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Abstract—In this paper, we propose the use of a distributed
discontinuous coupling protocol to achieve convergence and
synchronization in networks of non-identical nonlinear dynamical
systems. We show that the synchronous dynamics is a solution to
the average of the nodes’ vector fields, and derive analytical
estimates of the critical coupling gains required to achieve
convergence.

Index Terms—Network analysis and control, Control of net-
works, Distributed control, Switched systems.

I. INTRODUCTION

COORDINATION, synchronization, formation control and
platooning are all examples of emerging phenomena that

need to be carefully controlled, maintained, and induced in
many applications. Examples include frequency synchroniza-
tion in power grids, formation control and coordination in
robotics, cluster synchronization in neuronal networks, and
coordination in humans performing joint tasks, e.g. [1], [2].
In all of these problems, agents are hardly identical, as is
often assumed in the literature on complex networks, but are
heterogeneous and affected by noise and disturbances.

The problem of studying the collective behaviour of sets of
diffusively coupled non-identical systems was first discussed in
[3] and later in [4]–[6]. The emergence of bounded convergence
was proven under different conditions showing that, unless the
different agents share a common solution (when decoupled)
[7], [8], or specific symmetries exist in the network structure
(see e.g. [9]), asymptotic synchronization cannot be achieved,
since the synchronization manifold is not invariant. Occurrence
of partial or cluster synchronization was observed when
groups of identical agents can be identified in the ensemble
[10]. Also, a collective behaviour, akin to a “chimera state”
(where some systems synchronize perfectly, while the others
evolve incoherently) [11], was investigated in networks of
heterogeneous oscillators [12]. Further results on networks of
heterogeneous systems are available in [13]–[15] where output-
rather than state-synchronization is studied also in the presence
of distributed feedback control laws facilitating its emergence.
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A crucial open problem is therefore to prove asymptotic
convergence in networks of heterogeneous systems with generic
structures. So far, two solutions were proposed that rely on the
introduction in the network of some external control actions.
For example, an exogenous input was added onto each node in
the network in [16], [17] to achieve this goal, while the use of
a self-tuning proportional integral controller was investigated
numerically in [18] for linear systems only. Differently from
[16], [17], we employ a distributed approach, as we do not
require that there is any single agent able to communicate with
all the others.

The goal of this paper is to propose an alternative solution
to the problem of achieving global asymptotic (rather than
bounded) convergence in networks of heterogeneous nonlinear
systems. Differently from previous literature, we prove that,
by adding a discontinuous coupling law to the more traditional
linear diffusive one, asymptotic convergence can be formally
proved, even when the nodes are heterogeneous and do not
share a common solution. We also show that the synchronous
trajectory is a solution to the average of all the individual
vector fields of the nodes, and give analytical estimates of the
critical values of the coupling gains that guarantee asymptotic
synchronization is achieved. The theoretical derivations, which
are partly supported by some related mathematical results we
presented in [19], are complemented by a set of numerical
simulations that show the effectiveness of the proposed ap-
proach. We wish to emphasise that in previous work [20]–[22]
discontinuous communication protocols were used to drive
networks of integrators to consensus, but never for networks
of heterogeneous nonlinear systems.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider a generic network of interconnected heteroge-
neous nonlinear systems of the form{

Ûxi(t) = fi(xi; t) + ui(xi; t),

yi(t) = xi,
i = 1, . . . , N, (1)

where xi, ui, yi ∈ Rn. In what follows, we will sometimes omit
the dependency on time t for the sake of brevity.

Control objective. We seek a distributed coupling protocol
ui that, under suitable assumptions on the vector fields of the
agents and on the network structure, drives all nodes towards
global asymptotic synchronization, that is, it guarantees that,
for all initial conditions

lim
t→+∞



xi(t) − xj(t)


 = 0, i, j = 1, . . . , N,

where ‖·‖p is the p-norm operator, and p = 2 if it is omitted.



