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Abstract: The present study theoretically evaluates the stability potential of noncircular geometries
when they are adopted in the outer bearing of floating ring bearings (FRB). A numerical study is
carried out to evaluate the stability about the static equilibrium position of a balanced, symmetrical,
rigid rotor, horizontally placed, and supported at both ends by identical FRBs. In the analysis, the outer
bearing of these FRBs is alternatively shaped with common circular bore (CB), two lobe-wave bore
(2LWB) or lemon bore (LB), assuming a linearization of the film forces. A minor part of the
study consists of partially supporting the results of the above study by means of a nonlinear,
transient analysis. Despite limiting to the theoretical aspect, dealt with under several simplifying
hypotheses, the investigation highlights the influence of the examined non-circular geometries on the
stability of the static equilibrium position, when these geometries are adopted for shaping the outer
housing of the FRB. The paper shows that contrasting effects are obtained, depending on the chosen
geometrical parameters. In the paper, the acronyms CB, 2LWB, and LB are used to indicate the FRB
layouts respectively equipped with outer circular, wave, and lemon bearing.

Keywords: journal bearing; rotor stability; floating ring bearing; lobe bearing; wave bearing; lemon
bearing; Hopf bifurcation

1. Introduction

The present analysis theoretically investigates the effects of giving the outer bearing of a floating
ring bearing (FRB) a non-circular geometry. The common FRB is a lubricated bearing that incorporates
a thin bush or ring between the journal and the casing. This layout presents consequently an inner and
an outer oil film, respectively delimited by the journal and the bush and by the bush and the casing.
Besides floating, the bush is free to spin, so that the whole bearing practically doubles a simple sleeve
bearing. The result is a device with remarkable capability to support ultra-high speed, high-temperature
rotating machinery, owing to the significant damping accomplished by the two oil films operating
in series. Reduced power loss and low costs are mainly the further key aspects that justify the wide
recourse to such bearings, especially in the support of turbochargers. Instabilities are unavoidable
effects of the rotor-support nonlinearities, to which the pronounced hydrodynamic concept of the
FRB highly contributes. They are typically represented by subsynchronous, self-excited vibrations,
which manifest in addition to the synchronous component excited by the rotor unbalance. Oil whirl and
whip, bifurcations from one limit-cycle to a different one, with collapse of the limit-cycle itself or the
possible evolution to a severe, total instability, are the ingredients of the dynamics of FRBs supported
rotors [1,2]. The above remarks justify a bulk investigation carried out in decades, especially focused
on the effects of the different parameters on the static and dynamic properties of the FRB [3–8],
largely motivated by the need to guarantee higher specific power with lightweight assemblies and to
overcome as far as possible the major drawbacks of non-linear instabilities. Shaw and Nussdorfer [3]
mentioned the early use of such bearings in the connecting rods of the 1920–1930 Bristol aircraft engines.

Lubricants 2020, 8, 99; doi:10.3390/lubricants8110099 www.mdpi.com/journal/lubricants

http://www.mdpi.com/journal/lubricants
http://www.mdpi.com
http://www.mdpi.com/2075-4442/8/11/99?type=check_update&version=1
http://dx.doi.org/10.3390/lubricants8110099
http://www.mdpi.com/journal/lubricants


Lubricants 2020, 8, 99 2 of 22

They analytically evaluated the ring to journal speed ratio, taking account of both the clearances ratio
and the radii ratio, as well as the heat generated in the FRB in comparison to that obtained in an
equivalent journal bearing. An experimental measurement of the whirl to rotating speed ratio of
the ring was also carried out in their study. Ng and Orcutt [4] calculated the stiffness and damping
coefficients of the FRB around the static equilibrium position through linearization of the film forces.
Fractional-frequency whirling was observed in the experimental tests, whereas the whirl amplitude
was controlled through the oil feeding pressure, the oil viscosity, and the outer clearance. Tanaka and
Hori [5] calculated the stability charts for a simple rotor on FRBs, evaluating the effects of the different
FRB parameters and rotor flexibility as well as proving the superior stability of the FRB with respect to
the conventional journal bearing. A good agreement between experimental and theoretically predicted
stability limits was also obtained in the investigation. Boyaci et al. [6] theoretically investigated the
Hopf-bifurcation of a rigid, balanced rotor on FRBs. The π-film, short bearing model was adopted
together with the linearization of the film forces around the static equilibrium position. The sub-critical
or super-critical nature of the bifurcations, occurring under different operating conditions, was also
characterized with recourse to non-linear analysis. Hatakenaka et al. [7] set up a Reynolds equation with
a suitable cavitation model that could take into account the centrifugal force. This way the FRB-model
showed how the increase of the cavitation zone with the journal speed could influence the stiffness
cross-coupling coefficients and justify the reduction of the bush-to-shaft speed ratio. Chasalevris [8]
set up an analytical model of the finite-length FRB. Comparison to the numerical approach with finite
difference method confirmed the capability of the method to give accurate predictions at reduced
computational cost, when adopted within rotordynamic algorithms. Yet, a significant part of the
literature was specifically addressed to the study of realistic turbocharger (TC) models equipped
with FRBs [1,2,9–12]. These analyses turn out to be relatively involved. In order to guarantee an
adequate predictive level, the implemented theoretical tools had to consider the mass and unbalance
distributions and temperature gradients, in addition to the different parameters that characterize
the operation of the FRBs. Gunther and Chen [9] and Inagaki et al. [10] investigated the onset of
translational and conical unstable whirling modes, respectively through finite element analysis and
flexible multibody model, with further use of experimental tests. To save computational time, the short
bearing approximation was often preferred to the finite-length characterization of the oil films [10,11].
Tian et al. [11] and Schweizer [1,12] carried out thorough nonlinear analyses by means of run-up and
coast-down simulations, putting in evidence the influence of the unbalance distribution within the TC
rotor and giving particular emphasis to the character of the whirling modes and the phenomenon of
total instability. The dynamical behavior of TC rotor on semi floating ring bearings, which differ from
FRBs because the locking of the bush rotation was also studied by Bonello [13] and San Andrés et al. [14].
The effect of adopting a non-circular geometry for the bearing clearance, in place of the common circular
one, remained though practically neglected in the research literature about FRBs. This circumstance
contrasts with the widespread and consolidated recourse to lemon, multi-lobe, and pressure-dam
shapes in journal bearings, as a mean to guarantee higher stability of the lubricated pair with respect to
the simple circular geometry. To the best author’s knowledge, only a few, recent papers have dealt with
this topic. Eling et al. [15] theoretically analyzed a TC on FRBs with six-lobe-shaped bush. The study
showed that, in spite of an increase in the friction losses due to the lobe geometry, a reduction in
sub-synchronous vibrations, with respect to the use of common bush, could be obtained, as confirmed
by experimental tests. Soni and Vakharia [16] investigated the steady-state characteristics of a FRB
presenting an outer lemon bore. The theoretical analysis, which assumed a finite length bearing and
solved the lubrication problem through the finite element method, made it possible to assess a better
load capacity of the lobe geometry with respect to the reference circular one. Bernhauser et al. [17]
presented a run-up analysis of a TC multibody model with FRBs similar to those adopted in [15].
Regarding the practical employment of TCs within combustion engines, the authors pointed out the
importance of imbalance-excite and self-excited TC vibration as responsible of disturbing tonal noise
during the engine operation. The study theoretically proved that an optimization of the TC dynamics,
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through reduction or suppression of the said vibrations, can be actually achieved by means of the
assumed, uncommon geometry.

