
Available online at www.sciencedirect.com

2
d
i
g
F
p
⃝

K

B
t
u
f
b
(
a

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 372 (2020) 113441
www.elsevier.com/locate/cma

Quadrature formulas based on spline quasi-interpolation for
hypersingular integrals arising in IgA-SGBEM

Alessandra Aimia, Francesco Calabròb,∗, Antonella Falinic, Maria Lucia Sampolid,
Alessandra Sestinie

a Department of Mathematical, Physical and Computer Science, University of Parma, Italy
b Department of Mathematics and Applications “R. Caccioppoli”, University of Napoli “Federico II”, Italy

c Department of Computer Science, University of Bari “Aldo Moro”, Italy
d Department of Information Engineering and Mathematics, University of Siena, Italy

e Department of Mathematics and Computer Science, University of Firenze, Italy

Received 29 June 2020; received in revised form 10 September 2020; accepted 10 September 2020
Available online xxxx

Abstract

In this paper, we study the construction of quadrature rules for the approximation of hypersingular integrals that occur when
D Neumann or mixed Laplace problems are numerically solved using Boundary Element Methods. In particular the Galerkin
iscretization is considered within the Isogeometric Analysis setting and spline quasi-interpolation is applied to approximate
ntegrand factors, then integrals are evaluated via recurrence relations. Convergence results of the proposed quadrature rules are
iven, with respect to both smooth and non smooth integrands. Numerical tests confirm the behavior predicted by the analysis.
inally, several numerical experiments related to the application of the quadrature rules to both exterior and interior differential
roblems are presented.
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Boundary Element Methods (BEMs) have nowadays reached a high level of maturity [1]. The main advantages of
EMs compared with domain methods like Finite Element Method (FEM) or Finite Difference Method (FDM) are

he dimensionality reduction and the implicit fulfillment of radiation condition at infinity for problems defined on
nbounded domains. If a fundamental solution of the differential operator at hand is known in exact or approximated
orm, BEMs are employed to numerically solve Boundary Integral Equations (BIEs) where only information on the
oundaries are used. This approach can be applied to elliptic, parabolic or hyperbolic partial differential equations
PDEs) modeling physical, engineering and recently also financial problems, see e.g. [2–6] for some current studies
nd applications.
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Very different techniques are currently employed for the numerical solution of the arising BIEs. The first choice
s between collocation and Galerkin: in both cases, the methods are written via some integrals in space variables
ith singular kernels, and the discrete counterpart is characterized by full matrices. Since BEMs first appearance,

ee e.g. [7], much effort has been devoted to the introduction of efficient integration schemes: we recall, for instance,
nalytical, semi-analytical and numerical techniques developed in the eighties and nineties for an accurate evaluation
f weakly, strongly and hypersingular integrals related to elliptic problems, see e.g. [8] and references therein.

Also, the choice of the discrete space can be changed: the advent of Isogeometric Analysis (IgA) [9], initially
onfined only to FEM, in the last decade has brought also a renewed interest in BEMs [10–12]. In the IgA paradigm,
he boundaries of the computational domains are represented in parametric form as Non-Uniform Rational B-Splines
NURBS), since this is the standard representation in CAD systems. Ad hoc quadratures are developed for IgA-
alerkin FEM, see the review in [13]. In IgA, the same representation is employed to define shape basis functions for

he expression of the BIE approximate solution. This type of approach allows us to deal with functional spaces more
egular and more flexible than those used by traditional schemes. This can be achieved by using spline functions
hich can have also different regularity at different inter-elements.
The IgA-BEM approach has given promising results in the numerical solution of several problems, ranging from

coustic to potential flow, elastostatic, steady incompressible flow. Collocation IgA-BEM has been applied to many
ifferent two- and three-dimensional problems, see [14,15] and references therein. Recently, also Galerkin conformal
pproximation [16] in IgA-BEM has been employed for three-dimensional problems [17–21]: in these contributions,
eformulations are introduced to avoid the evaluation of hypersingular integrals. The present paper deals with the
nalysis of new quadrature rules for hypersingular integrals in two-dimensional problems. Indeed this feature still
oses open questions related to efficiency and reliability [22–24].

In [25] one of the first numerical studies of Isogeometric Symmetric Galerkin BEM (IgA-SGBEM) for 2D
lliptic problems has been conducted, highlighting the superiority of B-spline basis over classical Lagrangian basis
nvolved in the standard case, in terms of achieved accuracy per used degrees of freedom. Moreover, in recent
tudies conducted by the same research group of the authors of the present paper, different innovative strategies for
he evaluation of weakly singular integrals in 2D IgA-SGBEM Dirichlet Laplace problems have been introduced,
iving remarkable computational advantages, see [26–28]. These are the results where the present paper starts from.

The aim of the current contribution is to complete the previous studies by introducing new quadrature rules for
ypersingular integrals. For the proposed schemes we produce rigorous proofs of their convergence behavior, even
hen non-maximal smoothness is assumed. The new rules are then used to consider the discretization of 2D elliptic
roblems with pure Neumann or mixed boundary conditions and open the possibility to extend the techniques to
ore complex applications. The rigorous analysis gives insight about the important role played by the smoothness

roperties of the integrand and the singularity type of the kernel in order to derive convergence properties of the
iscrete BIEs. Note that, as done in other IgA papers, see e.g. [29,30], we always define our discretization space
s a polynomial spline space even if the proposed approach could be generalized to NURBS discretization spaces.
ore precisely, our discretization space is (a possible h-refinement of) the spline space spanned by the B-splines

sed to describe the geometry in general NURBS form, in agreement to the more relaxed IgA paradigm, considering
hat, “for the essence of isogeometric analysis [...], what is needed is that the space describing the geometry and
he one describing the solution share the same mesh” [31].

The approach of considering directly hypersingular BIEs, whose related integrals have to be understood in
adamard Finite Part (HFP) sense, dates back to [32,33] and it was employed, on the basis of efficient quadrature

ules for HFP integrals, as an alternative to the regularization of such integrals [34]. Here, we will consider the first
pproach in order to compare the innovative quadrature technique tailored for IgA with those used in the past and
orn in a Lagrangian basis context, as already mentioned. The new quadrature schemes can handle hypersingularities
f order O(r−k), k ≥ 2 for r → 0, and do not need any regularization of the kernel. We remark that our approach

is alternative to the sinh transformation one, that is related to the reformulation of the BIEs in order to avoid
the explicit evaluation of singular terms [20,35,36], and also to the construction of adaptive quadratures, as done
in [28,37]. Moreover, even if here considered only in the context of 2D Laplace model problems, these quadrature
rules can also be applied to BIEs coming from other 2D elliptic problems, such as Helmholtz or linear elasticity
problems, having the same type of singularities.

The strategy here considered for the hypersingular quadrature relies on the spline product formula [38] and on

spline quasi-interpolation, which is a very general and efficient approximation methodology, see e.g. [39] for an
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introduction, having several other applications, for example in Dirichlet boundary data approximation of interest in
IgA-FEM [40]. In particular, the proposed quadrature rules for hypersingular integrals are based on a variant of the
Hermite spline quasi-interpolation approach introduced in [41], which requires just function information at the spline
knots, see also [42]. Here the application to hypersingular integrals is analyzed, requiring the preliminary analytic
computation of hypersingular specific basic integrals. Convergence results are given, developing the study for the
first time also for functions not having maximal smoothness in the integration domain. The use of the presented
quadratures in the IgA-BEM context allows us to adopt the faster basis-by-basis assembly procedure instead of
the traditional element-by-element one, and here for the first time, such approach is applied also to problems with
Neumann or mixed boundary conditions. Even if the proposed rules can be used also in the simpler framework of
collocation IgA-BEM, in the present work we investigate their application to Galerkin IgA-BEM. In such setting
the hypersingular kernel appears in the BIEs stemming from either exterior Neumann problems or mixed interior
ones.

We conclude this introduction observing that, in particular in 3D simulations, fast methods for BEMs are manda-
ory to allow their coupling with FEMs and recently they have been applied also into the IgA context [19,43,44].
ven if we do not consider here such application, we believe that combining our quadrature rules with them could
e of interest for the approximation of the near field integral contributions, provided that successive mesh elements
orming the support of a basis function are clustered together for the integration.

The paper is organized as follows. In Section 2 we give our motivations for developing new efficient quadrature
ules for hypersingular integrals, in particular with an integrand containing a B-spline factor and in Section 3 we
etail IgA-SGBEM discretization. Then the adopted quasi-interpolation approach is summarized in Section 4, while
n Section 5 we present the new quadrature formulas for hypersingular integrals, along with the analysis of their
onvergence behavior. Several numerical examples aimed to show their robustness and good performance in the
ontext of IgA-SGBEM are discussed in Section 6. Finally Section 7 gives some concluding comments and some
rospective on future studies.