Control design. We will show that, under certain condi-
tions, asymptotic convergence is guaranteed by the following
distributed coupling law:

ui = −c
N∑
j=1

Li jΓ
(
xj − xi

)
− cd

N∑
j=1

Ld
i jΓdsign

(
xj − xi

)
, (2)

where Li j, Ld
i j are the (i, j)-th elements of the Laplacian

matrices L,Ld describing two undirected unweighted graphs,
G = (V, E) and Gd = (V, Ed); V being the set of vertices,
and E, Ed the sets of edges. Bd is the incidence matrix
associated to Gd. The matrices Γ, Γd ∈ Rn×n, also known
as inner coupling matrices, are assumed to be positive semi-
definite. Finally, the sign of a vector v ∈ Rn is to be intended
as sign(v) = [sign(v1) · · · sign(vn)]T ∈ Zn.

Preliminary definitions and lemmas. We define the state
average x̃ , 1

N

∑N
i=1 xi and the synchronization errors ei ,

xi − x̃, for i = 1, . . . , N , and introduce the stack vectors x̄ ,
[xT

1 · · · xT
N ]

T, ū , [uT
1 · · · uT

N ]
T, and ȳ , [yT

1 · · · yT
N ]

T. We
denote the n-dimensional identity matrix as In (or simply I),
and a closed ball about some point v of radius r as Bc

r (v),
dropping the argument when v is the origin. We denote the
Filippov set-valued function of a vector field g as F [g] [23].

Let A ∈ Rn×n be a matrix and µp : Rn×n → R be the
matrix measure (logarithmic norm) induced by the p-norm. We
recall that µ2(A) = λmax((A+AT)/2) and µ∞(A) = maxi(Aii +∑n

j=1, j,i
��Ai j

��). We denote −µp(−A) by µ−p(A). Then, µ−2 (A) =
λmin((A + AT)/2), and µ−∞(A) = mini(Aii −

∑n
j=1, j,i

��Ai j

��).
Finally, we sort the real eigenvalues of a symmetric matrix in
an increasing fashion, so that λ1 ≤ λ2 ≤ . . . .

Definition 1 (QUADness [24]). A vector field f : Rn ×R≥0 →
Rn is said to be QUAD(P, Q) in Ω ⊆ Rn if there exist matrices
P,Q ∈ Rn×n, such that, for all v1, v2 ∈ Ω, t ∈ R≥0,

(v1 − v2)
T P [f(v1; t) − f(v2; t)] ≤ (v1 − v2)

T Q (v1 − v2) .

Lemma 2 ([25]). Let f be a scalar non-negative uniformly
continuous function of time, and let C > 0. If, for all t ≥ 0,∫ t

0 f (τ) dτ < C, then limt→+∞ f (t) = 0.

Definition 3 (Uniform asymptotic boundedness). A system
of the form (1) with a given input function ui(xi; t) is uniformly
asymptotically bounded to Bc

r if there exists r ∈ R>0 such that,
for all initial conditions, lim supt→+∞ ‖xi(t)‖ ≤ r .

Definition 4 (Uniform ultimate boundedness). A system of
the form (1) with a given input function ui(xi; t) is uniformly
ultimately bounded to Bc

r , with r ∈ R>0, if ∃T : Rn → [0,+∞[
such that ‖xi(t)‖ ≤ r for all t ≥ T(xi(0)).
Lemma 5. If a system is uniformly asymptotically bounded to
Bc
r , then it is uniformly ultimately bounded to Bc

r+
, ∀r+ > r.

Proof. The proof follows from Definitions 3 and 4. �

Next, we extend the concept of semipassivity [26] to the
case that the input function is discontinuous by adapting the
definition of passivity for non-smooth systems in [27].

Definition 6 (Semipassivity with a discontinuous input). A
nonlinear system as in (1) subject to a discontinuous input
ui(xi, t) in xi is semipassive if the following conditions hold:

(a) there exist ρi > 0, a continuous function αi : [ρi,+∞[ →
R≥0, and a continuous function hi : Rn → R, termed as
the stability component, such that

hi(xi) ≥ αi(‖xi ‖) ≥ 0, if ‖xi ‖ ≥ ρi; (3)

(b) there exists a continuous non-negative storage function
Vi : Rn → R≥0 such that Vi(0) = 0 and

Vi(xi(t)) − Vi(xi(t0)) ≤ pi(t; xi(t0)), (4)

where pi(t; xi(t0)) is any Filippov solution such that

Ûpi(t; xi(t)) ∈ F
[
(yi(xi(t)))T ui(xi(t))

]
− hi(xi(t)),

with pi(t0; xi(t0)) = 0.
Moreover, if the function αi is strictly positive for ‖xi ‖ > ρi ,
then (1) is said to be strictly semipassive. Also, if αi is radially
unbounded and increasing, then (1) is said to be strongly
strictly semipassive.