Previous studies carried out by the present author were focused on lubricated bearings equipped
with non-circular casing, specifically shaped as a two-lobe wave bore. The highest degree of
dissymmetry, in the class of multi-lobe geometries, showed by the 2LWB, makes it possible to
test the effects of the casing orientation with respect to external loads presenting a fixed direction
(e.g., gravity load). On the other hand, the wave amplitude represents a parameter apt to grade
the preloading effect. The non-linear behavior of unbalanced rotors supported by these bearings,
with special regard to the stability of periodic solution and bifurcations, was investigated in [18,19]
with recourse to the continuation method. The theoretical outcomes from [18] showed that a suitable
choice of the above geometric parameters is beneficial regarding the stability behavior of a rigid rotor
on 2LWB. The present investigation shares with these past studies the consideration of a non-circular
geometry, extending its use to an FRB, whose outer bearing, formed by the ring and the fixed casing,
was made as a 2LWB or a lemon bearing (LB). Nevertheless, the dynamic aspects under examination
limit here to the stability of the steady equilibrium point of a perfectly balanced rotor. The only
bifurcation investigated in the following of the paper, by means of the classic linear stability analysis,
is the Hopf-transition that gives rise to a limit cycle. How the said non-circular FRB geometry influences
this dynamics, in comparison to the common circular geometry, represents the main topic of the paper.
By way of example, a further inspection into the bifurcation scenario, with extension to a higher speed
range, is carried out through the brute-force integration of the system’s equations. This numerical,
non-linear approach completes the investigation by enabling the dynamics survey through observation
of the journal and ring orbits, the evaluation of the minimum film thickness, and that of a suitable
orbit-based index.

2. Rotor Model and Aspects of the Linear Stability Analysis

2.1. Bearing Geometries

A horizontal, rigid rotor is supported with FRB placed at both ends. Owing to assumed symmetry
with respect to the rotor middle plane, the analysis is restricted to a half rotor supported by one end FRB.
The floating ring is rotating with ωR speed around its geometrical axis and whirling in a precession
motion within the fixed housing. No misalignment of the ring nor of the journal is hypothesized.
When the shape of the outer bore is non-circular, with difference to the CB, the ring rotates inside
of a clearance whose radial dimension is not more constant. In the present analysis two different
non-circular shapes are adopted:

(1) Two-lobe wave bore (2LWB): the outer clearance Clo,WB (the subscript “o” indicates the outer
bearing) is expressed in dimensionless way and polar coordinates as

Clo,WB(δ,ϕ) = 1 + B cos(2δ+ ϕ) (1)

The wave amplitude B represents the degree of deviation from the circular shape, while the angle
ϕ indicates the angular displacement of the outer bearing with respect to the horizontal axis of a fixed
frame of reference whose origin is in the bore center (Figure 1a). A null B value corresponds to the
CB case.

(2) Lemon bore (LB): the clearance in this well-known geometry [20–22] is enclosed between two
shells, each one presenting a circumferential extension that is not a complete half-circle (Figure 1b).
It can be expressed in polar coordinates as

Clo,LB_1,2(δ,θ) = CH + (−1)kd sin(δ+ θ), δ ∈ [(k− 1)π, kπ], k = 1, 2 (2)

In the above expression, the k index refers to the k shell. The whole lengths are generally made
dimensionless by division with CH. Differently, they are expressed here in the ratio to the dimension Co
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of the CB clearance, according to the plot in Figure 1b, where the orientation angle θ is also indicated.
The ratio pE = d/CH = d/CH represents the ellipticity of the profile. It is worth to remark that,
differently to the CB and accordingly to the geometry in Figure 1b, the journal (i.e., the ring, in the
present case) is impeded to cover the whole clearance, owing to its radial dimension and to the shape
discontinuity of the clearance wall. It must be also noticed, in Figure 1, the absence of holes or grooves
for the oil circulation, according to the assumed hypothesis of a bearing model with side inlet-outlet at
ambient pressure.
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Figure 1. Geometry of the 2LWB and LB clearances. B, d and CH are dimensionless quantities,
obtained by division with the radius Co of the CB clearance (represented by the dashed circle with
dimensionless unit radius in the left figure). In figure θ = ϕ/2 = ϕ/8. (a) 2LWB; (b) LB.

In order to carry out a comparison between the two shapes shown in Figure 1, regarding their
use in the outer bearing, their geometrical parameters are to be suitably assigned in order to establish
some mutual equivalence and further reference to the CB case. In this regard, in addition to
setting the same angular displacement through the relationship θ = ϕ/2, it seems quite reasonable
to assume, on the one hand, that the dimensional clearances respectively pertaining to the two
profiles, i.e., Clo,WB(δ,ϕ) = Co + CoB cos(2δ+ ϕ) and Clo,LB_1,2(δ,θ) = CH ∓ d sin(δ+ θ), have equal
mean values

Clo,WB

∣∣∣∣
M

= Co and Clo,LB

∣∣∣∣
M

= CH − 2d/π, (3)

On the other hand, imposing equal maxima

Clo,WB

∣∣∣∣
MAX

= Co(1 + B) and Clo,LB

∣∣∣∣
MAX

= CH (4)

or, alternatively, equal minima

Clo,WB

∣∣∣∣
MIN

= Co(1− B) and Clo,LB

∣∣∣∣
MIN

= CH − d (5)

is assumed to represents a plausible, further condition of equivalence. As a result, the ellipticity
parameter and the dimensionless law of the LB clearance Clo,LB(δ,θ), which comply with the
requirement of equal mean values and maxima (LBmx), are

pE,LBmx =
π
2

B
1 + B

and Clo,LBmx(δ,ϕ) =
Clo,LB(δ,θ)

Co
= 1 + B

[
1 + (−1)kπ

2
sin(δ+ θ)

]
, k = 1, 2 (6)
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whereas equating mean values and minima it is alternatively obtained (LBmn)

pE,LBmn = B
π

π− 2(1− B)
and Clo,LBmn(δ,ϕ) =

1− B
1− pE

[
1 + (−1)kpE sin(δ+ θ)

]
, k = 1, 2 (7)

Figure 2a,b show the comparison of the two elliptical clearances LBmx and LBmn, respectively determined
according to Equations (6) and (7).
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2.2. Rotor-Bearing Model

After suitable manipulation, the equations of motion of the rotor-bearing system are eventually
written in a dimensionless way

x′′ + c
s x′ = U cos τ+

σ∗m,D
2Θs fi,x

y′′ + c
s y′ = U sinωτ− 1

s2 +
σ∗m,D
2Θs fi,y

x′′R = 1
χκ

σ∗m,D
2Θs

(
fo,x

2ρµΛ3υΘR

κ2 − fi,x
)

y′′R = 1
χκ

σ∗m,D
2Θs

(
fo,y

2ρµΛ3υΘR

κ2 − fi,y
)
−

1
κs2

, (8)