. Motivation

In this work we focus on the approximation of hypersingular integrals occurring in the Galerkin IgA-BEM
umerical treatment of interior and exterior 2D Laplace model problems with mixed or pure Neumann boundary
onditions. For the sake of completeness, in this section we introduce their boundary integral formulation and
GBEM discretization.

The geometries taken into account are bounded domains Ω ⊂ R2 (not necessarily simply connected) with smooth
boundaries or unbounded regions external to open arcs without self-intersections. In the first case, the domain
boundary ∂Ω is assumed sufficiently regular and such that ∂Ω = Γ̄1 ∪ Γ̄2, where Γ1 and Γ2 are open disjoint
ubsets of ∂Ω and Γ1 ̸= ∅. We consider the following mixed boundary value problem (BVP) for the Laplace
quation:⎧⎨⎩

∆u = 0 in Ω ,
u = u∗ on Γ1 ,

q :=
∂u
∂n = q∗ on Γ2 ,

(1)

here u∗, q∗ are given data and ∂
∂n denotes the derivative with respect to the outer unit normal n to ∂Ω , while we

enote by nx,ny the components of the same vector with respect to x and y coordinate, respectively. The symmetric
oundary integral formulation of problem (1) is based on the use of the so-called BIE quartet, whose properties are
tudied in [45]:

V q(x) :=

∫
∂Ω

U (x, y) q(y)dγy , K u(x) :=

∫
∂Ω

∂U
∂ny

(x, y) u(y)dγy ,

K ′q(x) :=

∫
∂Ω

∂U
∂nx

(x, y) q(y)dγy , Du(x) :=

∫
∂Ω

∂2U
∂nx∂ny

(x, y) u(y)dγy ,

(2)

here we denote the fundamental solution of the 2D Laplace operator by

U (x, y) := −
1

ln r , with r := y − x, r := ∥r∥2
2π
3
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∂U
∂ny

(x, y) =
1

2π
r · ny

r2 ,
∂U
∂nx

(x, y) = −
1

2π
r · nx

r2 ,

∂2U
∂nx∂ny

(x, y) = −
1

2π

(nx · ny

r2 − 2
r · nx r · ny

r4

)
. (3)

The operator K ′ is the adjoint of K with respect to the natural duality ⟨·, ·⟩ between H 1/2(∂Ω ) and its dual
H−1/2(∂Ω ), which for sufficiently smooth functions coincides with the usual scalar product in L2(∂Ω ) and V, D
re self-adjoint operators, see [46]. Note that U is weakly singular for r → 0; K and K ′ kernels behave as O(r−1),
hile the kernel in D as O(r−2), for r → 0.
Now, using the assigned boundary data, the differential problem is written as a system of two BIEs in the

nknown u on Γ2 and q on Γ1 of the following form:[
V11 −K12

−K ′

21 D22

] [
q
u

]
=

[
f1
f2

]
, (4)

here the boundary integral operators subscripts j k mean evaluation over Γ j and integration over Γk and where[
f1
f2

]
:=

[
−V12

1
2 I + K11

−
1
2 I + K ′

22 −D21

] [
q∗

u∗

]
.

Then the symmetric weak formulation of (4) reads: given u∗
∈ H 1/2(Γ1) and q∗

∈ H−1/2(Γ2), find [q, u] ∈

H−1/2(Γ1) × H 1/2
0 (Γ2) such that ∀ [p, v] ∈ H−1/2(Γ1) × H 1/2

0 (Γ2):⟨[ V11 −K12
−K ′

21 D22

] [
q
u

]
,

[
p
v

]⟩
=

⟨[ f1
f2

]
,

[
p
v

]⟩
. (5)

fter recovering the missing Cauchy data on ∂Ω , the solution of (1) can be evaluated from the integral representation
ormula:

u(x) = V q(x) − K u(x) , x ∈ Ω .

he case of Γ1 = ∅, Γ2 = ∂Ω , i.e. of a pure Neumann datum, is also dealt with. In this case the compatibility
ondition

∫
∂Ω q∗(x)dγx = 0 is required and the weak BIE system (5) collapses to only one equation,

⟨Du, v⟩ = ⟨(−
1
2

I + K ′)q∗, v⟩ , (6)

hich admits solution up to an additive constant that can be fixed imposing the further constraint
∫
∂Ω u(x)dγx = 0,

as discussed in [47].
The third model problem here analyzed, involving again evaluations of hypersingular integrals, is a classic case

where BEMs are preferred to FEMs: a problem in an infinite domain outside a bounded obstacle. Still denoting
with ∂Ω an open arc in the plane, we consider:⎧⎨⎩

∆u = 0 in R2
\ ∂Ω ,

q = q∗ on ∂Ω ,
u = O(∥x∥

−1
2 ), ∥x∥ → ∞ .

(7)

hoosing an indirect approach [1,48], the BIE coming from the boundary integral reformulation of (7) reads:

D ϕ(x) = q∗(x), x ∈ ∂Ω , (8)

ith the unknown density function ϕ over ∂Ω .
The price for the simplification of the indirect approach is that the BIE solution does not give the missing Cauchy

ata on the boundary, but just the density function appearing in the chosen double layer integral representation
ormula of the PDE solution:

u(x) = Kϕ(x) , x ∈ Ω .

oundary integral problem (8) can be set in the weak form [1]: given q∗
∈ H−1/2(∂Ω ), find ϕ ∈ H 1/2

0 (∂Ω ):
∗ 1/2
⟨D ϕ,ψ⟩ = ⟨q , ψ⟩, ∀ψ ∈ H0 (∂Ω ). (9)

4



A. Aimi, F. Calabrò, A. Falini et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113441

r
o

3

m
w
F

w

a
a
T
b
c
w

(
o

o
w

As already mentioned, the discretization approach adopted here is the Galerkin projection which for brevity is
reported just referring to the mixed problem in (5). Denoting with V (i)

h , i = 1, 2 two finite dimensional subspaces
espectively of H−1/2(Γ1) and H 1/2

0 (Γ2), where h is a discretization parameter going to zero when the dimension
f Vh increases, the considered discrete problem can be formulated as follows: given u∗

∈ H 1/2(Γ1) and q∗
∈

H−1/2(Γ2), find [qh, uh] ∈ V (1)
h × V (2)

h such that ∀ [ph, vh] ∈ V (1)
h × V (2)

h :⟨[ V11 −K12
−K ′

21 D22

] [
qh

uh

]
,

[
ph

vh

]⟩
=

⟨[ f1
f2

]
,

[
ph

vh

]⟩
. (10)

. IgA-SGBEM approach

In order to specify the discrete problem (10) in the IgA-SGBEM context, let us introduce some notation for the
athematical description of the boundary and of the discretization spaces V (i)

h , i = 1, 2. Concerning the boundary,
e assume that each curve Γ̄i , i = 1, 2 is parametrically defined as the image of a regular invertible function
i : [ai , bi ] → R2 given in NURBS form,1

Fi (s) :=

Ni∑
j=1

Q(i)
j R(i)

j,di
(s) , s ∈ [ai , bi ] , i = 1, 2 , (11)

here the Q(i)
j , j = 1, . . . , Ni , are ordered control points assigned in the plane, defining the shape of Γi and

R(i)
j,di

(s) :=
w

(i)
j B(i)

j,di
(s)∑Ni

k=1w
(i)
k B(i)

k,di
(s)

(12)

with {B(i)
j,di
. j = 1, . . . , Ni } denoting a B-spline basis spanning a space Si of piecewise di -degree polynomials with

respect to an assigned set ∆i of breakpoints in [ai , bi ]. The weights w(i)
k , k = 1, . . . , Ni appearing in (12) are

positive coefficients which can be useful to obtain further control on the shape of the parametric curve defined
in (11). As well known, each B(i)

j,di
and consequently each R(i)

j,di
has local support, which will be denoted in the

following by D(i)
j and it is clear that R(i)

j,di
= B(i)

j,di
∀ j when the weights are all equal to a common constant value.

Remark 1. We note that, if the boundary is originally given with just one parametric NURBS representation, by
using repeated knot insertion, see e.g. [49], two separate representations for Γ1 and Γ2 can always be easily obtained.
Such algorithm can be used also for dealing with the more involved situation of Dirichlet and/or Neumann boundary
conditions assigned on disjoint curves. For the sake of simplicity here we do not consider such case.

From here on, in order to simplify the notation, we omit the superscript (i) (or the subscript i) when it is not
strictly necessary and/or clear from the context.