We assume that all fi in (1) are continuous and locally
bounded. This ensures that the Filippov vector field defining
(1)-(2) is locally bounded, takes nonempty, compact, convex
values and is upper-semicontinuous, thus satisfying the standard
assumptions in [28, § 1.2]. Moreover, we assume that a global
Filippov solution exists and no Zeno solutions [29] occur.

III. BOUNDEDNESS OF HETEROGENEOUS NETWORKS

In this Section, we prove uniform asymptotic boundedness by
exploiting Lemma 12 (see Appendix) and following the steps
in [26]. Then, in Section IV, we move to proving asymptotic
convergence.

Proposition 7. Consider network (1)-(2). If
(a) all systems in (1) are strongly strictly semipassive, with

stability components hi , i = 1, . . . , N;
(b) all systems in (1) have radially unbounded storage

functions Vi;
(c) c ≥ 0, cd ≥ 0, µ−2 (Γ) ≥ 0, and µ−∞(Γd) ≥ 0;

then (1)-(2) is uniformly asymptotically bounded.

Proof. Consider the function V̄ : RNn → R≥0 given by

V̄(x̄) , V1 (x1) + . . . + VN (xN ) . (5)

Since V̄ is the sum of radially unbounded functions, it is
radially unbounded itself. From (5) and Definition 6, we have

V̄(x̄(t)) − V̄(x̄(0)) ≤ p̄(t; x̄(0)), (6)

where p̄(t; x̄(t0)) ,
∑N

i=1 pi(t; xi(t0)).
Note that, given the hypotheses of this Proposition, Lemma

12 (see Appendix) holds, with some ρ̄ and ᾱ. Then, consider
the set Ω1 , {x̄ | ‖x̄‖ ≤ ρ̄}, which is compact. Since V̄
is continuous and radially unbounded, we can find a scalar
V∗ > 0 such that the compact set Ω2 , {x̄ | V̄(x̄) ≤ V∗} fulfils
Ω2 ⊃ Ω1. As Ω2 is compact, there exists a closed ball of
the origin with radius ρ̃ ≥ ρ̄ that contains Ω2; see the sketch
diagram reported in Fig. 1a for the case that n = 1, N = 2.
Now, we define the functions

Ṽ(x̄) ,

{
0, if ‖x̄‖ ≤ ρ̃,
V̄(x̄), otherwise,

(7)



ρ̄

Ω1
Ω2

V̄(x̄) ≤ V∗

x1

x2

ρ̃

(a)

Ṽ = 0

x1

x2

ρ̃

α̃ = 0
Ṽ = V̄
α̃ = ᾱt2

t3 tM = t

t4

t1 = 0

x̄(t)

(b)

Fig. 1. Example of sets (a) and time instants (b) described in the proof of
Proposition 7 with n = 1, N = 2.

α̃(‖x̄‖) ,

{
0, if ‖x̄‖ ≤ ρ̃,
ᾱ(‖x̄‖), otherwise.

(8)

Next, we divide the generic time interval [0, t] in M − 1
contiguous sub-intervals [t1 = 0, t2], . . . , [tM−1, tM = t], where
t2 . . . , tM−1 are the time instants at which x̄ crosses transversely
the level set where ‖x̄‖ = ρ̃ (see Fig. 1b). With this partition
of the time interval [0, t] we have that, in each sub-interval
[tj−1, tj], either

Ṽ(x̄(tj)) − Ṽ(x̄(tj−1)) = 0, (9)

because of (7), or

Ṽ(x̄(tj)) − Ṽ(x̄(tj−1)) ≤ p̄(tj ; x̄(tj−1)), (10)

because of (6). Now, note that Û̄p(x̄) ∈ −q̄(x̄); q̄ being defined
in Lemma 12. By exploiting the Lemma, we have

Û̄p(x̄) ∈ −q̄(x̄) ≤ −ᾱ(‖x̄‖). (11)

From (11) and (8), it follows that

p̄(tj ; x̄(tj−1)) ≤ −

∫ tj

tj−1

ᾱ(‖x̄(τ)‖)dτ = −
∫ tj

tj−1

α̃(‖x̄(τ)‖)dτ.