The significance of the symbols is given in the relative section. The inner film force components
are evaluated, according to the isoviscous, laminar, π-film model, under the infinitely short-bearing
approximation, (πSBA), through the analytical procedure reported in [23], suitably adapted to the
inner bearing, where both the ring and the journal rotate with different speeds (Appendix A). The ratio
ω̂ = ωR/ω between these angular speeds has been expressed in approximate way [24], so as to be
independent of the rotor speed

ω̂ =
ωR

ω
=

1

1 + υ3

k ρµ
(9)

Expressions of the outer film force components, limiting to the CB layout, could be obtained
similarly to the inner ones. A semi-analytical, more general procedure is instead adopted, which holds
in the whole different geometries, i.e., CB, 2LWB, and LB. According to the SBA and the selected bearing
geometry, the oil pressure is analytically obtained in the whole points of a grid with M circumferential
rows × N axially oriented columns, suitably fixed to represent the outer film in discretized way.
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After discarding the negative values, in accord to the Gumbel cavitation model, a numerical integration
over the same grid yields the oil force components (Appendix A).

2.3. Linear Stability Analysis

A linear stability analysis is carried out through the linearized equations written about stationary
equilibrium points. With this aim, the bearing modulus σ∗m,D and the Sommerfeld number ratio Σ

σ∗m,D = µ
ΩLD

W
R2

C2
L2

D2 , Σ =
(1 + χ)k2

ρµω̂Λ3υ
(10)

are assumed to represent a distinctive operating set of the system parameters (i.e., main geometrical
parameters, load, and dynamic viscosity of the lubricant). In particular, σ∗m,D is related to the modified
Sommerfeld numbers σm,D and σmo,D, which respectively characterize the current operating conditions
within the inner and the outer film, by means of the relationships

s =
σm,D

σ∗m,D
, σm,D = Σσmo,D. (11)

Two intervals, respectively Iσ of σ∗m,D and Is of s, are suitably assigned, so that at each σ∗m,D ∈ Iσ,
the rotor speed s is varied in Is. This way, different sets (s, σm,D, σmo,D) are fixed in turn by means
of Equation (11). The static equilibrium point PE ≡ (x, y, 0, 0, xo, yo, 0, 0)E regarding each set is hence
obtained by solving the system 

fi,x = 0
fi,y = 1

σm,D

fo,x = 0
fo,y = Σ fi,y

. (12)

Above equation system is obtained from Equation (8) by setting derivatives and unbalance equal to
zero. It must be observed that the inner force fi,y can be evaluated here directly through the expression
of σm,D obtained by adaptation of the plain bearing case [24] and reported in Appendix A. Once PE is
obtained, the following linearized equations of motion hold in its neighborhood

s2

 I2
=

0

0 χI2
=



ξ′′

η′′

κξ′′ R
κη′′ R


+ Θ

 Q
=

−Q
=

−Q
=

Q
=
+ ρq

=



ξ′

η′

κξ′R
κη′R


+

 P
=

−P
=

−P
=

P
=
+ ρΘR p

=



ξ

η

κξR

κηR


=


0
0
0
0


. (13)

The submatrices p
=

, P
=

, q
=

and Q
=

are written through the stiffness and damping coefficients,

as explained in Appendix B. Further manipulation of Equation (13) (Appendix B) yields the
eigenvalues problem

D
=

Ẑ = λ∗Ẑ
=

. (14)

Provided that the stationary equilibrium point PE is hyperbolic, the instability threshold is
represented by conditions where some λ∗, representing a real eigenvalue or a pair of conjugate
imaginary eigenvalues, turn out to have null real part.

2.4. Choice of the Parameter Values for the Analysis

Numerical simulation has been carried out for different operating conditions, fixed in turn
by choosing the parameter values with suitable criterion, in order to limit the case study work.
The values ±(3/4, 1/2, 1/4) ·π and 0 were assumed for the orientation angle ϕ, together with a wave
amplitude B = 0.2. The last quantity, employed within Equations (6) and (7) for the LBmx and LBmn
profiles, yields an ellipticity ratio pE respectively equal to 0.262 and 0.408. The LB-clearance ratio
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ΨS = CH/CV = 1/(1− pE), with CV = CH − d, represents a parameter that is frequently used too in
literature and assumes values 1.36 and 1.69, respectively in the above two cases. The parameters ρµ,
Λ, κ, υ, and χ were given values as follows: ρµ = 1; Λ = 1; κ = 1, 2; υ = 1.32, 1.5; χ = 0.025, 0.043,
0.075. Some of these values have been adopted in [5,6]. When the outer bearing is a 2LWB or an LB,
υ and κ are respectively evaluated with reference to the outer radius of the ring, which is maintained
comparing the different geometries, and to the clearance Co. A grid with M = 21 rows × N = 221
columns has been used to discretize the outer film.

3. Results

3.1. Steady-State Behavior: A Preliminary Comparison

Figure 3a,b illustrate the journal eccentricity ratio ε vs. the eccentricity ratio εo of the ring,
respectively in two cases relative to CB and LB mount. The parameter values υ = 1.2, χ = 0.001,
pE = 0.5, and κ = 0.7 and 1.3 have been adopted in order to carry out a comparison to the data from [16],
also shown in figures. The CB data have been obtained here as well as in [16] as a limit case of the
LB geometry. To the author’s knowledge and according to the short literature review given above
in the introductory section, the bearing model dealt with in [16] is so far the only one presenting
some similarity with the FRB adopted in the present study. Regarding the plots put in comparison in
Figure 3a,b, it is worth pointing out the differences between the present LB model and that adopted
in [16], where a finite different method-scheme and a finite bearing model with L/D = 1 have been used
to characterize the steady-state performances of an FRB with outer LB. In the light of these remarks,
the comparison may be assumed acceptable with exception of the LB layout and κ = 0.7.
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3.2. Linear Stability Analysis: The CB Case