We start observing that the dimension N of the spline space S, as well as the regularity required at each inner
breakpoint, can be a priori established. In any case the definition of the B-spline basis needs the preliminary
introduction of the extended knot vector T := {t1, . . . , td , td+1, . . . , tN+1, tN+2 , . . . , tN+d+1}, where td+1 =

, tN+1 = b , and t1 ≤ · · · ≤ tN+d+1 . Each knot ti , i = d + 2, . . . , N , is a possibly repeated occurrence of
n inner breakpoint, while the first and last d knots in T are auxiliary knots characterizing a specific B-spline basis.
he regularity at a certain inner breakpoint in ∆ of a general function in S is fully specified by prescribing the
reakpoint multiplicity (an integer between 1 and d +1) in T . In particular since we want Γ to be at least a regular
urve, such multiplicities are required to be all ≤ d −1, which guarantees that F ∈ C1[a , b]. Extended knot vectors
ith multiple or periodic auxiliary knots are the more commonly adopted strategies for completing the definition of

T , see e.g. [50]. We adopt the standard way to represent closed curves used in Computer Aided Geometric Design
CAGD) that relies on periodic extended knot vectors and on fixing the last d control points as an ordered repetition
f the first d ones. This clearly means that in practice the dimension of the considered spline space S is N − d .

In the relaxed IgA setting we are here adopting, the discretization space Vh is defined as a possible enlargement
f S, where h denotes the maximal spacing between breakpoints of (the enlargement of) S. When Γ is an open arc,
e define Vh := span{B̂1,d , . . . , B̂N ,d}, where

B̂ j (x) := B j,d (F−1(x)) , x ∈ Γ , j = 1, . . . , N . (13)

1 When Γ̄ is a closed curve, clearly we assume F (a ) = F (b ).
i i i i i

5
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When Γ is a closed curve, the dimension of Vh must be equal to N − d. Thus we fix Vh as

Vh := span{B̂1,d , . . . , B̂N−d,d},

where B̂ j,d , j = d + 1, . . . , N − d are defined as in (13); while we have

B̂ j,d (x) := B(c)
j,d (F−1(x)) , x ∈ Γ , j = 1, . . . , d,

ith

B(c)
j,d (t) :=

⎧⎨⎩ B j,d (t) if t ∈ I ∩ [t j , t j+d+1] ,
BN−d+ j,d (t) if t ∈ I ∩ [tN−d+ j , tN+ j+1] ,
0 otherwise .

o simplify the notation, in the sequel, when Γ is closed we omit the superscript (c) to denote the first d cyclic
asis elements.

In order to obtain richer spaces, Vh can be enlarged either performing a d--refinement or a h--refinement, by
sing the robust degree-elevation or knot-insertion algorithms, see e.g. [49]. In the following we assume that the
ossible enlargement is obtained by inserting in the knot vector T new breakpoints with unit multiplicity.

The algebraic reformulation of the IgA-SGBEM scheme leads to a block linear system of equations, whose
nknowns represent the coefficients of the BIE approximate solution with respect to the chosen basis, see e.g. [46].
n more detail, denoting such a solution with

qh(x) :=

N (1)
DoF∑
j=1

α
(1)
j B̂(1)

j,d1−1(x) uh(x) :=

N (2)
DoF∑
j=1

α
(2)
j B̂(2)

j,d2
(x) , (14)

ith N (i)
DoF := dim(V (i)

h ), i = 1, 2 the resulting linear system has size NDoF := N (1)
DoF + N (2)

DoF and it is referred to
s follows,(

A11 A12
A21 A22

) (
α(1)

α(2)

)
=

(
β (1)

β (2)

)
, (15)

here α(i)
:= (α(i)

1 , . . . , α
(i)

N (i)
DoF

)T , i = 1, 2 are the unknown vectors, the coefficient matrix is non-singular and

ymmetric [8], and β (i)
:= (β (i)

1 , . . . , β
(i)

N (i)
DoF

)T , i = 1, 2 are the vectors defining the right-hand side which depends

n the given Cauchy data.
In particular, the entries of the blocks of the matrix in (15) are given by the following double integrals:

(A11) j,k :=

∫
Γ1

B̂(1)
j,d1−1(x)

∫
Γ1

U (x, y)B̂(1)
k,d1−1(y) dγydγx , (16)

(A12) j,k = (A21)k, j := −

∫
Γ1

B̂(1)
j,d1−1(x)

∫
Γ2

∂U
∂ny

(x, y)B̂(2)
k,d2

(y) dγydγx , (17)

(A22) j,k :=

∫
Γ2

B̂(2)
j,d2

(x)
∫
Γ2

∂2U
∂nx∂ny

(x, y)B̂(2)
k,d2

(y) dγydγx . (18)

We observe that, when the supports of the involved B-splines overlap, the inner integrals defining the corresponding
entries of A11 are weakly singular while those in (18) are hypersingular. On the other hand, the entries of A12 are
never singular, except in Γ̄1 ∩ Γ̄2 ̸= ∅ (i.e. when the supports of B̂(1)

j,d1−1 and B̂(2)
k,d2

are consecutive, and joining at a
contact point in Γ̄1 ∩ Γ̄2); in such case the related kernel presents a strong singularity if the contact point is a corner,
a weak singularity in case of a junction with Lyapunov continuity and no singularity in the case of a junction with

2 regularity [51].
Regarding the right-hand side, it can be explicitly written as

β
(1)
j :=

1
2

∫
Γ1

B̂(1)
j,d1−1(x)u∗(x)dγx +

∫
Γ1

B̂(1)
j,d1−1(x)

∫
Γ1

∂U
∂ny

(x, y) u∗(y) dγy −∫
B̂(1)

j,d1−1(x)
∫

U (x, y) q∗(y) dγydγx , (19)

Γ1 Γ2

6
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N
h

β
(2)
j := −

1
2

∫
Γ2

B̂(2)
j,d2

(x)q∗(x)dγx +

∫
Γ2

B̂(2)
j,d2

(x)
∫
Γ2

∂U
∂nx

(x, y) q∗(y) dγy −∫
Γ2

B̂(2)
j,d2

(x)
∫
Γ1

∂2U
∂nx∂ny

(x, y) u∗(y) dγydγx . (20)

he inner integrals in the right-hand side can be singular: in particular, in the second addend of (19) as well as of
20) for r → 0 when Fi are less regular than C2([ai , bi ]), and in the third addend of (19) as well as of (20), but
nly if Γ̄1 ∩ Γ̄2 ̸= ∅ and the support of B̂(1)

j,d1−1

(
B̂(2)

j,d2

)
starts or ends at a contact point between Γ1 and Γ2 (the first

ne being weakly and the second hypersingular). Since the focus of the present work is the numerical treatment
f hypersingular integrals, in the next subsection we analyze in detail how the integrals in (18) and in the third
ddend of (20) are suitably expressed in the parametric setting. For the sake of simplicity, the case of corner points
n Γ̄1 ∩ Γ̄2 is not considered.

For all the other integrals necessary to complete the assembly of the coefficient matrix and the right-hand side
f the linear system (15), we refer to [28] and [26].

.1. Hypersingular integrals in IgA-SGBEM

Let us first focus on the integrals in (18), in particular referring to the case of Γ2 being an open curve. Since
oth the inner and outer integration are done in Γ2, for brevity we omit the subscript or the superscript used to
istinguish between Γ1 and Γ2. Setting

s := F−1(x), x ∈ Γ t := F−1(y), y ∈ Γ ,

e have (A22) j,k = I ( j,k), where

I ( j,k)
:=

∫
D j

B j,d (s) J (s)
∫

Dk

∂2U
∂nx∂ny

(F(s),F(t)) Bk,d (t) J (t) dt ds, (21)

ith J (·) := ∥F′(·)∥2 denoting the parametric speed associated with Γ .
Now, with some computations we can obtain

nx · ny

r2 =
1

J (s) J (t)
F′(s) · F′(t)

∥F(s) − F(t)∥2
2
,

r · nx r · ny

r4 =
1

J (s) J (t)

((
F(s) − F(t)

)
× F′(s)

)((
F(s) − F(t)

)
× F′(t)

)
∥F(s) − F(t)∥4

2
,

here the symbol × denotes the cross product between 2D vectors (v × w = v1w2 − v2w1). Then, considering (3),
hese relations allow us to write the following formula,

∂2U
∂nx∂ny

(F(s),F(t)) = −
1

2π
1

J (s) J (t)

(
K(s, t) P(s, t) − K̂(s, t)

)
,

here

P(s, t) :=
(s − t)2

∥F(s) − F(t)∥2
2

(
F′(s) · F′(t)

)
, (22)

and

K(s, t) :=
1

(s − t)2 , (23)

K̂(s, t) := 2K(s, t)K(t, s), K(s, t) :=

(
F(s) − F(t)

)
× F′(s)

∥F(s) − F(t)∥2
2

.

ote that K does not depend on the geometry and K̂ is not singular if F is C2 smooth, since in such a case we
ave

limK(s, t) =
F′(s) × F′′(s)

. (24)

t→s J 2(s)

7
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Also, the function P is not singular, as proved in Proposition 1, where some important considerations about its
moothness are derived. Concluding, formula (21) can be rewritten as follows

I ( j,k)
=

1
2π

∫
D j

B j,d (s)
∫

Dk

K̂(s, t) Bk,d (t) dt ds − (25)

1
2π

∫
D j

B j,d (s)
∫

Dk

K(s, t) P(s, t) Bk,d (t) dt ds .

ote that when K̄ and P have to be computed for the quadrature at a parameter point (t, s) with t suitably near to
s, their limit value reported in (24) and in Proposition (1) below, respectively, is used in the implementation. When
Γ is a closed curve, that is F(a) = F(b), the same limit value is used also when both s and t nearly approach
either a or b, adopting a shift technique for the treatment of such circumstance.