(12)
Combining (10) and (12), and from Lemma 12, we have

Ṽ(x̄(tj)) − Ṽ(x̄(tj−1)) ≤ p̄(tj, x̄(tj−1)) ≤

−

∫ tj

tj−1

α̃(‖x̄(τ)‖) dτ ≤ 0. (13)

Therefore, since

Ṽ(x̄(t)) − Ṽ(x̄(0)) = [Ṽ(x̄(t)) − Ṽ(x̄(tM−1))] + [Ṽ(x̄(tM−1))

− Ṽ(x̄(tM−2))] + . . . + [Ṽ(x̄(t2)) − Ṽ(x̄(0))], (14)

exploiting (8), (9) and (13), we get

Ṽ(x̄(t)) − Ṽ(x̄(0)) ≤ −
∫ t

0
α̃(‖x̄(τ)‖) dτ ≤ 0. (15)

Hence, Ṽ(x̄(t)) ≤ Ṽ(x̄(0)), i.e. Ṽ(x̄(t)) is bounded for all t ≥ 0.
Also, for large values of x̄ (‖x̄‖ > ρ̃), from (7) we have
Ṽ(x̄) = V̄(x̄); therefore Ṽ(x̄) is radially unbounded as V̄(x̄) is.
Thus, Ṽ(x̄(t)) being bounded implies that x̄ must be bounded
(even if Ṽ is discontinuous). This means that network (1)-(2)
is Lagrange stable, i.e. ‖x(t)‖ < +∞, ∀t.

Next, we show that (1)-(2) is uniformly asymptotically
bounded. We define

α̃′(‖x̄‖) ,

{
0, if ‖x̄‖ ≤ ρ̃,
ᾱ(‖x̄‖) − ᾱ(ρ̃), otherwise,

(16)

which is continuous and null if and only if ‖x̄‖ ≤ ρ̃, as ᾱ is
increasing. In addition, since the network solutions are bounded,
x̄(t) belongs to a compact set, and therefore α̃′(‖x̄(t)‖) is
uniformly continuous in that set. From (15), we know that∫ t

0 α̃(‖x̄(τ)‖)dτ is finite for all t ∈ [0,+∞] as it is bounded
by two finite terms. Consequently,

∫ t

0 α̃
′(‖x̄(τ)‖)dτ is also

bounded, and we can employ Lemma 2 to conclude that
limt→+∞ α̃

′(‖x̄(t)‖) = 0. Since α̃′(‖x̄‖) is null only when
‖x̄‖ ≤ ρ̃, this means that lim supt→+∞ ‖x̄(t)‖ ≤ ρ̃. �

IV. ASYMPTOTIC CONVERGENCE OF HETEROGENEOUS
NETWORKS

Before giving our main result, we define the average vector
field f̃ : RnN → Rn as

f̃(x̄) ,
1
N

N∑
i=1

fi(xi) = Û̃x, (17)

where the coupling terms in Û̃x cancel out since L,Ld are
symmetric. Recalling that ei , xi − x̃, we can write

Ûei = Ûxi − Û̃x ∈ fi(xi) − c
N∑
j=1

Li jΓ(xj − xi)

− cd

N∑
j=1

Ld
i jΓdF

[
sign(xj − xi)

]
− f̃(x̄).

(18)

Theorem 8. Consider network (1) controlled by the distributed
control action (2). If
(a) the controlled network is uniformly ultimately bounded to

the ball Bc
r , for some r > 0;

(b) each agent dynamics fi is QUAD(P > 0, Qi) in Bc
r , and

µ−2 (PΓ) > 0, µ−∞(PΓd) > 0;
(c) G and Gd are connected graphs;

then
(i) there exist c∗ and c∗d such that, if c > c∗ and cd ≥ c∗d, then

global asymptotic synchronization is achieved. Moreover,
the asymptotic synchronous trajectory s(t) is a solution
to Ûs(t) = 1

N

∑N
i=1 fi(s(t));

(ii) c∗ and c∗d are given by

c∗ ,
maxi(µ2(Qi))

λ2(L) µ−2 (PΓ)
, c∗d ,

‖(|P|)m‖∞
δGd µ−∞(PΓd)

