m}^2 \text{ °C/W}$										

t		S/V [m ⁻¹]							
[min]	50	100	150	200	250	300	350	400	
5	9	17	25	34	42	50	58	66	

10	21	42	62	81	99	118	135	152
15	35	69	101	131	159	186	211	235
20	50	97	141	180	217	251	285	311
25	66	126	180	228	272	312	348	380
30	82	154	218	274	324	368	407	442
35	98	183	255	318	372	420	461	498
40	114	210	291	359	417	467	510	548
45	130	237	325	398	459	511	555	594
50	146	264	358	435	498	552	597	636
55	162	289	389	469	535	590	636	674
60	178	314	419	502	570	625	671	709
65	194	339	448	534	602	658	704	741
70	210	362	476	563	633	689	734	769
75	225	385	502	592	662	718	761	796
80	240	407	528	619	690	744	787	820
85	255	429	552	645	715	769	810	842
90	270	450	576	670	740	792	832	862
95	285	470	599	693	763	814	852	880
100	299	490	621	715	784	834	870	897
105	313	509	642	737	804	853	887	912
110	327	528	663	757	823	870	903	927
115	341	546	682	776	841	886	918	940
120	355	564	701	795	858	902	931	952
		Tab	le 6 – Therm	nic resistence	e 0,172 m ² °	C/W		

t		S/V [m ⁻¹]									
[min]	50	100	150	200	250	300	350	400			
5	6	12	18	24	29	35	41	46			
10	15	29	43	57	70	84	97	109			
15	24	48	71	93	114	135	154	173			
20	35	68	100	130	158	185	210	234			
25	46	89	129	167	201	234	264	292			
30	57	110	158	202	243	280	314	345			
35	68	131	187	237	283	324	361	395			
40	80	152	215	271	321	365	405	441			
45	92	172	242	303	357	404	446	484			
50	103	193	269	334	391	441	485	523			
55	115	213	295	364	424	476	521	560			
60	127	232	320	393	455	508	555	595			
65	139	252	344	421	485	540	587	628			
70	150	271	368	447	513	569	617	659			
75	162	289	391	473	540	598	646	687			
80	173	308	413	497	567	625	673	714			
85	185	326	435	521	592	650	699	740			
90	196	343	455	544	616	675	724	763			

95	208	360	476	566	639	698	746	786		
100	219	377	495	588	661	721	768	806		
105	230	394	515	608	683	742	789	826		
110	241	410	533	628	703	762	808	844		
115	252	426	551	648	723	781	826	861		
120	262	441	569	667	742	799	843	878		
	Table 7 – Thermic resistence 0,258 m ² °C/W									

As an example, we calculate the thickness of protective layer for some structural elements of steel.

Tab. 5, in particular, shows the calculation for the two structures referred to note 2.

1. Steel column For a column formed by a p	profile	HE A 220, are:		
b the second sec		$N_e = 500 \text{ kN}$	compressive load of exercise	
		Acciaio	S355	
- tw		f _{yk} =355 N/mm ²	the typical yield strength	
4 4		γ _{M0} =1,05	global partial factor	
		h = 210 mm	the profile height	
		b = 220 mm	the profile width	
		$t_w = 7 mm$	the thickness of the core	
		$t_f = 11 \text{ mm}$	the thickness of the wing	
		$A = 64,34 \text{ cm}^2$	the area of the straight section	
		$W_x = 515,2 \text{ cm}^3$	the section modulus x-x	

For the column in question, for the scenario of fire rated standard curve (see fact note 1) shows that:

the mass ratio is:	$\mu = 200 \text{ m}^{-1}$
the critical temperature is:	$\theta_{crit} = 668 \ ^{\circ}C$
We want to design security for ha	ving the strength class R120

From table 4 shows that we need a protection with thermal resistance $Rt = s/\lambda = 0.258 \text{ m}^2 \,^\circ\text{C/W}$

that can be done with:		
vermiculite panel	λ=0,23	$s = (0,258 \cdot 0,23) = 0,059 m = 6 cm$
perlite panel	λ=0,31	$s = (0,258 \cdot 0,31) = 0,079 m = 8 cm$
gypsum panel	λ=0,24	$s = (0,258 \cdot 0,24) = 0,062 m = 6 cm$
concrete and clay panel	λ=0,30	$s = (0,258 \cdot 0,30) = 0,077 m = 8 cm$
cellular concrete panel	λ=0,10	$s = (0,258 \cdot 0,10) = 0,026 \text{ m} = 3 \text{ cm}$

2. Steel beam				
For a beam formed by a				
profile HE A 220, are:				
b	ŀ	4,00		
xx 2	$P_e = 40 \text{ kN/m}$	the uniformly distributed load of exercise		
(+ (+	Acciaio	S355		
	f _{yk} =355 N/mm ²	the typical yield strength		
	γ _{M0} =1,05	global partial factor		
	h = 210 mm	the profile height		
	b = 220 mm	the profile width		
	$t_{\rm w} = 7 \ \rm mm$	the thickness of the core		
	$t_f = 11 \text{ mm}$	the thickness of the wing		
	$A = 64,34 \text{ cm}^2$	the area of the straight section		
	$W_x = 515,2 \text{ cm}^3$	the section modulus x-x		
For the cbeam in question, for the scenario of fire rated standard curve (see fact note 1) shows that: the mass ratio is: $\mu = 200 \text{ m}^{-1}$ the critical temperature is: $\theta_{crit} = 550 ^{\circ}\text{C}$				
We want to design security for having the strength class R90 From table 4 shows that we need a protection with thermal resistance				
$Rt = s/\lambda = 0.258 \text{ m}^2 \circ C/W$ that can be done with:				
vermiculite panel	$\lambda = 0,23$ s = (0,258	(-0.23) = 0.059 m = 6 cm		
perlite panel	$\lambda = 0.31 \text{ s} = (0.258 \cdot 0.31) = 0.079 \text{ m} = 8 \text{ cm}$			
gypsum panel	$\lambda = 0,24$ s = (0,258.0,24) = 0,062 m = 6 cm			
concrete and clay panel	$\lambda = 0,30$ s = (0,258.0,30) = 0,077 m = 8 cm			
cellular concrete panel	$\lambda = 0,10$ s = (0,258	3.0,10) = 0,026 m = 3 cm		
NOTE 2				

REFERENCES

- [1] Fascia F. and Iovino R. "La struttura in cemento armato per l'architettura tecnica e tecnologia". Aracne, Roma 2008
- [2] Sannino F., La Mantia E and Iovino R. "Analytical method for design of fire resistance of structural elements in reinforced concrete" in Atti 42nd IAHS WORLD CONGRESS "The housing for the dignity of mankind".10-13rd April 2018 Naples, Italy

- [3] Iovino R., Fascia F. and Gian Piero Lignola G.P. "Edilizia scolastica riqualificazione funzionale ed energetica, messa in sicurezza, adeguamento antisismico". Dario Flaccovio Editore s.r.l., Palermo 2014
- [4] La Malfa A. "Prevenzione incendi Approccio ingegneristico alla sicurezza antincendio". Legislazione Tecnica, Roma 2008
- [5] Ghersi A. "Il cemento armato dalle tensioni ammissibili agli stati limite: un approccio unitario". Dario Flaccovio Editore, Palermo 2008