Some check about the reliability of the semi-analytical procedure addressed to the linear stability
analysis, as described in the above section, has been carried out with reference to the operation of
a rotor on FRBs with outer CB. In this case, the stability responses obtained in both semi-analytical
and analytical way (see for example [5,6]) have been put in comparison. Figure 4a shows the results
(the analytical curves are reported in black) for three different κ values and the remaining parameters
fixed as in [6]. The plots in figure show some differences in the outcomes of both procedures,
particularly for the higher branches obtained with κ = 1.5 and 2. In this regard, the following remarks
are worth to be considered. The analytical curves have been here obtained expressing the inner and
outer fluid film forces as well as the inner and outer stiffness and damping coefficients in full analytical
way, according to [5]. On the other hand, the stability borders obtained in semi-analytical way are
calculated through a procedure that implies: the integration of the pressure distribution on a finite
mesh; the account of cavitation through cut off of the negative values; the calculation of stiffness
and damping coefficients by means of numerical derivatives. In both cases, the occurrence of pure
imaginary eigenvalues, which is crucial for the determination of the instability threshold, has been
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carried out numerically. According to these aspects, the differences in the outcomes, as they appear in
Figure 4a, receive some justification.
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In Figure 4a, it may be observed that each κ-case is represented by a curve with two distinct
branches, so as to organize the whole area under exam in two regions, a left higher stability region (HSR)
and a right lower stability region (LSR). The branch in the HSR, at lower values of the bearing modulus
σ∗m,D, represents stability loss very likely due to supercritical Hopf bifurcations, whereas the branch in
the LSR, characterized by light-load conditions, would very likely represent instability originated by
subcritical bifurcations [6]. These behaviors are due to the play of the eight eigenvalues at varying
the rotor speed s. In this regard, it is worth remarking that: (1) the set of eigenvalues is generally
made by real eigenvalues (REs) λ∗p,R, p = 1, P, and complex conjugate eigenvalues (CCEs) λ∗q,CC, q = 1,
Q; (2) the number of eigenvalues in each subset can change from s to s, on condition, in the present
system, that P + 2 Q = 8. As an example, Figure 4b,c, which refer to the curve in Figure 4a numerically
obtained for κ = 2, illustrate the conditions occurring at the onset of instability when σ∗m,D = 8.13 and
σ∗m,D = 0.398, respectively. Both figures show the behavior of the real parts Re(λ) of the eigenvalues
(upper diagrams) and that of the imaginary parts Im(λ) in the interval s = 2 ÷ 10 (for better clarity,
only the non-positive Im(λ) have been plotted). Furthermore, owing to the different magnitudes of
the eigenvalues parts, only partial data, i.e., those relevant to the Hopf bifurcations under analysis,
have been reported. That being said, from Figure 4b it can be inferred that the loss of stability at σ∗m,D
= 8.13, occurs at s around 2, when the pair λ∗2,CC crosses the imaginary axis from the negative to the
positive half-plane. It can be seen that, at the same speed, there are a second pair λ∗1,CC of CCEs and a
RE λ∗1,R, the latter one changing soon after, when s is about 2.2, into a further pair of CCEs. At the onset
of instability, the absolute value of the imaginary part of the eigenvalues that determine the bifurcation,
i.e., λ∗2,CC, is higher than that of λ∗1,CC. Differently in the HSR, when σ∗m,D = 0.398, Figure 4c shows that
the loss of stability, about s = 3, is due to the eigenvalue λ∗1,CC, which possesses the lowest absolute
value of the imaginary part with respect to the further CCEs (two of which, i.e., λ∗2,CC and λ∗3,CC,
are depicted in the upper and bottom diagrams of the figure). The above conditions, regarding the
magnitude of the imaginary parts of the critical eigenvalues, have been observed in [6] to be frequently
associated to sub-critical (Figure 4b) and super-critical (Figure 4c) bifurcations. Nevertheless, the same
conditions cannot represent a criterion to decide whether the bifurcation is of the former or the latter
type, nor in the present analysis are adopted the appropriate tools, like continuation or center manifold
analysis, in order to solve the issue.

The change from LSR scenario to the HSR one manifests with a jump, as it can be inferred
from the plots in Figure 4a and can be explained as follows, still making reference to Figure 4b,c,
without providing further data for the sake of conciseness. According to the above remarks, the Hopf
bifurcations in the LSR (Figure 4b) and in the HSR (Figure 4c) are due to different critical eigenvalues,
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i.e., λ∗2,CC and λ∗1,CC, respectively. As the value of the bearing modulus σ∗m,D is decreased from 10 to 2

(compare Figure 4b,c), the Re
(
λ∗1,CC

)
remains over the zero axis (i.e., the pair λ∗1,CC is continuing to cross

the imaginary axis). Differently Re
(
λ∗2,CC

)
diminishes gradually in value, till to abandon the zero axis

and to position entirely beyond it. Owing to its slope, when Re
(
λ∗2,CC

)
separates from the zero axis and

ceases to be critical (around σ∗m,D = 4.5), there is a jump from the critical s value that is due to λ∗2,CC,

say s∗2,E

(
λ∗2,CC

)
this end value, to the critical s value that is due to λ∗1,CC, say s∗1,I

(
λ∗1,CC

)
this initial value,

placed upward in the interval. The difference s∗1,I

(
λ∗1,CC

)
-s∗2,E

(
λ∗2,CC

)
justifies the discontinuity in the

observed threshold curve for κ = 2 in Figure 4a. Similar considerations hold for the remaining curves.

3.3. Linear Stability Analysis: The 2LWB and LB Cases

When the outer bearing is changed from the CB to the 2LWB or LB shapes, the dependence of
the stability curves on the bearing orientation ϕ and the level of deviation from the circular shape
(respectively represented in both types by the amplitude B and the ellipticity parameter pE) turns
out to be apparent. Figure 5a,b report the stability charts obtained adopting the 2LWB with B = 0.2,
ϕ = −(1, 2, 3)·π/4, υ = 1.32 and χ = 0.043; the clearance ratio κ was given the values of 1 and 2,
respectively in both figures. The curves in each figure show similarities to the plots of Figure 4a and
are mostly characterized by the presence of two distinct branches, corresponding to HSR and LSR.
In each figure, the threshold curve obtained with the CB layout, operating under the same respective
parameter values, has been added in order to allow comparison to the lobe solutions, so that a general
increase in stability, gained by the non-circular geometry, may be observed. In fact, the threshold
branches corresponding to the 2LWB are higher than in the CB case, with the only exception of the
ϕ = −3π/4 orientation. This effect is particularly remarkable in the HSR and even more when the
clearance ratio κ is equal to 1, whereas the dotted-line branches in the LSR turn out to be very close
each to the other. Also worth of notice is the broadening of the HSR, at the expense of the LSR, when κ
is raised from 1 to 2. Yet, comparing in each figure the curves corresponding to different angles, it can
be inferred that the apparent improvement of the stable behavior in the HSR is higher the less the slope
with respect to the horizontal layout assigned through the ϕ angle. Nevertheless, the orientation angle
ϕ = −3π/4 yields a some contrasting stability response: (1) poor when κ = 1, i.e., worse than that
of the CB mount, in a relatively broad interval of σ∗m,D and, moreover, without a distinct separation
between HSR and LSR; (2) generally better than the CB response when κ = 2, with a threshold even
higher than in the whole comparing cases, in a restricted interval of the bearing modulus, placed just
downstream the jump up to the higher branch.