, (19)

where δGd is the minimum density [19] of the graph Gd,
and m ∈ Rn

≥0 is a vector such that

m ≥
��fi(x̃) − f̃(x̄)

�� , ∀i ∈ {1, . . . , N}, ∀x̄ ∈ Bc
r . (20)

Proof. Consider the candidate common Lyapunov function
V , 1

2
∑N

i=1 eT
i Pei . From (18), we have ÛV ∈ U, with

U ,
N∑
i=1

eT
i P

(
fi(xi) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li jeT
i PΓej

− cd

N∑
i=1

N∑
j=1

Ld
i je

T
i PΓdF [sign(ej − ei)],

(21)



where we used the fact that sign(xj − xi) = sign(ej − ei). Then,
adding and subtracting

∑N
i=1 eT

i Pfi(x̃), we have

U =

N∑
i=1

eT
i P (fi(xi) − fi(x̃)) +

N∑
i=1

eT
i P

(
fi(x̃) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li jeT
i PΓej − cd

N∑
i=1

N∑
j=1

Ld
i je

T
i PΓdF [sign(ej − ei)].

In addition, since the communication graphs are undirected
(Ld

i j = Ld
ji), for each term eT

i PΓdF [sign(ej − ei)], there must
exist the symmetric term eT

j PΓdF [sign(ei − ej)]. Hence, we
may recast U as

U =

N∑
i=1

eT
i P (fi(xi) − fi(x̃)) +

N∑
i=1

eT
i P

(
fi(x̃) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li jeT
i PΓej − cd

∑
(i, j)∈Ed

(ei − ej)TPΓdF [sign(ei − ej)].

As the network is uniformly ultimately bounded, there exists
a finite T∗ > 0 such that, for t ≥ T∗, ‖x(t)‖ ∈ Bc

r . From now
on, we take t ≥ T∗, and, since fi is QUAD(P, Qi), for any
ÛV ∈ U, there exists v ∈ U ′ such that ÛV ≤ v, with

U ′ ,
N∑
i=1

(
eT
i Qiei

)
+

N∑
i=1

eT
i P

(
fi(x̃) − f̃(x̄)

)
− c

N∑
i=1

N∑
j=1

Li j

eT
i PΓej − cd

∑
(i, j)∈Ed

(ei − ej)TPΓdF [sign(ei − ej)]. (22)

By defining the diagonal block matrix Q̄ having Q1, . . . ,QN

on its diagonal, we can write
∑N

i=1

(
eT
i Qiei

)
= ēTQ̄ē.

As all fi’s are QUAD in Bc
r , they are also bounded therein,

and so is f̃. Then, there exists a vector m ∈ Rn
≥0, such that

(20) holds. Therefore, letting M , ‖(|P|)m‖∞, it holds that

N∑
i=1

eT
i P

(
fi(x̃) − f̃(x̄)

)
≤

N∑
i=1
‖ei ‖1



P (
fi(x̃) − f̃(x̄)

)


∞

≤ M
N∑
i=1
‖ei ‖1 = M ‖ē‖1 .

Defining ā ,
(
BT

d ⊗ In
)

ē, we obtain that for all v ∈ U ′, there
exists W2 ∈ W2 such that v ≤ W1 +W2, where

W1 , ēT (
Q̄ − cL ⊗ PΓ

)
ē, (23)

W2 , M ‖ē‖1 − cdāT
(
INEd
⊗ PΓd

)
F [sign(ā)]. (24)

Now, recall that λ1(L) = 0 with corresponding eigenvector 1N

[30, § 13.1], and let G , PΓ+(PΓ)T
2 . Then, by [31, Thm. 4.2.12],

the first n smallest eigenvalues of L ⊗ G are all 0, and the n
corresponding eigenvectors are 1N ⊗wi , where wi , i = 1, . . . , n
are the eigenvectors of G. Notice that by construction ē is
orthogonal to all these eigenvectors, as ēT(1N ⊗ v) = 0 for any
v ∈ Rn. Therefore, through [32, Thm. 4.2.2] we can write

λ2(L)λ1 (G) = λn+1 (L ⊗ G) = min
ē: ēT(1N ⊗v)=0, ē,0

ēT (L ⊗ PΓ) ē
ēTē

.