Concerning the algebraic manipulation developed above to transform formula (21) into (25), we observe that it
can be extended to other types of kernels with the same hypersingularity order. The key point in any case is to
rewrite the kernel in the form K(s, t)P̃(s, t)+ K̃(s, t), with K defined as in (23), K̃ denoting a suitable non singular
ernel and P̃ being the product between the factor (s−t)2

∥F(s)−F(t)∥2
2

also appearing in formula (22) and another suitable
ufficiently smooth function.

The inner integral in the second addend on the right of (25) is hypersingular when D j ∩ Dk ̸= ∅ and can be
onsidered a particular case of the following general one, which is formulated on the reference integration interval
0 , 1] ,

Iw,m[g, σ ] := =

∫ 1

0
w(τ )

g(τ )
(τ − σ )m+1 dτ , 0 ≤ σ ≤ 1 , m ∈ N , m ≥ 1 , (26)

here w is a weight function possibly containing integrable endpoint singularities and g is a sufficiently smooth
unction (see the beginning of Section 5 for more details on the required smoothness). Referring to [52] for an
ntroduction which covers also the case of end hypersingularities, we first note that, in the IgA-SGBEM setting
ere considered, we deal just with m = 1 and with w at least C1[0 , 1]. Indeed, considering the linear mapping
Lk : Dk → [0 , 1], that is setting τ = Lk(t) = (t − tk)/ℓk , with ℓk := |Dk | := tk+d+1 − tk , the inner integral in the
econd addend of (25) becomes the integral in (26) with m = 1, where,

g(τ ) = g(k)
σ (τ ) =

1
ℓm

k
P(tk + ℓkσ, tk + ℓkτ ) , w(τ ) = B(τ ) := Bk,d (tk + ℓkτ ) , (27)

nd σ := (s − tk)/ℓk . Note that the singularity is active, i.e., σ belongs to [0 , 1], if and only if s belongs to the
upport of Bk,d . Note also that the weight function w = B is a B-spline of degree d with support equal to [0 , 1]
nd active knots with the same distribution of the active knots of Bk,d . Furthermore B belongs at least to C1[0 , 1]
ecause of the assumptions on the adopted refinement strategy and since the original inner knots in T have at most
ultiplicities d − 1. In order to study the smoothness of g(k)

σ , we firstly introduce the following proposition.

roposition 1. For the function P defined in (22) the following limits hold,

lim
t→s

P(s, t) = lim
s→t

P(s, t) = 1 , lim
t→s

∂P
∂t

(s, t) = lim
s→t

∂P
∂s

(s, t) = 0.

roof. Since P is fully symmetric with respect to its arguments, we can focus just on the limits for t → s. Let
s firstly consider s different from any breakpoint of F. Then, using the Taylor expansion of F(t) at t = s, we can
rite

F(t) − F(s)
t − s

= F′(s) +
1
2

F′′(s)(t − s) +
1
6

F′′′(s)(t − s)2
+ O((t − s)3).

his implies thatF(t) − F(s)
t − s

2

2
= ∥F′(s)∥2

2 +
(
F′(s) · F′′(s)

)
(t − s) +[

1(
F′(s) · F′′′(s)

)
+

1
∥F′′(s)∥2

2

]
(t − s)2

+ O((t − s)3) .

3 4

8
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Since the zero and first order terms of this expansion are equal to the same order terms of the Taylor expansion of
F′(s) · F′(t) at t = s, with some computation the statement of the theorem can be proved, considering that P(s, t) is
he ratio between F′(s) · F′(t) and ∥

F(t)−F(s)
t−s ∥

2
2. When s is a breakpoint for F, since the above steps can be repeated

for the left and right limits, we arrive at the thesis as well. □

As a consequence of this proposition, we can say that (the continuous extension of) g(k)
σ is at least C1 at τ = σ ,

and can be even smoother when s /∈ T . When s is a breakpoint for F, it becomes at least C2 at τ = σ provided
he existence of the limit for t → s of the following function ρ(t) ,

ρ(t) :=
1

∥F′(t)∥2
2

[
1
3

(
F′(t) · F′′′(t)

)
−

1
2
∥F′′(t)∥2

2

]
. (28)

ndeed, at any s /∈ T we have
∂2 P
∂t2 (s, s) = ρ(s). Note that, since F is piecewise polynomial, C1 and regular, ρ is

continuous at any s /∈ T . On the other hand, if s coincides with a breakpoint of F and lim
t→s

ρ(t) exists, such limit is
surely finite. Thus, when this is true at any breakpoint of F, the function ρ admits a globally continuous extension
and this ensures that for any k and any σ the continuous extension of the function g(k)

σ is at least C2 at τ = σ .
From a global point of view, we can only state that g(k)

σ ∈ C R[0 , 1], where R denotes the difference between d−1
and the maximal multiplicities of the knots in T , with R ≥ 0 for the given assumptions on the assayed multiplicities,
although g(k)

σ could be globally even smoother if the control polygon associated to F has some specific configuration.
However, Proposition 1 implies that at τ = σ we can be sure that g(k)

σ is always at least C1.
Let us now consider I ( j,∗) which denotes the third addend in (20). As already mentioned, such integral becomes

singular only when Γ̄1 ∩ Γ̄2 ̸= ∅ and the support of B(2)
j,d2

starts or ends at a point belonging to such intersection.
Now setting

s := F−1
2 (x), x ∈ Γ2 , t := F−1

1 (y), y ∈ Γ1,

the same analysis done for I ( j,k) can be applied, in order to write,

I ( j,∗)
= −

1
2π

∫
D(2)

j

B(2)
j,d2

(s)
∫ b1

a1

K̂(s, t) u∗(F1(t)) dt ds + (29)

1
2π

∫
D(2)

j

B(2)
j,d2

(s)
∫ b1

a1

K(s, t) P(s, t) u∗(F1(t)) dt ds .

sing the substitution τ = (t − a1)/δ1, with δ1 := b1 − a1, we arrive to an integral of the form (26), again with
= 1 and where,

g(τ ) = gσ (τ ) =
1
δm

1
P(a1 + δ1σ, a1 + δ1τ ) u∗

(
F1(a1 + δ1τ )

)
, w(τ ) ≡ 1 , (30)

aving set in this case σ := (s −a1)/δ1 which can take only the values 0 or 1 when the singularity is active. Clearly
n this case the regularity in [0 , 1] of g defined in (30) depends not only on the regularity of the factor P but also
n the regularity of the datum u∗.

The hypersingular quadrature formulas introduced in Section 5 are based on the general idea of approximating
g in [0 , 1] with low computational cost by using a spline function defined by quasi-interpolation. The adopted
uasi-interpolation approach, introduced in [41], is briefly summarized in the next section.

. Approximated Hermite Quasi-Interpolation schemes

Let us briefly summarize the Hermite spline Quasi Interpolation (QI) approach introduced in [41]. This approach
equires function and function derivative values only at the spline knots and it was firstly introduced to define, with
ow computational cost, continuous approximations of the solution of 1D boundary value problems, starting from
n available numerical solution. In particular, we consider the variant proposed in [42], which does not require
erivative values, firstly used there for defining quadrature rules for regular integrals and more recently in [27], for
ealing with weakly and strongly singular integrals.