Figure 5c–f illustrate the stability charts obtained replacing the 2LWB with an LBmx bearing
(Figure 5c,d) or an LBmn one (Figure 5e,f). In order to ease the comparison between geometries,
the whole set of Figure 5a–f is organized by rows, i.e., the figures on a same row are obtained with the
same parameter values. In the whole cases, it can be seen that the LB curves (Figure 5c–f) are more
gathered, with partial overlapping, and closer to the CB branches than in the 2LWB mount (compare
Figure 5a,b). From comparison, it can also be inferred a general, moderate decrease of the stability
thresholds gained by the lemon profiles, as well as the clear similarities to the respective 2LWB results
(compare figures on a same row), mainly consisting in similar partitions of the diagram area in HSR and
LSR. Some attention may be paid to examining the performances of the different angular orientations,
with particular reference to the HSR. The positioning of the LB curves, almost generally above the CB
ones, is still to indicate better stability with respect to the circular geometry. Nevertheless, the relative
gathering of the branches denotes a weak influence of the ϕ angle in this set of values, even though
some differences in the performance quality can be observed comparing the results pertaining to a
same given ϕ value in the LBmx and LBmn geometries (compare, for instance, the branches with
ϕ = −3π/4 in Figure 5c,d respectively to those in Figure 5e,f).
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Figure 5. Stability charts for CB and non-circular geometries, ϕ = −(1, 2, 3)·π/4, υ = 1.32, χ = 0.043,
κ = 1 (a,c,e), κ = 2 (b,d,f). (a,b): 2LWB; (c,d): LBmx; (e,f): LBmn.

A separate analysis is addressed just to the mentioned 2LWB case with ϕ = −3π/4 and κ = 1,
in order to throw light onto the characteristic continuity, i.e., without the typical jump from HSR to
LSR or vice-versa, exhibited by the corresponding curve in Figure 5a. Figure 6a,b make it possible to
assess that λ∗2,CC represents the critical eigenvalue both in the LSR and the HSR (compare Figure 5a).
Owing to coalescences between the different eigenvalues, observed in the Re(λ) and Im(λ) diagrams at
varying σ∗m,D in its interval, Re

(
λ∗2,CC

)
maintains its position over the zero axis, so that the critical value

of s∗ (i.e., the speed at which the pair λ∗2,CC crosses the imaginary axis) varies continuously without

jumps and intervention of different eigenvalues. It is also worth noticing that Im
(
λ∗2,CC

)
changes its

relative magnitude with respect to the other eigenvalues when passing from LSR to the HSR, as it can
be inferred comparing the bottom diagrams in Figure 5a,b.
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The effects of an increase in the radius ratio υ from 1.32 to 1.5 can be observed from Figure 7a–f.
As in the previous set of figures, in each row it is possible to compare the 2LWB data (left) to the
LBmx (center) and LBmn ones (right), obtained under the same parameter values. Observation and
comparison of the plots in these figures make it possible to conclude that the above modification in
the υ value keeps unchanged the characteristics already observed in Figure 5a–f, while determining
an increased stability, as confirmed by the raising of the whole branches. On the other hand, it was
observed that a moderate change in the value of the mass ratio yielded no sensible modification in
the charts depicted in Figure 5a–f. Related results to support this remark were obtained assuming
χ = 0.025 and 0.075 and are not presented here for the sake of brevity.

The stability charts obtained with the same parameter values of Figure 5a–f, but adopting a further
set of angular positions, i.e., ϕ = (0, 1, 2, 3, 4)·π/4, are reported in Figures 8a–c and 9a–f. The values
κ = 1 and κ = 2 were respectively adopted in the former and the latter set of figures. A general decay
of stability, partly lessened at higher loads, is shared by the different curves, which show substantial
similarities in the three, compared geometries. It is apparent that, whatever the noncircular bearing
shape, when κ = 1 the threshold curves for ϕ = π/2 and ϕ = 3π/4 are positioned quite below the CB
curve. Differently, some higher branches of the curves calculated with ϕ = 0 and ϕ = π/4 overstep
the CB stability border when σ∗m,D is about less than 0.2. Similar behavior characterize the data for
ϕ = π with restriction to the LBmx and LBmn profiles (Figure 8b,c). A further remark can be made
about the shape of the curves, which are deprived of distinct separation between the HSR and LSR,
with the only exception of the 2LWB and LBmx branches at ϕ = 0.
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When κ = 2 (Figure 9a–f) a higher spread, with respect to the results of Figure 8a–c, is observed in
the stability performances. Angular positions with ϕ = π/2 and 3π/4 yield a remarkable lowering of
the limit curves. This circumstance is particularly evident for the LBmn profile. Conversely, the best
performance pertains to the ϕ = 0 orientation: this horizontal layout of the outer bearing, makes the
stability borders in Figure 9b,d,f comparable to the higher branches depicted in Figure 5b,d,f, respectively.
Even in this case, this outcome appears more evident when the LBmn shape is adopted. A further
comment is to be addressed to the discontinuities exhibited in Figure 9b,f, which could represent, at first
glance, numerical artifacts. Nevertheless, an inspection into the behavior of the critical eigenvalues
clarifies the point. Figure 10a–e show the partial portraits of the eigenvalues obtained in the interval
of rotor speed s, taken at different, close values of the bearing modulus. In particular, Figure 10a–c,
relative to a sequence of σ∗m,D values around 3.5, show how the critical eigenvalue is initially represented
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by λ∗3,CC (Figure 10a,b, top) and successively (Figure 10c, top) by λ∗2,CC. The passage from the one
eigenvalue to the other takes place with a jump in the critical value s* of s, which justifies the right
discontinuity in the ϕ = 0 curve of Figure 9b. Further downward, when σ∗m,D is around 0.54 another
jump takes place, as confirmed by the left discontinuity in theϕ = 0 curve of Figure 9b. Differently from
the previous case, the jump in the critical value s* from 6.7 c.a. to 4.2 c.a. when σ∗m,D ' 0.54 is due to the
only λ∗2,CC eigenvalue, as confirmed by the behavior summarized in the top diagrams of Figure 10d,e.

1 
 

   
   (a)     (b)     (c) 

           
 (d)   (e)  

 Figure 10. Behavior of the eigenvalues (partial portraits) related to the ϕ = 0 curve in Figure 9b,
taken at successive values of σ∗m,D. (a–c): sequence involved in the right discontinuity about σ∗m,D = 3.5;
(d,e): sequence involved in the left discontinuity about σ∗m,D = 0.54.

3.4. Non-Linear Analysis with Brute-Force Method

The above analysis of stability suffers from the limits due to the several simplifying hypotheses
that have been assumed, among which the linearization of the fluid film forces is a distinctive feature.
The brute-force approach, based on the numerical integration of the system’s ODE, represents a first,
classic tool at disposal to get further insight into the dynamics under analysis [23], especially in the
post-bifurcation scenario, before recurring to possible different methods, like continuation analysis or
center manifolds analysis [6,18,19]. However, it is worth remarking that the brute-force method can
cast light on the investigated dynamics, though restricting to the stable solutions and on condition to
evaluate suitably the sensibility to initial conditions, so as to detect the presence of possibly coexisting
solutions. Nevertheless, regarding the investigation carried out in the above section, this approach can
effectively play a supporting role, mainly consisting in a survey of the bifurcation dynamics predicted
through the linear stability analysis. Particularly, the stability loss can be verified by observing the
positions occupied by the journal and ring centers within their respective clearances, as the speed is
gradually increased in the low values range. In fact, when the bifurcation manifests, their equilibrium
point-status is replaced by a motion condition as an effect of the onset of a limit cycle. Both the speed
at which the transition sets in and the way the orbits’ size increase can be suitably appraised through
the numerical simulation.