Hence, we get that −cēT (L ⊗ PΓ) ē ≤ −cλ2(L)µ−2 (PΓ) ‖ē‖
2
2.

Since ēTQ̄ē ≤ maxi(µ2(Qi)) ‖ē‖22, it is immediate to verify
from (23) that W1 < 0 if c > c∗. Moreover, following the steps
in [19, proof of Theorem 5], all W2 ≤ 0 if cd ≥ c∗d, with c∗, c∗d
given by (19).1 Since W1 < 0 and all W2 ≤ 0, all v < 0 and
thus all ÛV < 0, which means that all ei’s tend to zero, i.e. all
xi’s tend to x̃, whose dynamics is given in (17). �

Remark 9. Note that the assumptions on boundedness and
QUADness in Theorem 8 are quite mild. To verify the former,
one possibility is to use Proposition 7 and Lemma 5, while
the latter can be checked through Proposition 13.

Remark 10. Theorem 8 can be easily adapted to account for
discontinuities in the nodes’ dynamics. In that case, the agents
must be σ-QUAD(P, Qi , Mi) [19] (rather than QUAD) and
the threshold c∗d in (19) can be proved to be

c∗d ,
‖(|P|)m‖∞ +



M̄


∞

δGd µ−∞(PΓd)
, M̄ ,

[ M1

. . .
MN

]
. (25)

Remark 11. At synchronization, all signum terms in (2)
exhibit sliding dynamics [23], because xi = xj for all i and
j and the synchronous solution is stable. Ideally this would
imply infinitely fast switching in the discontinuous coupling.
However, accepting as a trade off a small synchronization error,
in practical applications, the discontinuous functions in (2) can
be approximated by introducing a boundary layer [33], as for
instance via an hysteresis or approximating smooth functions
such as the hyperbolic tangent.

V. NUMERICAL VALIDATION

Consider 3 modified van der Pol oscillators of the form

Ûx = fi(x) + u =
[

x1 − ε x1
µi(1 − x2

1 − ηx2
2)x2 − x1

]
+

[
u1
u2

]
, (26)

for i = 1, 2, 3, with ε = 0.01, η = 0.001, and µ1 = 1, µ2 =
2, µ3 = 3. We couple the agents through the diffusive and
discontinuous coupling law (2), with L, Ld corresponding to
complete graphs, and Γ = Γd = I2. Introducing the storage
function Vi(x) = 1

2 (x
2
1 + x2

2), we can show systems (26) are
strongly strictly semipassive. Indeed,

ÛVi = x1 Ûx1 + x2 Ûx2

= x1x2 − ε x2
1 + x1u1 + µi x2

2(1 − x2
1 − ηx2

2) − x1x2 + x2u2

= −ε x2
1 + µi x

2
2(1 − x2

1 − ηx2
2) + xTu = −hi(x) + yTu,

where hi(x) , ε x2
1+µi x

2
2(x

2
1+ηx2

2−1). From Proposition 7 and
Lemma 5, it follows that the network is uniformly ultimately
bounded to Bc

r for some r; a numerical exploration shows
that r = 7.72 is a suitable value. Since f is continuous, its
Jacobian is bounded in Bc

r , and the three agents are QUAD(I,
Qi), i = 1, 2, 3 (see Proposition 13 in the Appendix), All
the assumptions of Theorem 8 are fulfilled, and its thesis
can be used to compute the critical values c∗ and c∗d that

1From a mathematical viewpoint, in Theorem 8 we consider rather different
hypotheses with respect to [19, Theorem 5]. In particular, in this work the
dynamics of the nodes are heterogenous, rather than piecewise-smooth, and
uniform ultimate boundedness is required in place of global QUADness.
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Fig. 2. Total synchronization error etot ,
1
N

∑N
i=1 ‖ei ‖2 in a network of three

different modified van der Pol oscillators (26). In (a), c = 4, cd = 0; in (b), c =
4, cd = 120. The initial conditions are x̄(t = 0) = [1.5 1.5 1.75 1.75 2 2]T.

guarantee asymptotic synchronization. Specifically, knowing
r, we can compute analytically that maxi (µ2(Qi)) ≈ 11.58,
and numerically that ‖m‖∞ ≈ 179.90; moreover, λ2(L) = N =
3, and δGd = N/2 = 3/2 [19]. Therefore, through (19), we
compute that c∗ = 3.86 and c∗d = 119.93.