For the sake of completeness we report here the main ideas of the basic Hermite QI scheme; then the differences

f the considered variant are sketched. Without loss of generality we can consider functions defined on the interval

9
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[0 , 1]. Given a function g, the goal is to construct an approximating spline Sg defined on a space Sθ ,p of degree
p, Sθ ,p := ⟨B(θ )

−p,p, . . . , B(θ)
n−1,p⟩, where B(θ )

j,p, j = −p, . . . , n − 1, are the p-degree B-splines with respect to the
xtended knot vector θ := {θ−p, . . . , θn+p}, with 0 = θ−p = · · · = θ0 < · · · < θn = · · · = θn+p = 1.

The Hermite QI scheme from [41] provides a spline Q(BS)
p (g) ∈ Sθ ,p which can be written as,

Q(BS)
p (g)(·) =

n−1∑
j=−p

λ
(BS)
j (g) B(θ )

j,p(·),

here the coefficients λ(BS)
j (g), j = −p, . . . , n −1, are defined by the following local linear combinations of g and

g′ values at the knots,

λ
(BS)
j (g) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p∑
i=1

α̂
(−1, j+p+1)
i gi−1 − ∆θk1

p∑
i=1

β̂
(−1, j+p+1)
i g′

i−1, j ≤ −2,

p∑
i=1

α̂
( j,p)
i gi+ j − ∆θ j+k1+1

p∑
i=1

β̂
( j,p)
i g′

i+ j , j = −1, . . . , n̂,

p∑
i=1

α̂
(n̂, j−n̂+p)
i gn̂+i − ∆θn−k2

p∑
i=1

β̂
(n̂, j−n̂+p)
i gn̂+i , j ≥ n̂ + 1

(31)

ith ∆θ j := θ j − θ j−1, k1 := ⌊p/2⌋, k2 := p − 1 − k1, and where for brevity we use the notation gs := g(θs), g′
s :=

g′(θs) and n̂ := n − p. The vectors α̂
( j,r )

:= (α̂( j,r )
1 , . . . , α̂

( j,r )
p )T and β̂

( j,r )
:= (β̂ ( j,r )

1 , . . . , β̂
( j,r )
p )T defining the

inear combinations in (31) have to be preliminarily computed by solving a suitable local linear system of size
p × 2p. More specifically, (α̂( j,r )T

, β̂
( j,r )T

)T is the r -th column of the inverse of a 2p × 2p non singular matrix
G( j+k1+1): the entries of G( j+k1+1) are the values of all the non vanishing B-splines and their derivatives at the knots

j+k1+1, . . . , θ j+k1+p see [41] for details. For degree p = 2, 3 the analytic expression of these coefficient vectors is
vailable; moreover, when a uniform knot distribution is assumed, they do not depend on j , since we are dealing
ith uniform B-splines. Note that the formulas in (31) can be compactly written in matrix form as follows,

(λ(BS)
−p (g) , . . . , λ(BS)

n−1 (g))T
= Â(p)g − Ĥ B̂(p)g′ , (32)

here Ĥ is a diagonal matrix containing the suitable ∆θ values and the entries of the matrices Â(p) and B̂(p)
∈

(n+p)×(n+p) are defined by using respectively the α̂ and β̂ coefficients in conformity to (31).
We observe that the QI operator Q(BS)

p is a projector in the spline space Sθ ,p as proved in [41] and using this fact
n it was also seen that the considered QI scheme has maximal approximation order p + 1 for functions belonging
o C p+1[0 , 1], provided that the knot distribution is smoothly varying. Note that the last requirement is necessary
or the preliminary proof of the existence of an upper bound for the norm of the coefficient vectors α̂

( j,r ) and β̂
( j,r )

efining the QI. Then, on each element [θi , θi+1] the local approximation error is bounded as:

∥g − Q(BS)
p (g)∥i < ∥g − pi∥i + ∥pi − Q(BS)

p (g)∥i ,

here ∥ · ∥i means the infinity norm on the considered element, and pi denotes a local Taylor expansion of degree
p of g. Using the preliminary derived upper bound and the projector property of the operator (even if it would be
ufficient degree p polynomial reproduction), the well known bound for ∥g − pi∥i when g ∈ C p+1[0 , 1] allowed
o complete the proof. Thus here we can add that, with the same kind of proof, it can be shown also that the
pproximation order is min{p + 1, r + 1} when g belongs just to Cr+1[0 , 1].

The spline Sg ∈ Sθ ,p given by the variant scheme, is instead obtained by approximating the necessary derivative
alues with symmetric finite difference formulas, i.e. by using the following preliminary approximation,

g′
≈ Γ ℓg , (33)

here g := (g(θ0), . . . , g(θn))T and g′
:= (g′(θ0), . . . , g′(θn))T express the values at the spline knots of g and g′

espectively. Γ ℓ
∈ R(n+1)×(n+1) denotes a (l + 1)-banded matrix with ℓ1 = ⌊l/2⌋ lower and ℓ− ℓ1 upper diagonals.

he non zero entries of Γ ℓ are such that Eq. (33) gives derivative approximations of order ℓ, where ℓ = p + 1 if

p is odd and ℓ = p + 2 otherwise.

10
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Then, considering (32) and (33), Sg can be written as,

Sg(·) :=

n−1∑
j=−p

λ j (g) B(θ )
j,p(·) , where (34)

(λ−p(g) , . . . , λn−1(g))T
:= (Ĉ (p))T g , with Ĉ (p)

:= ( Â(p)
− Ĥ B̂(p)Γ ℓ)T . (35)

e observe that, because of the assumed selection of the integer ℓ in (33), Sg keeps the same approximation order
of Q(BS)

p (g), although it does not define a projector in Sθ ,p. Indeed the proposed selection for ℓ guarantees that the
rror in the derivative approximation has order equal or higher than p +1, when g ∈ Cℓ+1[0 , 1]. As a consequence
32) and (35) imply that for each index the difference |λ

(BS)
i (g) − λi (g)| has order at least p + 2 and so is

symptotically negligible. On the other hand, when g ∈ Cr+1[0 , 1] with r < ℓ, Γ ℓg approximates g′ just with
rder r . Considering (32) and (35), this implies that for each index the difference |λ

(BS)
i (g) − λi (g)| has order r +1.

hen, using the notation

OA := min{p + 1, r + 1} (36)

nd

∆θ := max
i=1,...,n

∆θi , (37)

he developed analysis can be summarized stating the convergence result reported below in Lemma 1 for the
pproximation error,

e := g − Sg (38)

emma 1. Let g ∈ Cr+1[0 , 1] and let Sg denote its QI spline approximant of degree p defined in (34) and e the
elated error defined in (38). Assuming that there exist two positive constants η1 and η2 such that,

0 < η1 ≤
∆θi

∆θi+1
≤ η2 , i = 1, . . . , n − 1,

then there exist positive constants L j (also depending on p , η1 , η2), such that:

∥e( j)
∥∞ ≤ L j (∆θ )OA− j

∥DOA g∥∞ , j < min{p, r + 1} , (39)

here OA is defined in (36).

Here we are also interested in analyzing the convergence in the Hölder seminorm, since it will be useful in
he next section to obtain convergence results for the developed hypersingular quadrature rules. We recall that

r,γ (0 , 1), γ ∈ (0 , 1], r ∈ N is the Hölder space (including Cr+1[0 , 1]) defined as follows,

Cr,γ (0 , 1) := {g ∈ Cr (0 , 1) | |g(r )
|0,γ < ∞},

eing |g|0,γ the seminorm in C0,γ (0 , 1) defined by

|g|0,γ := sup
x ̸=y, x,y∈(0 , 1)

|g(x) − g(y)|
|x − y|

γ
.

In order to prove the following lemma, which is necessary to prove the quadrature convergence order, we first need
an intermediate result on pointwise convergence for Sg under the slightly weaker assumption of g ∈ Cr,1(0 , 1). We
summarize it in the following remark, observing that it can be easily obtained considering the integral form of the
rest of the Taylor expansion.

Remark 2. When g belongs to Cr,1(0 , 1) , it can be proved that |e( j)(x)| has order OA− j, j < min{p, r +1},∀x ∈

(0 , 1).

Lemma 2. Let g belong to Cr,1(0 , 1), and let Sg denote the p-degree quasi-interpolant of g defined in (34) and
e the related error defined in (38). Then there exists a constant C p(g) depending on g and p (but not on ∆θ and
j) such that

|e( j)
|0,ν ≤ C p(g) (∆θ )(OA− j)(1−ν) , ∀ν ∈ (0 , 1) , j < min{p , r + 1} , (40)
where OA and ∆θ are defined respectively in (36) and in (37).