On these premises, two examples have been chosen from the case-studies presented in the above
section, in order to show the use of the brute-force procedure in the present context. In each example,
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for a given set of κ, υ, χ, and σ∗m,D values, the rotor speed is assigned in steps within a suitable interval.
At each step, the numerical integration of Equation (8), written in the absence of unbalance, is carried
out by means of an ode15s MATLAB routine, up to attaining a steady condition after that the initial
transient is damped out. This procedure is repeated for different FRB layouts, whose responses are
eventually compared in terms of journal and ring center orbits, minimum film thickness, and SI index.
The last quantity is specifically related to the orbits. Besides contrasting the orbits obtained from a
layout to the other at some chosen s values, the said index, defined as

SI =
√

∆x · ∆y (15)

where

∆x = xU − xL, ∆y = yU − yL, xU = max{x}, xL = min{x}, yU = max
{
y
}
, yL = min

{
y
}

(16)

and {x} and
{
y
}

are the x and y coordinates of the orbit points, makes it possible to evaluate
approximatively the orbit dimensions along the examined interval of speed.

The two selected examples are characterized by the following sets of parameters:
Set (1) σ∗m,D = 0.1, κ = 2, υ = 1.32, χ = 0.043, layouts: CB, 2WLB with ϕ = −π/4, 3π/4 rad (reference

to Figures 5b and 9b);
Set (2) σ∗m,D = 0.22, κ = 1, υ = 1.32, χ = 0.043, layouts: CB, 2WLB with ϕ = 0,π/4 rad (reference

to Figure 8a).
In the examples, intervals: 1.18 ÷ 15.4 (10 ÷ 130 krpm) or 1.18 ÷ 21.3 (10 ÷ 190 krpm) of the s rotor

speed, in steps ∆s = 0.355 (3 krpm), have been assumed.
Figure 11a,b depict the behavior of the SI index respectively for the above Set1 and Set2 conditions.

Each curve in the diagrams starts at a speed value that is generally not coinciding with the exact critical
one, but turns out to be placed just downstream of it, owing to the step resolution and the fact that the
index assumes null values in the presence of equilibrium points. The SI behavior shown in the plots
makes it possible to infer that:

- The orbits described by the ring center in the outer bearing are larger than those described by the
journal center. In particular, the orbits of the ring center for the CB are generally larger than in the
other layouts. An opposite outcome appears when comparing the orbits of the journal bearing,
which are, for the circular geometry, smaller than in the 2LWB examples.

- Under the Set 1 conditions, the bifurcation manifests at rotor speeds that are quite different each
to the other (Figure 11a). The 2WLB, ϕ = −π/4 layout presents a critical speed about s = 15,
remarkably higher than those that occur about s = 6 and s = 4, respectively for the CB and the
2WLB − ϕ = 3π/4 cases. This outcome is quite congruent with the predictions that can be
deduced from Figures 5b and 9b for these three layouts.

- Adopting the Set 2 (Figure 11b), the critical speeds obtained for the different FRBs are closer than
in the Set 1 conditions. The lowest one, at about s = 4.5, is obtained when the outer bearing,
i.e., the FRB housing, has a lobe profile with a ϕ = π/4 slope. In the other two cases, represented
by the CB and 2WLB − ϕ = 0 layouts, the transition to the limit cycle manifests at about s = 5.
Comparison to Figure 8a makes it possible to assess a sufficient congruence between the data in
these conditions too, despite the jump exhibited in the same figure by the threshold curve relative
to the lobe bearing with ϕ = 0 slope.

An insight into the results presented in Figure 11a,b can be achieved through inspection of the
trajectories described by the journal and ring centers at different speeds and depicted in Figure 12a,c,e,
for conditions of Set 1, and in Figure 12b,d,f for the Set 2 ones. A first indication about the stability
performances that pertain to the different layouts, is obtained by noticing the long-lasting permanence
of the equilibrium point at speed increase, which manifests in some cases with respect to the other ones.
This remark complies particularly with the behavior of the 2WLB − ϕ = −π/4 reported in Figure 12e.
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The wide orbits of the centers, detected for s = 16, contrast with the minute orbits obtained when s = 15.
Differently, the other two geometries analyzed under the same Set 1 conditions (Figure 12a,c) turn out
to exhibit big orbits well before, when s = 7.

Lubricants 2020, 8, x FOR PEER REVIEW 16 of 24 

 

reported in Figure 12e. The wide orbits of the centers, detected for s = 16, contrast with the minute 
orbits obtained when s = 15. Differently, the other two geometries analyzed under the same Set 1 
conditions (Figure 12a,c) turn out to exhibit big orbits well before, when s = 7. 

  

(a) (b) 

Figure 11. Behavior of the SI index relative to the orbits of the journal and ring centers (respectively: 
‘in’ and ‘out’ subscripts): examples for the CB and 2LWB layouts. (a) Set 1 conditions and layouts; (b) 
Set 2 conditions and layouts. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Behavior of the SI index relative to the orbits of the journal and ring centers (respectively:
‘in’ and ‘out’ subscripts): examples for the CB and 2LWB layouts. (a) Set 1 conditions and layouts;
(b) Set 2 conditions and layouts.

Lubricants 2020, 8, x FOR PEER REVIEW 16 of 24 

 

reported in Figure 12e. The wide orbits of the centers, detected for s = 16, contrast with the minute 
orbits obtained when s = 15. Differently, the other two geometries analyzed under the same Set 1 
conditions (Figure 12a,c) turn out to exhibit big orbits well before, when s = 7. 

  

(a) (b) 

Figure 11. Behavior of the SI index relative to the orbits of the journal and ring centers (respectively: 
‘in’ and ‘out’ subscripts): examples for the CB and 2LWB layouts. (a) Set 1 conditions and layouts; (b) 
Set 2 conditions and layouts. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. Orbits of the journal and ring centers for different FRB layouts and rotor speeds.
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The data of Figure 12a,c,e also confirm that the trajectories of the ring center in the CB layout
are on average closer to the housing wall with respect to the compared lobe geometries, as inferred
from observation of the SI curves in Figure 11a. The opposite result, relative to the magnitude of
the journal bearing orbits, which appears to be relatively lesser in the CB case than in the compared
geometries, is also verified. Figure 12b,d,f depict the trajectories obtained when conditions are those
of Set 2. The critical speed occurs for s values between 4 and 5 in the whole three bearing types.
Yet, the transition to the precession motion appears slightly anticipated by the 2WLB − ϕ = π/4 layout
with respect to the CB and the 2WLB − ϕ = 0 ones. Furthermore, comparing the data obtained at s = 4
and 5 in Figure 12d,f to those relative to s = 3.5 and 4.5 in Figure 12c and s = 15 and 16 in Figure 12e,
it can be said that the transition in the Set 2 cases manifests very likely some more gradually than in the
Set 1 examples. Further observation of the data in Figure 12a–f makes it possible to notice the presence
of higher harmonics that affect, at some degree, the journal orbits downstream of the stability loss,
particularly under the Set 2 conditions.