In Fig. 2, two simulations are reported. Namely, in Fig. 2a,
where c = 4 > c∗ and the discontinuous coupling is absent,
the network does not achieve synchronization. When the
discontinuous action is turned on with strength cd = 120 > c∗d in
Fig. 2b, convergence is attained. Note that even if c were larger,
the diffusive coupling alone, which is a common approach to
solve synchronization problems, would not be able to bring
the synchronization error to zero (simulations omitted here for
the sake of brevity). Also, the analytical thresholds c∗, c∗d are
conservative.

VI. CONCLUSIONS

This paper solves the problem of achieving asymptotic
convergence in networks of heterogeneous affine nonlinear
systems. In particular, a distributed approach is proposed that
combines traditional diffusive coupling with a discontinuous
coupling layer that, under suitable assumptions on the individual
dynamics, is capable of guaranteeing asymptotic convergence of
all the nodes towards a common trajectory. To support the con-
trol design, we provided analytical estimates of the minimum
coupling gains required to achieve complete synchronization,
as a function of the node dynamics, and of the topology of
the diffusive and discontinuous layers. The effectiveness of
the approach was demonstrated via a representative example.
In future work, we will address the problem of finding less
conservative estimates of the thresholds of the coupling gains
(c∗ and c∗d in (19)), possibly only requiring local stability of
the synchronization manifold.
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APPENDIX

Lemma 12. Consider network (1)-(2). If
(a) all systems in (1) are strongly strictly semipassive, with

stability components hi , i = 1, . . . , N;
(b) c ≥ 0, cd ≥ 0, µ−2 (Γ) ≥ 0, and µ−∞(Γd) ≥ 0;

then there exists a finite ρ̄ ≥ 0 such that

q̄(x̄) ,
N∑
i=1

(
hi(xi) − F [yT

i ui]

)
≥ ᾱ(‖x̄‖), if ‖x̄‖ ≥ ρ̄, (27)

where ᾱ : [ρ̄,+∞[ → R≥0 is continuous and increasing.

Proof. First, it is straightforward to verify that

−

N∑
i=1
F [yT

i ui] = −F [ȳTū] = −F [x̄Tū] =

cx̄T(L ⊗ Γ)x̄ + cdz̄T(INEd
⊗ Γd)F [sign(z̄)], (28)

where NEd is the number of edges in Gd, and z̄ , (BT
d ⊗ In)x̄.

Simple algebraic manipulations show that the first term on
the right-hand side of (28) is non-negative as c ≥ 0 and
(Γ + ΓT)/2 ≥ 0 (as µ−2 (Γ) ≥ 0). By exploiting [19, Lemma 9],
we can also conclude that the second term is non-negative as
cd ≥ 0 and µ−∞(Γd) ≥ 0. To complete the proof, we need to
find a scalar ρ̄ such that, if ‖x̄‖ > ρ̄, it holds that

∑N
i=1 hi(xi) ≥

ᾱ(‖x̄‖). Such a scalar can be found as follows. Firstly, note
that:
• for any i ∈ {1, . . . , N}, as hi is continuous, it is also bounded

in the set {xi ∈ Rn | ‖xi ‖ ≤ ρi}, therefore there exists a finite
scalar Hi ≤ 0 such that hi(xi) ≥ Hi in that set. In addition,
hi is non-negative by definition in {xi ∈ Rn | ‖xi ‖ ≥ ρi};
hence,

hi(xi) ≥ Hi, ∀xi ∈ Rn; (29)

• as all systems are strongly strictly semipassive, for each
stability component hi there exists an increasing and radially
unbounded function αi associated to it. This implies that,
for a given i ∈ {1, . . . , N} and scalar b, there exists another
scalar a ≥ ρi such that

αi(‖xi ‖) > b, if ‖xi ‖ > a. (30)

From (30), there exist N scalars ρ′i ≥ ρi , for i = 1, . . . , N , such
that

αi(‖xi ‖) > −
N∑

j=1, j,i
Hj, if ‖xi ‖ > ρ′i . (31)