11
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Proof. Considering that Sg belongs to C p−1[0 , 1] and also to C p−1,1(0 , 1), taking also into account the smoothness
ssumptions on g, we can derive that there exists a constant Q > 1 such that for each j < min{p , r + 1}, ∀x, y ∈

0 , 1) , it is

|e( j)(x) − e( j)(y)| ≤ |g( j)(x) − g( j)(y)| + |S( j)
g (x) − S( j)

g (y)| ≤ Q|x − y|.

ince we can write

|e( j)(x) − e( j)(y)|
|x − y|

ν
= |e( j)(x) − e( j)(y)|

1−ν

(
|e( j)(x) − e( j)(y)|

|x − y|

)ν
,

from the previous inequality it also follows that

|e( j)(x) − e( j)(y)|
|x − y|

ν
≤ Qν

|e( j)(x) − e( j)(y)|
1−ν

≤ Q|e( j)(x) − e( j)(y)|
1−ν
.

As x and y are arbitrary values in (0, 1), taking into account Remark 2, we can conclude the proof. □

5. Quadrature rules for hypersingular integrals

In this section we are interested in using the quasi-interpolation scheme previously introduced to approximate
the hypersingular integral defined in (26), where w is a non negative weight function. Concerning the smoothness
requirements, we make the standard assumption that both w and g belong at least to Cm,γ (0 , 1), γ ∈ (0 , 1],
see [53,54] for an introduction and more details.

The proposed rule approximates Iw,m[g, σ ] with the following integral which can be exactly computed,

I Q,p
w,m [g, σ ] := =

∫ 1

0
w(τ )

Sg(τ )
(τ − σ )m+1 dτ ,

where Sg is the C p−1[0 , 1] spline of degree p ≥ m + 1 defined in (34) which quasi-interpolates g. In particular,
aving in mind the applications to IgA-SGBEMs where m = 1, we will focus on the cases w ≡ 1 and w = B, that
s a B-spline function of degree d ≥ 2 with support equal to [0 , 1] and which belongs at least to C1[0 , 1]. For

≡ 1, considering (34), we have that

I Q,p
1,m [g, σ ] = w(σ )T g ,

here g := (g(θ0), . . . , g(θn))T is the vector collecting the values of the function g at the quadrature nodes, while
he weight vector w(σ ) is defined as,

w(σ ) := Ĉ (p)µ(p)(σ ),

ith Ĉ (p) being the matrix used to define Sg (see formula (35)), and µ(p)(σ ) := (µ(p)
−p, . . . , µ

(p)
n−1)T denoting the

ector of the modified moments given by

µ
(p)
j = µ

(p)
j (σ ) := =

∫ 1

0
B(θ )

j,p(τ )
1

(τ − σ )m+1 dτ , j = −p, . . . , n − 1. (41)

hen w ≡ B, we preliminarily use the spline product algorithm proposed in [38] to express in B-spline form the
roduct B Sg which is a spline of degree d + p in [0 , 1]. Such spline belongs to a product space Π of dimension

P with knots and related multiplicities suitably obtainable from those of B and Sg . With this preliminary step we
btain

I Q,p
B,m [g, σ ] = w(B)(σ )T g ,

here this case

(B) ˆ (p) (p,d) (p+d)
w (σ ) := C G µ (σ ),
12
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with G(p,d)
∈ R(n+p)×P denoting the matrix collecting the B-spline coefficients of the product B Sg (see [38] for

details), and µ(p+d)(σ ) ∈ RP is the vector of the modified moments associated with the B-spline basis of Π .

5.1. Modified moments computation

The modified moments defined in Eq. (41) can be exactly computed by the recursive approach introduced in [26,
Section 3.2]. For the sake of completeness here we briefly summarize their derivation. By setting,

Iq (B(θ )
j,r , σ ) := =

∫ 1

0
B(θ )

j,r (τ )
τ q

(τ − σ )m+1 dτ , q ∈ N,

we have that in particular,

µ
(p)
j = I0(B(θ )

j,p, σ ).

Taking into account the recurrence relation of B-splines:

B(θ )
j,r (τ ) = ω j,r (τ ) B(θ )

j,r−1(τ ) + (1 − ω j+1,r (τ )) B(θ )
j+1,r−1(τ ) ,

ith

ω j,r (τ ) :=

{
τ−τ j

τ j+r −τ j
if τ j < τ j+r ,

0 otherwise
,

we can obtain a recurrence formula for the integrals Iq (B(θ )
j,r , σ ):

Iq (B(θ )
j,r ) =

(
Iq+1(B(θ )

j,r−1) − τ j Iq (B(θ )
j,r−1)

)
/(τ j+r − τ j ) +(

τ j+r+1 Iq (B(θ )
j+1,r−1) − Iq+1(B(θ )

j+1,r−1)
)
/(τ j+r+1 − τ j+1) ,

(42)

here for brevity we have omitted the dependency on the σ parameter. We remark that, when multiple knots are
aken, if τ j+r = τ j (τ j+r+1 = τ j+1), the first (second) addend on the right-hand side of (42) must be set to zero.

Then the computation of the µ(p)
j = I0(B(θ )

j,p) requires the preliminary computation of Ik(B(θ )
i,0 ), for k = 0, . . . , p

nd i = −p, . . . , n − 1. Now, considering that

B(θ)
i,0 (τ ) =

{
1 if τi ≤ τ < τi+1 ,

0 otherwise ,

e obtain that Ik(B(θ )
i,0 ) =

∫ τi+1
τi

B(θ)
i,0 (τ ) τ k

(τ−σ )m+1 dτ , which clearly is a vanishing quantity if τi = τi+1. In the opposite
case, using the substitution z = τ − σ we can write,

Ik(B(θ )
i,0 ) =

k∑
j=0

(
k
j

)
σ k− j

∫ τi+1−σ

τi −σ

z j−m−1 dz .

We observe that the above relation involves integrals of powers also with negative exponent ranging from −1 to
−m − 1 which are singular if σ ∈ [τi , τi+1]. In such cases they have to be interpreted as Cauchy principal values
for j = m and σ ∈ (τi , τi+1) and as HFP otherwise.

Remark 3. From the computational point of view the method we propose reveals a remarkable saving in terms of
function evaluations. Indeed, the quadrature scheme is designed on the whole support of the B-spline trial functions
rather than element-by-element as in the classical approach. The hypersingular kernel needs no regularization and
it is never evaluated, being incorporated in the computation of the modified moments which is done following the
recurrence relations described in Section 5.1. On the other hand, some computational effort is needed in order to
get the necessary accuracy to keep the overall good approximation properties, as pointed out in [28] and [55].
Nevertheless, the involved quantities can be pre-computed and stored at least when uniform spacing is adopted, as
all the shape functions are obtained by shifting one instance, see [55, Section 3.2]. Therefore the overall cost is
reduced and in all tested cases never becomes prohibitive.
13
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5.2. Convergence of QI hypersingular integration formulas

In this subsection we derive two convergence results for the quadrature rule I Q,p
w,m [g, s] , presenting them in the

following two theorems. Theorem 1 concerns the general case of g ∈ Cr,1(0 , 1), generically assuming σ ∈ (0 , 1),
nd it is proved extending to quasi-interpolating splines the arguments used in [56] for spline interpolants. On
he other hand Theorem 2 concerns the special case of p ≥ r and σ admitting a neighborhood Iσ such that

g ∈ Cr,1(0 , 1) ∩ C p,1(Iσ ). Such new theorem is of interest to fully explain the experimental results reported in the
next subsection. In both theorems we use the following notation to denote the hypersingular quadrature error,

R∆θ,m,p[g, σ ] := Iw,m[g, σ ] − I Q,p
w,m [g, σ ] = Iw,m[g, σ ] − Iw,m[Sg, σ ] . (43)

We observe that in [27] it was proved that, when applied to weakly singular or even singular integrals, the
considered quadrature rules have a superconvergence behavior when p is even and the quadrature nodes are uniform.
Unfortunately, this feature is lost in the hypersingular case, as shown in the first experiment reported in the following
subsection (see Fig. 1). Indeed in this section we will prove that under suitable smoothness requirements the pth
rule has always convergence order p which is the standard in the hypersingular case.

Theorem 1. Let w ∈ Cm,γ (0 , 1), γ ∈ (0 , 1],m ∈ N+ , be a nonnegative weight and let g belong to
r,1(0 , 1), r ≥ m and σ ∈ (0 , 1). If p ≥ m + 1 , then the quadrature error defined in (43) is in general of

order O
(
(∆θ )(OA−m)(1−ν)

)
, ∀ν ∈ (0 , 1) , where OA and ∆θ are defined respectively in (36) and in (37).