The brief portrait given in the present section is completed here below with an observation of the
minimum thickness behavior, as reported in Figure 13a,b. The whole curves in the plots present an
initial branch that raises with the rotor angular velocity, from the initial s = 2 value up to the critical
speed. This behavior is justified by the gradual centering of the steady equilibrium points within
the bearing clearances, which evolves as far as the speed is increased. The difference in the loading
conditions from Set 1 and Set 2 explains the different range of values pertaining to the curves reported
in the lower part of Figure 13a,b and relative to the inner bearing. It is worth observing that the
minimum thickness assumes practically the same values, whatever the FRB layout in the examples.
The curves shows quite clearly the jump that is due to the stability loss, with indications that agree with
those inferred from Figures 11 and 12. The significant jumps that affect the minimum film thickness
in the inner bearing under Set 1 are also worth of remark. This outcome appears to be reasonably
explained in terms of the said equilibrium point-centering and load condition effects. The example
represented by the 2WLB − ϕ = −π/4 case in Figure 13a is representative in this regard.
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4. Discussion and Conclusions

The paper presents a theoretical investigation that shows how the instability threshold of a
perfectly balanced, horizontally placed, rigid rotor on FRBs is dependent on the shape of the FRB
housing. With this aim, two geometries, respectively characterized by a two-lobe wave shape and
a lemon one, have been considered in place of the circular profile commonly adopted for the outer
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plain bearing. The angular orientation and the preload level are distinctive parameters of these two
unsymmetrical profiles. Shaping the bore of journal bearings by means of multi-lobe, dammed or
stepped profiles is a well-known, low cost practice to gain a better rotor stability with respect to the
basic circular geometry. Past research carried out by the author on this topic and the relative scarceness
of studies about the specific use of noncircular geometries within FRBs motivated the present study,
carried out with a linear approach. In this sense, and through the extension to different bearing
layouts, it particularly follows in the wake of some previous works [5,6] focused on the behavior of the
common FRB.

The results make it possible to assess the incidence of the noncircular shape and, particularly,
of the angular orientation of the profile, on the stability response of the rotor system, with positive
or negative effects that vary from case to case. In particular, the adoption of FRBs with outer 2LWB,
makes it possible to obtain better stability performances with respect to the CB layout when negative
values of the ϕ angle are employed. The highest instability thresholds are obtained with the negative
angle that presents the lesser absolute value among the adopted ones, i.e., ϕ = −π/4. Above this value,
i.e., when ϕ is null or positive, the performance gradually worsens, with a sensible lowering of the
curves occurring beyond ϕ = π/4. These remarks make it possible to infer that, regarding the analyzed
type of stability loss, the response of the 2LWB layout is better than the CB one, on condition that the
bearing is not too much inclined above the horizontal, with a peak in the counter-clockwise range of
angular displacements. The worst responses are instead obtained with the ϕ = π/2 and ϕ = 3π/4
clockwise positions. These circumstances are likely in relation to the assumed vertical direction of
the external load and the counter-clockwise, positive angular speed of the journal. The influence due
to modifications of the radius and clearance ratios, in terms of extension and position of the HSR
and LSR, are in line with those observed in the CB case, whereas varying the mass ratio in the range
0.025–0.075 yields no sensible changes.

When the LBmx and LBmn shapes are adopted in the outer FRB bearing, the stability charts
appear rather similar to those obtained in the corresponding 2LWB cases. The influence of negative ϕ
values is less pronounced than in the 2LWB layout, despite a general improvement of stability may
be detected, with curves that appear more gathered and close to the CB ones adopted for reference.
Nevertheless, the results of these specific inclinations show some differences with respect to those
described about the 2LWB layout, particularly in the case of the LBmx profile. A higher degree of
similarity may instead be assessed in the stability charts obtained for the 2LWB and the two LB layouts,
from case to case, when positive ϕ values are assigned.

The inspection of the eigenvalues behavior has proved to be an effective tool in order to justify
some specific features of the threshold curves. The recourse to brute-force integration, in a few
examples related to the case-studies considered in the previous analysis, has given further insight into
the examined dynamics. This part of the investigation has been carried out through observation of the
journal and ring orbits and evaluation of the minimum film thickness, with further use of a suitable
parameter correlated to the orbit dimensions.

The several, simplifying hypotheses in the analysis and, above all, the restriction to the Hopf
bifurcation, which takes place from the steady state equilibrium of the perfectly balanced rigid rotor,
mark the limits of the investigation. Nevertheless, the obtained results highlight significant effects of
the non-circular geometry, as it has been assumed here within the FRB layout, which could reasonably
encourage further research on the topic.
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Nomenclature

Symbols Description
B dimensionless wave amplitude of the 2LWB
C clearance of the inner bearing [m]
CH parameter of the LB bore [m]
Co clearance of the outer bearing (CB bore, reference for the 2LWB and LB cases) [m]
Clo,WB(δ,ϕ) clearance of the outer bearing (2LWB bore) [m]
Clo,LB_1,2(δ,θ) clearance of the outer bearing (LB bore) [m]
d parameter of the LB bore [m]
D diameter of the inner bearing [m]{

fi,x
fi,y

}
= 2Θ

σm,DW

{
Fi,x
Fi,y

}
: dimensionless force components of the inner fluid film{

fo,x

fo,y

}
= 1

σmo,D(W+WR)

{
Fo,x

Fo,y

}
: dimensionless force components of the outer fluid film

Fi,x, Fi,y force components of the inner fluid film [N]
Fo,x, Fo,y force components of the outer fluid film [N]
g gravity acceleration [m/s2]
h dimensionless fluid film thickness of the inner bearing
L axial length of the inner bearing [m]
m, mR semi-mass of the rotor, mass of the ring [kg]
p oil film pressure [N]
p∗ = µωR2

C2
L2

D2 : reference pressure in the internal oil film [N]
pE = d/CH =d/CH: lemon-bearing ellipticity ratio

p∗o = µoωR
R2

o
C2

o

L2
o

D2
o
: reference pressures in the outer oil film [N]

R radius of the inner bearing [m]
s = ω/Ω: dimensionless rotor speed
t time [s]
W, WR half-weight of the rotor, weight of the ring [N]
x, y dimensionless coordinates of the journal (Oxy: right-hand reference with horizontal x-axis)
x, y coordinates of the journal center [m]
x̂, ŷ = x− κxR, y− κyR: dimensionless relative positions between journal and ring
z dimensionless axial coordinate of the bearing
α angular position of the film border (Appendix A)
δ circumferential coordinate
γ dimensionless pressure of the oil film
ζ = z/L: dimensionless axial coordinate
θ = ϕ/2: orientation angle of the LB profile (Figure 1b)
Θ = ω/ω = (1 + ω̂)−1

κ = Co/C: clearance ratio
λ∗ eigenvalue (Appendix B)
Λ = Lo/L: axial length ratio
µ absolute viscosity of the lubricant in the inner bearing [Pa s]
ρµ = µo/µ: viscosity ratio
σm,D =