Now, define the following partition of {1, . . . , N}, whose sets
are I1 , {i | ‖xi ‖ ≤ ρi}, I2 , {i | ρi < ‖xi ‖ ≤ ρ′i},
and I3 , {i | ‖xi ‖ > ρ′i}. Then, it is possible to write∑N

i=1 hi(xi) =
∑

i∈I1∪I2∪I3 hi(xi). Exploiting (29), we get∑N
i=1 hi(xi) ≥

∑
i∈I1 Hi+

∑
i∈I2∪I3 hi(xi); applying (3), we have∑N

i=1 hi(xi) ≥
∑

i∈I1 Hi +
∑

i∈I2∪I3 αi(‖xi ‖). Then, we define

ρ̄ ,
√∑N

i=1 (ρ
′
i)

2, so that

‖x̄‖ > ρ̄ ⇒ ∃i : ‖xi ‖ > ρ′i ⇔ I3 , �. (32)

s0

ᾱbound(s)

ᾱ(s)

ρ̄

Fig. 3. Example of the functions ᾱbound and ᾱ in the proof of Lemma 12.

For all ‖x̄‖ > ρ̄, we can exploit (31) and (32) to write that
N∑
i=1

hi(xi) ≥
∑
i∈I1

Hi +
∑

i∈I2∪I3

αi(‖xi ‖) > 0. (33)

At this point, we define the (not necessarily continuous)
positive function ᾱbound : ]ρ̄,+∞[ → R>0 given by ᾱbound(s) ,
minx̄:‖x̄‖=s

(∑
i∈I1 Hi +

∑
i∈I2∪I3 αi(‖xi ‖)

)
> 0. Then, we can

define a continuous increasing function ᾱ : [ρ̄,+∞[ → R≥0
that satisfies

(i) 0 < ᾱ(s) ≤ ᾱbound(s), if s > ρ̄,

(ii) ᾱ(ρ̄) = lim
s↘ρ̄

ᾱ(s); (34)

see Fig. 3 for an illustration of ᾱ and ᾱbound. From (33), we
have that

∑N
i=1 hi(xi) ≥ ᾱ(‖x̄‖), for ‖x̄‖ ≥ ρ̄, which, since (28)

is non-negative, proves the Lemma. �

Proposition 13. If a function f : Rn → Rn has an upper
bounded Jacobian in Ω ⊆ Rn, in the sense that for all x ∈ Ω

∂ fi(x)/∂xi ≤ Sii,
��∂ fi(x)/∂xj

�� ≤ Si j, i , j, (35)

for Si j ∈ R≥0, i, j = 1, . . . , n, then f is QUAD(I, Q) in Ω, with
Q being diagonal and Qii = Sii +

∑n
j=1, j,i(Si j + Sji)/2.

Proof. Let us define x, δ ∈ Rn, so that x, x + δ ∈ Ω. From
the mean value theorem, there exists λi ∈ [0, 1] such that
fi(x + δ) − fi(x) = ∇ fi(x + λiδ) δ. This can be rewritten as
fi(x + δ) − fi(x) =

∑n
j=1 Ĵi jδj , where Ĵi j = ∂ fi(x + λiδ)/∂xj ,

which, multiplying both sides by δi , yields

δi · [ fi(x + δ) − fi(x)] =
n∑
j=1

Ĵi jδiδj . (36)

Summing (36) for i = 1, . . . , n, we have δT[f(x + δ) − f(x)] =∑n
i=1 Ĵiiδ2

i +
∑n

i=1
∑n

j=1, j,i Ĵi jδiδj . Recalling the expression of
the square of a binomial and the bounds on the Jacobian, it
holds that Ĵi jδiδj ≤

��Ĵi jδiδj �� ≤ ��Ĵi j �� (δ2
i +δ

2
j )/2 ≤ Si j(δ2

i +δ
2
j )/2.

Then, letting Qii = Sii +
∑n

j=1, j,i(Si j + Sji)/2, we have

δT[f(x + δ − f(x)] ≤
n∑
i=1

Ĵiiδ2
i +

n∑
i=1

n∑
j=1, j,i

Si j
2

(
δ2
i + δ

2
j

)
≤

n∑
i=1

Siiδ2
i +

n∑
i=1

n∑
j=1, j,i

Si j
2

(
δ2
i + δ

2
j

)
≤

n∑
i=1

Qiiδ
2
i .

Defining y , x + δ, the thesis follows. �
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