Proof. Clearly it holds

R∆θ,m,p[g, s] = =

∫ 1

0
w(τ )

e(τ )
(τ − σ )m+1 dτ,

where e = g − Sg is the approximation error. Now, being r ≥ m, we have that g ∈ Cm,1(0, 1). Similarly, being
p ≥ m + 1, it descends that Sg ∈ Cm,1(0 , 1). Thus, e ∈ Cm,ν(0 , 1) ,∀ν ∈ (0 , 1), being Cm,1(0 , 1) ⊂ Cm,ν(0 , 1).

sing the Taylor expansion of e of degree m − 1 at τ = σ and the corresponding error expression in Lagrange
form, we have,

R∆θ,m,p[g, σ ] =

m−1∑
j=0

e( j)(σ )
j !

=

∫ 1

0
w(τ )

1
(τ − σ )m+1− j

dt + −

∫ 1

0
w(τ )

e(m)(ξτ,σ )
m! (τ − σ )

dτ,

where ξτ,σ is a point between σ and τ . The second addend on the right-hand side can also be written as,

1
m!

−

∫ 1

0

w(τ )
(τ − σ )1−ν

e(m)(ξτ,σ ) − e(m)(σ )
(τ − σ )ν

dτ +
1

m!
e(m)(σ ) −

∫ 1

0

w(τ )
(τ − σ )

dτ.

hus we obtain,

|R∆θ,m,p[g, σ ]| ≤

m−1∑
j=0

|e( j)(σ )|
j !

|I j,σ,m | + |e(m)
|0,ν

1
m!

Jσ,ν + |e(m)(σ )|
1

m!
|Qσ |

with

I j,σ,m := =

∫ 1

0
w(τ )

1
(τ − σ )m+1− j

dτ , Jσ,ν := −

∫ 1

0

w(τ )
|τ − σ |

1−ν
dτ ,

Qσ := −

∫ 1

0

w(τ )
(τ − σ )

dτ .

ince the integrals defining I j,σ,m, Jσ,ν and Qσ are all finite because of the assumptions on w, considering (40)
the proof is concluded. □

Theorem 2. Let w ∈ Cm,γ (0 , 1), γ ∈ (0 , 1],m ∈ N+ , be a nonnegative weight and let g belong to
r,1(0 , 1), r ≥ m. If p ≥ r and there exists a neighborhood Iσ ⊂ (0, 1) of σ ∈ (0 , 1) such that g ∈ C p,1(Iσ ), then

the quadrature error defined in (43) is in general of order O
(
(∆θ )min{(p+1−m)(1−ν),r+1}

)
, ∀ν ∈ (0 , 1) , where ∆θ
s defined in (37).

14
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Proof. Consider first of all that, if Îσ is a neighborhood of σ strictly included in Iσ , there exists ĥ such that, if
∆θ ≤ ĥ, the same result proved in Remark 2 can be proved in Îσ , where locally OA = p+1, thanks to the regularity
assumption on g in Iσ . Now we can split R∆θ,m,p[g, σ ] into RN + RE , where RN := R∆θ,m,p[g| Îσ , σ ] and RE

is the remaining part of the integral which is not anymore singular. Concerning RN , we observe that preliminarily
Lemma 2 and then Theorem 1 can be locally proved in Îσ , setting in this case OA = p + 1. Concerning RE , since
he approximation error e = g − Sg has just order r + 1 when x ∈ (0, 1) \ Îσ , considering that the integral defining
RE is not anymore singular, we can anyway conclude that RE belongs to O(∆θ r+1). Thus the thesis follows. □

.3. Numerical experiments on hypersingular quadrature

In this section we present some experimental results on the adopted hypersingular quadrature rules which have
een tested for the integral in (26) with m = 1 and both the choices w ≡ 1 and w = B, with B denoting in
articular the quadratic uniform B-spline with support in [0, 1] and simple knots. These experiments are aimed to
erify that for both the considered weights we can do the same analysis and also to test the performances of the
dopted rules under different smoothness properties of the function g. Note that, in order to have a reference value
o define suitably Iw,1[g, σ ] which is necessary for the error computation, for these experiments we have always
recomputed the value produced by the same quadrature rule applied with 2000 uniform nodes. In particular in the
gures the behavior for increasing n of the following maximum quadrature error ErrM is always shown,

ErrM := max
σ∈R

|Iw,1[g, σ ] − I Q,p
w,1 [g, σ ]| , (44)

here R denotes the considered set of values where σ ranges.
In Fig. 1 we take g(τ ) = eτ and for both the considered weight functions we set R = {0, 0.1, . . . , 0.9, 1}.

ooking at the figure, we can verify that, varying the QI degree p, the theoretical optimal order is always observed,
ccording to Theorem 1. Note also that, as expected, the reduced regularity of the second weight does not affect
he accuracy of the quadrature rules.

Referring to this experiment and focusing on accuracy/number of quadrature nodes, we have also compared our
ules with those based on gaussian quadrature and on kernel regularization which were introduced in [47]. The aim
f such a comparison is to show that the last ones are not suited for our current IgA-BEM code which adopts a
unction-by-function assembly strategy. Note that for these additional tests we had to exclude σ = 0 and σ = 1
rom the experiments, since the rules proposed in [47] cannot be applied when the singularity is at the extremes
f the integration domain. For the case w ≡ 1, actually the formulas in [47] are very effective, since an accuracy
lready of order 10−7 is obtained just by using 7 quadrature nodes. Conversely, as shown in Table 1, when w is
B-spline the results deteriorate (to obtain accuracy of order 10−3 for all σ ∈ R \ {0 , 1} , at least 112 gaussian

odes are necessary). On this concern we comment that the better behavior for w = 1 of the alternative rules
as expected, since for smooth functions gaussian formulas are probably the best choice, being characterized by
aximal polynomial exactness. Since for IgA-SGBEM and also general IgA-BEM applications the B-spline weight

s included in the integrand and also the factor g is not highly smooth, their superiority in the smooth case is not
ery significant in such context.

Fig. 2 considers for the same weights a less regular function. In this case g(τ ) = S2, with S2 denoting the
pline of degree six and uniform breakpoints in S = {0, 0.25, 0.5, 0.75, 1} with just C2 smoothness at such points,
elonging anyway to C2,1(0 , 1). In particular the plots shown in Figs. 2(a) and 2(b) relate to the case R ∩ S = ∅,
ince we fix R = {0.2, 0.4, 0.6, 0.8}, while those in Fig. 2(c) and 2(d) to the case R = S . Looking at the pictures
n the upper part of the figure we can first of all observe that, when R ∩ S = ∅, the convergence order is not so
lear, resulting for p = 4 even better than expected from Theorem 2. On the other hand, the lower part of the figure
learly shows that when R = S, the convergence order of the rules deteriorates becoming equal to 2 for any p,
s expected from Theorem 1. The rules have been tested also for g(τ ) = S1, with S1 denoting the spline of degree
ix with breakpoints in S and with just C1 smoothness at such points. Since the achieved results are qualitatively
nalogous to those obtained for S2, for brevity we omit them (the convergence order of the rules again significantly

eteriorates only for R = S, becoming in such case equal to 1).

15
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Fig. 1. Convergence behavior of the maximum quadrature error ErrM defined in (44) for the function g = exp..

Fig. 2. Convergence behavior of the maximum quadrature error ErrM defined in (44) for g = S2, a C2 sestic spline.

Table 1
Convergence behavior of the maximum quadrature error (maximum error for σ ∈ R \ {0 , 1}) characterizing the
rules introduced in [47] for the function g = exp and w = B.

n + 1 7 14 28 56 112

Error 9.2 · 10−1 8.2 · 10−2 4.8 · 10−2 9.3 · 10−3 1.1 · 10−3
16
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Fig. 3. Example 1: U shape domain.

6. Applications to IgA-SGBEM

In this section four 2D Laplace problems are considered, two with mixed and two with pure Neumann boundary
conditions. In the experiments the weights used to define the boundaries as in (11)–(12) are all always unit values,
except for Example 3 where suited weights are used to obtain an exact parametric representation of the considered
elliptical boundary [57]. In every experiment all the breakpoints of the splines defining the test spaces V (i)

h , i = 1, 2
re uniformly spaced and they are (a refinement of) the breakpoints used to define S. Uniform spacing is adopted

also for the quadrature nodes. The final convergence order of uh − u (and qh − q for mixed problems) is reported.
The accuracy of the quadrature rules when g = g(k)

σ , i.e., g is the function defined in (27), for all k = 1, . . . , N2 is
also studied. Thus the behavior of the following quantity for n increasing is shown,

ErrM M := max
k=1,...,N2

{max
σ∈Rk

|Iw,1[g(k)
σ , σ ] − I Q,p

w,1 [g(k)
σ , σ ]}| , (45)

where Rk is obtained as the image through the linear mapping Lk of a given set R of abscissas in [a2 , b2].