µωLD
W

R2L2

C2D2 : Sommerfeld number in the inner oil film

σmo,D =
µoωRLoD
W+WR

R2
o

C2
o

L2
o

D2
o
: Sommerfeld number in the outer oil film

σ∗m,D =
µΩLD

W
R2L2

C2D2 : bearing parameter

Σ = σm,D/σmo,D =
(1+χ)κ2

ρµω̂Λ3υ : Sommerfeld number ratio

τ = ωt: dimensionless time
υ = Ro/R: radius ratio
ϕ angular orientation of the noncircular outer bearing (Figure 1a)
χ = mR/m = WR/W: mass ratio
ΨS = CH/CV = 1/(1− pE): lemon-bearing clearance ratio
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ω rotor angular speed [rad s−1]
ω = ω+ωR [rad s−1]
ω̂ = ωR/ω: angular speed ratio
Ω =

√
g/C: reference angular frequency [rad s−1]

o subscript for the quantities relative to the outer bearing

R subscript for the quantities relative to the ring
′ dimensionless time derivative

Appendix A

Appendix A.1 Inner Bearing

Dimensionless Reynolds Equation with SBA:

∂2γ

∂ζ2 = 24

(
x̂− 2Θŷ′

)
sin δ− (ŷ + 2Θx̂′)

(1− x̂ cos δ− ŷ sin δ)3 , (A1)

Pressure within the oil film:

γ = 3

(
x̂− 2Θŷ′

)
sin δ− (ŷ + 2Θx̂′) cos δ

(1− x̂ cos δ− ŷ sin δ)3

(
4ζ2
− 1

)
, p = p∗γ, p∗ = µω(R2/C2)(L2/D2) (A2)

Dimensionless expression of the force components of the inner oil film:{
fi,x
fi,y

}
= 2Θ

σm,DW

{
Fi,x
Fi,y

}
= E

(
3V

{ x
y

}
−G

{
sinγ
− cosγ

}
− 2S

{
cosγ
sinγ

})
α = arctan

(
(ŷ + 2Θx̂′)/(x̂− 2Θŷ′)

)
− (π/2) sin

(
(ŷ + 2Θx̂′)/(x̂− 2Θŷ′)

)
− (π/2) sin(ŷ + 2Θx̂′)

E1 =
(
(x̂− 2Θŷ′)2

+ (ŷ + 2Θx̂′)2
)0.5

, E2 = 1− x̂2
− ŷ2, E3 = ŷcosα− x̂sinα, E = −E1/E2,

S1 = x̂ cosα− ŷ sinα, S2 = 1− S12, G = (2/E20.5)
(
arctan(E3/E20.5) + π/2

)
, V1 = 2 + GE3,

V = V1/E2.

(A3)

Sommerfeld number for the inner oil film:

σm,D =
1

1 + ω̂

2
(
1− ε2

)2

ε
√
π2(1− ε2) + 16ε2

= Θσm,D_simp (A4)

σm,D_simp is the number relative to the simple plain bearing.

Appendix A.2 Outer Bearing

Dimensionless Reynolds Equation with SBA:

∂2γo

∂ζ2 = 24
1
h3

o

(
∂ho

∂δ
+

2
ω̂
∂ho

∂τ

)
, γo = po/p∗o, p∗o = µoωR

R2
o

C2
o

L2
o

D2
o

(A5)

Dimensionless oil film pressures:

CB : γo = 3

(
xo − 2ω̂−1y′o

)
sin δ−

(
yo + 2ω̂−1x′o

)
cos δ

(1− xo cos δ− yo sin δ)3

(
4ζ2
− 1

)
(A6)

2LWB : γo = 3

(
xo − 2ω̂−1y′o

)
sin δ−

(
yo + 2ω̂−1x′o

)
cos δ− 2B sin(2δ+ ϕ)

[1− xo cos δ− yo sin δ+ B cos(2δ+ ϕ)]3

(
4ζ2
− 1

)
(A7)

LBmx : γo = 3

(
xo − 2ω̂−1y′o

)
sin δ−

(
yo + 2ω̂−1x′o

)
cos δ+ (−1)kBπ

2 cos(δ+ θ){
1− xo cos δ− yo sin δ+ B

[
1 + (−1)k π

2 sin(δ+ θ)
]}3

(
4ζ2
− 1

)
(A8)
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LBmn : γo = 3

(
xo − 2ω̂−1y′o

)
sin δ−

(
yo + 2ω̂−1x′o

)
cos δ+ (−1)kpE

1−B
1−pE

cos δ{
1−B
1−pE

[
1 + (−1)kpE sin(δ+ θ)

]
− xo cos δ− yo sin δ

}3

(
4ζ2
− 1

)
(A9)

The following equation expresses the components in dimensionless way{
fo,x
fo,y

}
=

1
σmo,D(W + WR)

{
Fo,x
Fo,y

}
= ΨSH

{
fSHS,x
fSHS,y

}
, (A10)

where

ΨSH = −
3π

4(N − 1)(M− 1)
,
{

fSHS,x
fSHS,y

}
=

M−1∑
i=1

N−1∑
j=1

[(
γ̂o(i, j) + γ̂o(i+1, j) + γ̂o(i, j+1) + γ̂o(i+1, j+1)

) { cos δ(2 j+1)/2
sin δ(2 j+1)/2

}]
(A11)

Appendix B

Main quantities adopted in Equation (13):

I2 =
[

1 0
0 1

]
, Q =

[
dξξ dξη
dηξ dηη

]
, q =

[
do,ξξ do,ξη
do,ηξ do,ηη

]
, P =

[
kξξ kξη
kηξ kηη

]
, p =

[
ko,ξξ ko,ξη
ko,ηξ ko,ηη

]

ρ =
1 + χ
κΘR

, ΘR = ωR/ω.

The matrices Q
=

and P
=

can be deduced from ([5], Appendix A), with the remarks

dξξ = A1, dξη = −A2, dηξ = −A3, dηη = A4, kξξ = B1, kξη = kηξ = −B2, kηη = B4.
The elements of q

=
and p

=
are numerically obtained by means of finite difference approximations of the partial

derivatives of the outer film force around the equilibrium point.
With use of the following quantities

Mm = s2

 I2
=

0

0 χI2
=

, MD = Θ

 Q
=

−Q
=

−Q
=

Q
=
+ ρq

=

, Mk =

 P
=

−P
=

−P
=

P
=
+ ρΘR p

=

, z =


ξ
η
κξR
κηR

 (A12)

Equation (13) can be equivalently written

Mmz′′+MDz′+Mkz = 0 (A13)

and furthermore
U
=

Z′ + V
=

Z = 0 (A14)

where

U
=
=

 Md Mm _

Mm 0
=

, V
=
=

 Mk 0
=

0
=

−Mm

, Z
=
=

{ z
z′

}
. (A15)

Let the solution of Equation (A13) be given as Z(τ) = Ẑeλτ, so as to write[
λU
=
+ V

=

]
Ẑ = 0. (A16)

After premultiplication by V
=
−1 it is obtained

[
λD
=
+ I

=

]
Ẑ = 0, with : D

=
= V

=

−1U
=

(A17)

and eventually
D
=

Ẑ = λ∗Ẑ
=

, (A18)

which represents the eigenvalue problem with λ∗ = −λ−1.
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