Example 1: U shape geometry

In the first example we consider a U-shaped geometry globally described by a B-spline curve F of degree 4,
ence d1 = d2 = 4, and maximal regularity C3 defined on the parametric interval [−1, 1] and with a uniform
xtended knot vector T = 1/7(−11,−10, . . . , 10, 11). The sections of the boundary corresponding to Γ1 and Γ2
re considered between the points A = F(0) and B = F(−1) = F(1), as it is shown in Fig. 3(a) where the
ontrol points are also shown. For more clarity, referring to the notation introduced in formula (11) and reported
n Section 3, we precise that here F1 = F|[0 , 1] and F2 = F|[−1 , 0]. A mixed boundary value problem (1) is assayed
ith,

u∗(x1, x2) := sin x1 cosh x2 , (x1, x2) ∈ Γ1 , q∗(x1, x2) :=
∂u∗

∂n
, (x1, x2) ∈ Γ2.

he exact solution is also depicted in Fig. 3: the exact flux q in 3(b) and the exact potential u in 3(c).
According to the IgA paradigm, quartic B-splines are employed for the approximation of u, while cubics are

sed for q , since it exhibits a reduced regularity: q in this example is C2 smooth, involving the first derivative of
he geometry mapping F1. For the quadrature in this test we employ degree p = 4 and a number of uniform nodes
+1 in (26) equal to 11, which means that the quadrature nodes are the knots of the weight B and their midpoints.
ote that in this case, for every value of σ , the integrand function g(k)

σ in (27) is globally at least C2 smooth for each
and each σ . Fig. 4 shows the convergence behavior of the quadrature error ErrM M defined in (45). In particular

n Fig. 4(a) we assume R = {−0.8,−0.7, . . . ,−0.1} which implies that R∩ T = ∅, while in Fig. 4(b) R is the set
f breakpoints defining F2. The figure clearly shows that there is a reduction of the convergence order to 2 only in
he second case.

Concerning the final results produced by our current IgA-SGBEM implementation, Fig. 5 shows that, with respect
o both the L∞ and L2 norm, the approximation error uh − u has convergence order O(h5) while the flux error

− q has order O(h4).
h
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Fig. 4. Example 1: convergence behavior of the maximum quadrature error ErrM M .

Fig. 5. Example 1: U shape domain. Approximation errors in both the L∞ and L2 norms.

Example 2: domain with a hole

In this example we consider another mixed boundary value problem (1), where

u∗(x1, x2) := ex1 sin x2 , (x1, x2) ∈ Γ1 , q∗(x1, x2) :=
∂u∗

∂n
, (x1, x2) ∈ Γ2.

he problem is formulated on the doubly connected domain shown in Fig. 6(a). Fig. 6 shows also the exact solution
hich is again a priori known, the exact flux q in Fig. 6(b) and exact potential u in Fig. 6(c). Each curve Γi defining

he boundary is parameterized by a cubic B-spline Fi , i = 1, 2, hence d1 = d2 = 3, with maximal regularity C2.
he parameterization F1 is defined in [−1 , 1] with respect to T1 = 1/4(−7,−6, . . . , 6, 7), while F2 is defined in

4 , 6] with respect to the extended uniform knot vector T2 = 1/4(13, 14, . . . , 26, 27) . The control points are shown
n Fig. 6(a).

Since the assumption in (14) is always adopted, for this experiment cubic and quadratic splines are used to
pproximate u and q , respectively. Furthermore, we set p = 3 and n + 1 = 13, i.e. the quadrature nodes are the
nots of the weight B and two additional interior equidistant nodes per element. Note that in this case g(k)

σ in (27) is
ust globally C1 smooth, but it remains C2 at τ = σ : it is globally smoother only if further h refinement has already
een applied and the support of Bk,d2 does not include any original breakpoint of F2. Indeed, the function ρ defined
n (28) can be continuously extended to a function continuous in [a2 , b2]. Fig. 7 confirms that the quadrature error
eteriorates only for R ⊂ T2 and again the convergence order in this case becomes equal to the regularity of g(k)

σ

t τ = σ .

18
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Fig. 6. Example 2: domain with a hole.

Fig. 7. Example 2: convergence behavior of the maximum quadrature error ErrM M .

Fig. 8. Example 2: domain with a hole. Approximation errors in both the L∞ and L2 norms.

Figs. 8(a) and 8(b) report the L∞ and the L2 norms of the final errors, showing that convergence rate O(h3) is
obtained for both uh − u and qh − q .

xample 3: interior Neumann

For the third example we consider the pure Neumann problem analyzed in [47], interior to an ellipse centered at
he origin and with semi axes of length 2 and 4. The boundary of the elliptical domain is represented using quadratic
19



A. Aimi, F. Calabrò, A. Falini et al. Computer Methods in Applied Mechanics and Engineering 372 (2020) 113441

f
t
h

p
c

E

r
i
C
g
t

Fig. 9. Example 3: Neumann problem interior to an ellipse.

NURBS with double inner knots defined in the parameter domain [−1 , 1], with uniform breakpoints determining
our rational arcs. Note however that, thanks to symmetries in the control polygon, F = F2 is C1 smooth for this
est. The exact solution reads u = uc := x3

1 x2 − x1x3
2 + c, with c ∈ R. In particular we search for the solution

aving vanishing integral on the boundary, i.e., u0, see Fig. 9(a).
For the quadrature we set p = 2 and n + 1 = 13. Again our experiments confirm the convergence behavior

reviously observed for the quadrature rules. Note that also in this case the function ρ defined in (28) can be
ontinuously extended to a function continuous in [a2 , b2].

The behavior of uh − u in both the L∞ and L2 norms is reported in Fig. 9(b). The optimal convergence rate
O(h3) is steadily observed, see [46].

xample 4: screen problem

The last considered example is the Neumann problem defined in (7), with ∂Ω = {x = (x, y) ∈ R2
| 0 ≤

x ≤ 1, y = 0}. This is also called a screen problem and the unknown φ, vanishing at the endpoints of ∂Ω ,
epresents the jump of u across the obstacle. For the given datum q∗

= 1, the analytical solution is known and
t reads: φ(x) = 2

√
x(1 − x). The boundary is represented in terms of quadratic B-splines (d2 = 2) defining a

∞ function F = F2. For the quadrature p = 2 and n + 1 = 7 are chosen. This is a peculiar example for which
lobal refinement would not output the optimal convergence rate, as the solution exhibits a reduced regularity at
he end points. Therefore, we consider the error estimates given in [58, Theorem 2.2] which states that in the L2

norm the expected optimal order of convergence is O(h1−2ε), while in the energy norm it is O(h1/2−ε) for any
ε > 0. The error in the energy norm is obtained as

√
|∥φ∥|

2
− |∥φh∥|

2, with |∥φ∥|
2

= ⟨Dφ, φ⟩L2(∂Ω) = π/4 and
|∥φh∥|

2
= ⟨Dφh, φh⟩L2(∂Ω) = α⊤ Aα, with A denoting the Galerkin matrix and α the vector of coefficients, as in

(15).
Fig. 10 shows that the obtained results confirm the theoretical estimates. Note that, adopting the alternative

quadrature rules introduced in [47] and already mentioned for comparison purposes in the first test case considered
in Sub Section 5.3, the same convergence behavior can be obtained in both the considered norms if at least 8
gaussian nodes for element, that is 24 for each B-spline support, are used.

7. Conclusions

Quadrature rules based on spline quasi-interpolation (QI) are introduced for the numerical approximation of
hypersingular integrals, also including a B-spline weight. Under suitable smoothness requirements for the integrand
factor g approximated by the QI scheme, it is first proved that the proposed rules exhibit optimal convergence
order. Then their convergence behavior is investigated assuming reduced smoothness of g. Finally, the application
of the rules within the IgA-SGBEM method for the numerical solution of 2D Laplace problems, with mixed or pure
Neumann boundary conditions, is studied. In all the considered IgA-SGBEM experiments the expected convergence
20
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Fig. 10. Example 4: screen problem. Approximation error uh − u versus NDO F in both the L2 and energy norms.

order of the discretization scheme is guaranteed by using very few uniform quadrature nodes in the support of each
B-spline test function.

These results conclude the study of the 2D case and have been considered as the basis for the analysis of the 3D
case. We observe however that the extension to the 3D case is not straightforward, even if tensor-product topology, to
some extent, allows us to exploit the techniques developed in the 2D case. New aspects and challenges in particular
have to be considered for the treatment of kernel singularities, since in 3D a singular kernel fully independent of
the geometry parameterization cannot be derived and also because advanced strategies for the kernel splitting are
necessary to guarantee sufficient smoothness to the functions approximated by the QI operator used in our rules:
some preliminary results are available in [59].
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